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Micro-bends are frequently encountered in micro-electro-mechanical systems (MEMS) as a basic unit 

of complex geometry. It is essential for a deep understanding of the rarefied gas flow through bent 

channel. In this paper, a two-dimensional pressure-driven gas flow in a micro-channel with two bends 

is investigated by solving the Bhatnagar-Gross-Krook kinetic equation via the discrete velocity method 

in the slip and transition flow regimes. The results show that the mass flow rate (MFR) through the 

bent channel is slightly higher than that in the straight channel in the slip flow regime but drops 

significantly as the Knudsen number increases further. It is demonstrated that the increase of MFR is 

not due to the rarefaction effect but to the increase in cross-section of the bent corners. As the 

rarefaction effect becomes more prominent, the low-velocity zones at the corners expand and the gas 

flow is “squeezed” into the inner corner. The narrowed flow section is similar to the throttling effect 

caused by the valve, and both the changes in MFRs and the pressure distribution also confirm this 

effect. The classical Knudsen minimum changes due to this “rarefaction throttling effect”. The 

Knudsen number at which the minimum MFR occurs gradually increases with the bend angle, and 

finally disappears in the transition flow regime. In addition, the onset of rarefaction throttling effect 

shifts to a smaller Knudsen number with a lower tangential momentum accommodation coefficient. 

 

I. INTRODUCTION 

Micron-sized devices fabricated by micro-electronic fabrication processes are the major 

components in micro-electromechanical system (MEMS), including microsensors, micro-turbines, and 

micro-fuel cells.1,2 Due to the features of miniaturization and sophistication, typical micro-device often 

contains high-density microchannel networks3,4, which are composed of hundreds to thousands of 

channels. The typical length scale of these microchannels ranges from a few hundred to a few microns, 

sometimes even to sub-micron. Due to the design limitation, channels with bends are encountered in 

most of the miniaturized devices. For instance, micro heat exchanger generally uses a serpentine 

channel containing many bends to keep the device efficient and compactable.5 Therefore, the study of 

gas flows through complex micro-channels has great practical importance. Over the years, systematic 

understanding of internal rarefied gas flows has attracted attention in both experimental and theoretical 



2 

 

research.6-9 So far, gas flows in straight microchannels have been investigated extensively. However, 

the research work for the flow in channels with bends, to the authors’ best knowledge, is very limited. 

As the emergence of bend could lead to some new and counter-intuitive phenomena, e.g., the mass 

flow rate (MFR) might increase in bent channels5,10-12, a detailed investigation on the bending effect in 

gas flow through micro-channels would be significantly helpful for the design of MEMS. 

In most of the miniaturized devices, the mean free path of gas molecules Ȝ is of the same order as 

or even larger than the system characteristic flow length H.1 When H decreases to significantly less 

than Ȝ, the ratio of these two lengths, which is defined as the Knudsen number (Kn=Ȝ/H), may become 

relatively large. Under such circumstances, theories derived from the continuum assumption including 

the conventional Navier-Stokes equations do not work.13 This is due to the fact that, the shear stress 

and heat flux in the fluid dynamic models cannot be simply expressed in terms of the lower-order 

macroscopic quantities. A number of rarefied effects have been revealed in rarefied gas flows, 

including the velocity slip14, temperature jump15, Knudsen paradox16, and thermal transpiration17. 

However, how the complex structures in micro-channel affect the gas flow remains less investigated. 

By using the integrated pressure sensors, experiments of gas flow in microchannels with complicated 

geometries have been reported in literature [18-20]. Lee et al. investigated the MRFs and the pressure 

distributions in three different bend configurations including the miter, curved and double-bent 

microchannels.18 Their results showed that additional pressure drops are induced by bends and the 

MFR in double-bent channel is reduced to about 90% of the one in the straight channel. Varade et al. 

conducted experiments for nitrogen gas flows through a tube with a single bend in the continuum flow 

and early slip regimes (0.0003<Kn<0.0385).20 It was found that the flow separation near the corner 

causes a large pressure drop at small Knudsen numbers while the influence gradually decays as the 

Knudsen number increases. However, these works are limited to the flow regimes with small Knudsen 

numbers. Besides, to measure the small MFR of highly rarefied low-speed gas flow, a large pressure 

ratio is necessary to drive the gas flow, which makes it expensive and difficult to conduct an 

experiment in incompressible limit. 

Due to the constraint in experiments, efficient numerical simulation for gas flows at micro-scale 

has received widespread attention and been improved with significant progress. When the 

Navier-Stokes equations break down, the Boltzmann equation for the velocity distribution function 

(VDF) of gas molecules, which is derived based on the gas kinetic theory, is a fundamental way to 

describe the rarefied gas dynamics.21 The Direct Simulation Monte Carlo (DSMC) method22 is widely 

used for the numerical solution of the Boltzmann equation. By using a set of simulated particles each of 

which could represent a great number of real gas molecules, the DSMC method phenomenologically 

mimics the streaming and binary collisions of molecules, as well as the gas-boundary interactions in 

the computational domain. It has been applied to investigate the MFRs and the pressure distributions in 

bent channels under different Mach numbers and Reynolds numbers12,23,24 , where the flow field and 

the pressure distribution along the bend are found to be similar to those in the straight channel, except 

for some differences near the corner of the bend. Although White et al.12 attributed such discrepancies 

to the change of rarefied effect, Rovenskaya5 showed that the differences are still present with fixed 

Knudsen number and gradually become significant when the Mach number increases. This indicates 
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that the local influence of the bend is due to the gas compressibility. Besides, when both the total length 

and the pressure difference between inlet/outlet are the same, it is found that the MFR along the bent 

channel is slightly higher than that in the straight channel in near-continuum flow regime12 but the 

difference disappears when the Knudsen number increases10,11. 

Although the DSMC method has been successfully applied to a wide range of problems in rarefied 

gas dynamics, the statistical feature of the particle method makes it very inefficient in simulating 

low-speed flows25, which is frequently encountered in micro-systems. When gas velocity is far smaller 

than the most probable speed of gas molecules, the deterministic numerical simulation approaches 

relaying on the discrete velocity method (DVM) are attractive alternatives to solve the Boltzmann 

equation.26 These methods adopt a set of discrete velocities to represent the continuous molecular 

velocity space. Then the VDFs which are discrete in the velocity space but continuous in the spatial 

space are solved by conventional computational fluid dynamic methods.27-29 Generally speaking, for 

the solution of highly-rarefied gas flow, a large number of discrete velocities is required in order to 

capture non-equilibrium effects precisely.30,31 In practice, deterministic solution is commonly sought 

for the gas kinetic models that reduce the complicated collision operator in the Boltzmann equation to a 

simpler collision relaxation term; one frequently used is the Bhatnager-Gross-Krook (BGK) kinetic 

equation32, which has been proven to be sufficiently accurate on many fundamental issues such as gas 

slider bearing problem33, Knudsen paradox34, etc. 

One of the interesting problems in rarefied gas dynamics, i.e. the Knudsen minimum or Knudsen 

paradox, draws attention for years due to its important applications to the micro-machines and other 

devices with tiny air gap. 35 , 36  This phenomenon was firstly observed by Knudsen et al. 37  in 

experiments of Poiseuille flow driven by the identical pressure drop in the channels with varying 

widths. Although it has been extensively studied in both experimental and theoretical analyses, the 

research that focuses on how the geometry of the microchannels affect the gas flow is quite limited. 

Sharipov et al.38 investigated the rarefied gas flow through a zigzag channel by using the linearized 

kinetic equation and found that the aspect ratio of the channel affects MFRs while the underlying 

reason behind it is still unknown. Besides, the effect of accommodation coefficient of the bounding 

surfaces, which could affect the MFR significantly39, awaits to be studied under complex geometries. 

As a benchmark of the gas flow problem in complex geometry, the gas flow in a bent channel is a good 

starting point to help us seek for fundamental understanding of flow mechanism. 

Therefore, the aim of this paper is to investigate the effect of the bend on the behavior of a 

pressure-driven flow in the slip and transition flow regimes by using deterministic solutions of the 

linearized BGK equation. The geometry of the bent channel is introduced in Sec. II, and the linearized 

BGK equation as well as the numerical scheme is briefly described in Sec. III. The influences of the 

bend on the pressure-driven gas flow and the corresponding mechanisms are discussed in Sec. IV. 

Finally, conclusions are given in Sec. V. 

 

II. FORMULATION OF THE PROBLEM 

As shown in FIG. 1, we consider a two-dimensional pressure-driven gas flow through a 

micro-channel with two bends in a Cartesian coordinate system x(x, y). The micro-channel is divided 
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into three segments equally: the front and rear segments of the channel are horizontal, while the middle 

one connected to the other two parts by corners is located with a sloping direction. The length of each 

part is L/3, where L is the total flow length and L’ is the channel length in the x direction. The bend 

angle  , which is defined as the angle between the direction of the middle segment and the x  

direction, varies from 0° to 90°. To easily implement boundary condition in the Cartesian coordinates, 

the stair-step grid method is used to approximate the inclined channel walls. The width of the channel 

H=1. The ratio of the total length L to the width of the channel H sets to 13.5 while the solid surfaces of 

the channel extend to infinity in the direction perpendicular to the x-y plane, so the problem is 

effectively two-dimensional.5,40-42 Due to the fact that the material of silicon, which is commonly used 

for micron-sized devices, is a good heat conductor, the gas flow in the micro-channel could be 

considered isothermal.13 In this work, the gas flow is driven by the pressure difference between the 

inlet/outlet of the channel and we are interested in the influence of bend on the MFR at various 

Knudsen numbers. 

 

 

FIG. 1. Schematic of a two-dimensional micro-channel with two bends. The dashed line A-A1 

represents the centerline of the microchannel, while the cross-sections B-B and C-C represent sections 

away from the corner and at the corner, respectively. 

 

III. GAS KINETIC THEORY AND NUMERICAL SCHEME 

A. The gas kinetic theory 

The Boltzmann equation, which describes the evolution of the VDF in dependence of the 

molecular velocity, spatial position, and time evolution, is valid for the entire range of Knudsen 

numbers. In this paper, we use the following form of BGK equation instead of the full Boltzmann 

equation.32 The BGK equation in the two-dimensional spatial space and the two-dimensional velocity 

space could be written in Cartesian coordinate as 

   ,eq

f f p
f f

t 
 

   
 

v
x

 (1) 
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 2

0 exp ,
2 2

eqf
RT RT




 
  
 
 

v u
 (2) 

where  , ,f t x v  denotes the VDF,  ,x yv vv  the molecular velocity,  ,x yx  the spatial 

coordinate, p  the gas pressure, 0  the reference density and   the shear viscosity of the gas. Note 

that physically, the VDF is defined in the three-dimensional molecular velocity space, however, for 

isothermal problems, the VDF can be reduced to two-dimensional velocity space. We have tested that 

this does not affect the flow velocity or shear stress.34  

For the numerical solution of the system, it is convenient to normalize all the variables and 

function. Without losing generality, the following non-dimensional variables are defined as 
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where  ,x yu uu  is the macroscopic velocity, R  is the specific gas constant, T  is the gas 

temperature, 0T  is reference temperature and H  is the characteristic flow length. Note that the 

symbol hat denotes the dimensionless value in this paper. The Knudsen number is defined as 

 0 0(T )
Kn ,

2

RT

H pH

 
   (4) 

where   is the mean free path of the gas molecules, which is related to its shear viscosity   and 

the average pressure p  at the reference temperature. Then, the non-dimensional form of the BGK 

equation and the Maxwell velocity distribution function becomes  

   ,
2Kn

eq

f f
f f

t

 
   

 
v

x
 (5) 

 
 2

exp .eqf
T T




     
 

v u
 (6) 

Macroscopic quantities of the gas flow could be obtained from the velocity moments of the 

velocity distribution function. Thus, the non-dimensional forms of density, velocity and temperature are 

calculated as below 

 ,f d   v  (7) 

 ,f d  u v v  (8) 

  22
.

3
T f d   v u v  (9) 

Equation (5) must be combined with the boundary condition that determines the interaction of 

gas/surface when gas molecules collide with the wall surface. Here, the Maxwellian diffuse reflection 

boundary condition is used.43 Suppose that the solid surface is static with a temperature of 0T , for 
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0 v n (n represents the outward unit normal vector of the wall) the VDF for the molecules reflected 

by the wall is written as  

    2

, exp 1 , 2( ) ,w ff


 


           
x v v x v v n n  (10) 

where   represents the tangential momentum accommodation coefficient (TMAC).44 This boundary 

condition assumes that, when colliding with solid surface, 1  parts of the molecules are specularly 

reflected while the rest are diffusively reflected. Purely diffuse or specular reflection corresponds to the 

cases of 1   and 0, respectively. 
w  is given by 

  
0

2 , ,| |w f d 
 

   v n
v n x v v  (11) 

to guarantee that the mass flux across the solid surface equals to zero. 

 

B. The linearized BGK equation 

When the pressure gradient is small, namely / 1L p pdx  , and the gas flow velocity is much 

smaller than the most probable molecular speed 02mv RT  in micro-flows, the VDF f  could be 

linearized about the global equilibrium state eqE  as follows: 

  
2

1 ,  exp / ,eq eqf E h E      
 

v  (12) 

where the perturbation VDF  , ,h t x v  is governed by the following linearized BGK equation:38,45 

  , , ,
2Kn

h h
h

t

 
   

 
v u

x
L ñ  (13) 

 
2 3

, , 2 ,
2Kn 2

( )
           

u u v vñ ñL  (14) 

where the perturbed number density, the flow velocity, and the perturbed temperature are calculated as 

follows: 

 1 ,eqhE d    vñ=  (15) 

 ,eqhE d  u v v  (16) 

  22
1 .

3
eqT hE d     v v ñ.  (17) 

The linearized form of the gas kinetic boundary conditions is given below. The 

periodic-pressure-driven boundary conditions are applied along the x  direction at the inlet ( 0x  ) 

and outlet ( 'x L ):38 

 
   
   

0,  ,  ,  ',  ,  ,  ,     0
   

',  ,  ,  0,  ,  ,  ,     0,

x y x y x

x y x y x

h y v v B h L y v v when v

h L y v v B h y v v when v

   


    
 (18) 

where B is perturbed pressure constant and eqBE dp   v  is perturbed pressure difference.  
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While on the upper and lower solid surfaces, the linearized form of diffuse-specular boundary 

condition is written as 43 

 
   

   

2

0

2
, , exp

                    1 , 2 .

h h d

h






 

      
 

   



 

v n
x v v n x v v v

x v v n n

 (19) 

When the gas flow reaches the steady state, the dimensionless MFRs of the pressure-driven flow 

are calculated by  1

0 0
0

/ / 2xQ u pd y Q RT pH      where 
0

0

H

xQ u dy  . 

 

DVMC. The discrete velocity method 

In the DVM, the molecular velocity space v is represented by a set of discrete velocities. In this 

work, vN  non-uniform points are used to discretize the molecular velocity in each direction,30 

  
 3max

, 3
1,  3,  1 ,

1
x y v v v

v

v
v N N N

N
     


. . .ˈ  (20) 

where the discrete velocities are distributed in a square of  24,4  with max 4v  , and are refined 

near , 0x yv  . This method of choosing the discrete velocities rather than the Gauss-Hermite 

quadrature has been proven efficient in simulations of micro/nano-scale gas flow, especially in 

capturing the rapid variations in the VDF at larger Knudsen numbers.34 Finally, Eq. (13) is solved by 

the following iterative method 

  
 

      
1

1
, ,

2Kn

j
j j j jh

h
 


 
  


v u

x
L ñ  (21) 

where the scripts  j  and  1j   denotes two consecutive iteration steps. Here, we omitted the 

derivation with respect to the time since we are only interested in the steady-state solution. The spatial 

derivatives are approximated by a second-order upwind finite difference scheme, and the iteration is 

terminated when the relative error of the macroscopic velocity u  between two consecutive iteration 

steps is less than 10-10. 

 

D. Multiple-Relaxation-Time lattice Boltzmann method 

Because the spatial mesh is required to be smaller than the mean free path, the DVM becomes 

time-consuming in the near continuous flow area.30,34 For comparison, we use the 

Multiple-Relaxation-Time lattice Boltzmann method (MRT-LBM)46 with zero velocity-slip boundary 

condition to simulate gas flow in the continuum flow regime. Under the assumption that the flow speed 

is small, the MRT-LBM is proven to be equivalent to solving the Navier-Stokes equations in the 

near-incompressible limit for single phase flows through complex geometries47, and has been extended 

for multiphase flow simulation successfully48,49.The two dimensional-nine-velocity (D2Q9) LBM with 

a multiple-relaxation-time collision operator can be written as:50,51 
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      -1

,, , , , .i i t i i i j eq jij
f t x v v f t x v f f         M SM  (22) 

Here   , , : 0,1,...,8i if t x v i   are the discrete distribution VDF at time t and position x 

associated with the discrete velocities  : 0,1,...,8iv i   defined by  0 0,0v  ,  1 3 1,0v v c   , 

 2 4 0,1v v c   ,  5 7 1,1v v c    and  6 8 1, 1v v c     , where /x tc    with x  being the 

lattice spacing and t  being the time step. M is a 9 9  invertible transformation matrix projecting 

the discrete VDF if  onto the moment space: 

 

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

,0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

 
      
    
    
    
 

   
   
 

  
   

M  (23) 

and   1

0 1 8, ,...,diag    S  is a non-negative diagonal matrix with i  being the relaxation time for 

the ith moment. 
,eq if  is the discrete equilibrium distribution function given by 

 
 2

, 2 4 2
1 ,

2 2

ii
eq i i

s s s

v uv u u u
f w

c c c


  
    

  
 (24) 

where w0=4/9, w1-4=1/9, w5-9=1/36, 
/ 3sc c

 
is the sound speed, and ȡ and u are the density and 

velocity defined as 

 ,    .i i i

i i

f u v f     (25) 

The half-way bounce-back scheme is used to enforce the no-slip boundary condition at solid 

surface by reflecting VDF from the boundary nodes back into the direction of incidence.52,53 

 

IV. INFLUENCE OF THE BEND IN MICRO-CHANNELGAS FLOW 

In this section, we assess the influence of bend on the pressure-driven gas flows in micro-channel. 

The MFRs are calculated for the Knudsen number ranging from 0.01 to 10, spanning over the slip and 

transition flow regimes. The convergence study is performed for both the straight and bent channels to 

determine the grids in the velocity and spatial spaces. The numbers of discrete points used in the x and 

y directions are 2,700 and 200, respectively. To capture the discontinuities in the distribution function at 

large Knudsen numbers, vx and vy are discretized by Eq. (20) with Nv=34 non-uniform points in each 

direction. Further refinement of the spatial mesh and discrete velocities would change the results by 

less than 1%. In addition to the MFR, we are also interested in the pressure distribution, dimensionless 

velocity magnitude 
2 2

/x yU u u p   , velocity contours, and the streamlines. 
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A. The bend effect on the Knudsen minimum effect 

  

FIG. 2. (a) The dimensionless mass flow rate Q and (b) the relative deviation (Qbend-Qstraight)/Qstraight 

between the straight and bent channels with bend angles ș=6, 14, 26, 35, 45, 90 degrees. Note that Q is 

obtained from the DVM solution of the linearized BGK equation and the semi-analytical result from 

Cercignani, Lampis, and Lorenzani35 are labeled as “Cercignani et al”. 
 

FIG. 2 shows the change of MFRs with respect to the Knudsen number in the micro-channels with 

the same total length L but different bend angles  . As shown in FIG. 2(a), for the straight channel 

( 0  ), the MFR decreases to a minimum value at first and then increases slightly with a further 

increase in the Knudsen number, which is called the Knudsen minimum or Knudsen paradox37. The 

results from Cercignani et al35 are also included as shown in red solid circles. For the MFR in the 

straight channel, the present DVM solution agrees well with that from Cercignani with less than 0.5% 

error. 

When gas flows through the bent channels with different bend degrees, one can find that, the 

MFRs in the bent channel are slightly higher than those in the straight one for small Knudsen numbers. 

However, when the Knudsen number increases, this slight increment soon disappears and the MFRs 

drop below the profile in the straight channel significantly. Moreover, the difference between the MFRs 

in the straight and bent channels enlarges as the bend angle increases. The relative deviation of the 

MFRs between the bent and straight channels is shown in FIG. 2(b). When Kn=0.05, 0.5, 5.0, the 

MFRs are equal to 4.208, 1.477 and 1.303 for the bent channel with 90   while for the straight 

channel the MFRs is 4.149, 1.578 and 1.851, respectively. This implies that two bends of 90° cause 

about 1.39% increment, 6.43% and 29.59% drops in MFRs as compared to that of the straight channel 

at Kn=0.05, 0.5 and 5.0, respectively.  

Note that the Knudsen number corresponding to the minimum MFR changes as the bend angle 

increases. Table I shows the minimum MFR and the corresponding Knudsen number with different 

bend angles. It is clear that an increase in the bend angle leads to a larger Knudsen number at which the 

minimum MFR occurs. Specifically, the minimum point appears at Kn=0.8 in the straight channel, but 

for 6 ,  26 , 45   the location shifts to Kn=0.90, 1.47 and 3.19, respectively. Furthermore, for the 

bend angle of 90°, the Knudsen minimum in the whole transition flow regimes even disappears, which 

means that the MFR monotonically decreases without any increase. This reduction of MFRs indicates 

that the rarefied effect along with the increase of bend angle leads to an apparent local resistance in the 

channel jointly.  
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TABLE I. Minimum MFRs and corresponding Knudsen numbers for different bend angles, ș 

Bend angle, ș Kn Mass flow rate 

0° 0.89 1.544 

6° 0.90 1.457 

14° 1.05 1.423 

26° 1.47 1.366 

35° 2.10 1.334 

45° 3.19 1.332 

90° - - 

 

B. The change of the velocity field under different flow regimes 

To understand how the bend affects the flow field in different flow regimes, we plot the 

normalized velocity magnitude U/Umean-AA1 along the centerline of the micro-channel with ș=90° (the 

dotted line A-A1 in FIG. 1) at three different Knudsen numbers in FIG. 3, where Umean- AA1 is the 

average velocity magnitude along the centerline A-A1. It can be found that, for the same Knudsen 

number, the values of U/Umean-AA1 are nearly the same along the channel but only fluctuate violently 

around the bend corners. Also, the normalized velocity profiles are roughly the same at the bend corner 

under different Knudsen numbers. The result appears to be consistent with the previous findings in 

[5,10-12] which argue that bends only affect the flow field locally and the sharp decrease of the 

normalized velocity reflects the influence of the corner. However, the reason of this sudden change in 

the velocity magnitude along centerline is mainly due to the fact that the direction of the mainstream 

deviates from the centerline at the corner. As shown in FIG. 4, the streamlines and the velocity 

magnitude contour at the corner indicate that the mainstream fluid flows through the bend along the arc 

direction (direction 1) rather than the centerline (direction 2). Therefore, the fluctuation of the velocity 

magnitude shown in FIG. 3 could only reflect the deviation between the velocity along the centerline 

and the one along the mainstream, but not the influence of the bent corner on the flow field. 

 

FIG. 3. The normalized velocity magnitude U/Umean-AA1 along the centerline of the bent channel with 

ș=90 for Kn=0.05, 0.5 and 5.0. Umean-AA1 is the average velocity magnitude along the centerline under 

the corresponding Knudsen numbers, and l represents the distance from the inlet along the centerline. 
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FIG. 4. Streamline and the contour of velocity magnitude at the corner. 

 

We further discuss the velocity magnitude U and the normalized velocity magnitude U/Umean at 

different cross sections of the bent channel with ș=90°. FIG. 5 shows the velocity magnitude U and the 

normalized velocity magnitude U/Umean-BB at l/L=0.15 (section B-B in FIG. 1), where Umean-BB is the 

average velocity magnitude in the B-B section under the corresponding Knudsen numbers. It can be 

seen that, due to the relatively far distance from the bend corner, the velocity profiles present 

symmetrical parabolas. As shown in FIG. 5(a), the velocity magnitude in channel is almost the same as 

that in the straight one at Kn=0.05. However, with the increase of the rarefaction effect, the velocity of 

the bend channel drops to lower than that of the straight one, and the reduction becomes quite evident 

at Kn=5.0. Although the difference between the velocity magnitudes becomes significant, the profiles 

of the normalized velocity magnitude in the bent channel shown in FIG. 5(b) are in good agreement 

with those in the straight channel under different Knudsen numbers. This indicates that the flow pattern 

does not change, but only the MFR drops as compared to the straight channel. 

 

  

FIG. 5. (a) Velocity magnitude U and (b) normalized velocity magnitude U/Umean-BB at l/L = 0.15 

(section B-B in FIG. 3) in the bent channel with ș=90 for Kn=0.05, 0.5 and 5.0. Umean-BB is the average 

velocity magnitude in the B-B section under the corresponding Knudsen numbers. y represents the 

distance from the upper wall along the vertical direction. 

 

FIG. 6 shows the magnitude of the velocity U and the normalized velocity U/Umean-CC in the cross 

section at corner (see section C-C in FIG. 1) under three different Knudsen numbers, where Umean-CC is 

the average velocity magnitude along the C-C section under the corresponding Knudsen numbers. It 
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can be found that, due to the constraint of the corner, the velocity profile is no longer a symmetrically 

parabolic as in the straight channel, and the maximum velocity moves towards the inner wall at y/H=0. 

Moreover, it is noted that the location of the maximum velocity varies at different Knudsen numbers. 

When Kn=0.05, the maximum velocity appears at y/H=0.218, and as the Knudsen number increases to 

0.5 and 5.0, the location changes to y/H=0.090 and y/H=0.038, respectively. This indicates that the gas 

flow is squeezed into the corner of the inner wall and the velocity near the outer wall (the wall on the 

side of y/H=1.0) is significantly reduced as the Knudsen number increases.  

  

FIG. 6. (a) Velocity magnitude U and (b) normalized velocity magnitude U/Umean-CC at the center cross 

section (section C-C in FIG. 1) of the bent channel with ș=90 for Kn=0.05, 0.5 and 5.0. Umean-CC is the 

average velocity magnitude in the C-C section under the corresponding Knudsen numbers. y represents 

the distance from the inner wall along the section.  

 

C. The enhancement and reduction of MFR at different Knudsen numbers 

As shown in FIG. 2, in small Knudsen number regime, the MFR through the bent channel is 

higher than that in the straight one. Some researchers tried to find out the underlying reasons in detail. 

Agrawal et al. attributed this slight increment in MFR to the numerical error,10 while Rovenskaya et 

al.5 and White et al.12 explained that this is attributed to the increase of the local Knudsen at the inner 

corner tip, which leads to the increase of the local slip velocity and decrease of the local shear stress. 

To investigate gas flow in the near continuum flow, we use Multiple-Relaxation-Time lattice 

Boltzmann method (MRT-LBM) to calculate same problem with zero velocity-slip boundary condition 

in incompressible limit. By using the MRT-LBM to calculate the gas flow through the bent channel in 

the continuum flow regime, we also find a slight increase of the MFR in the bent channel compared to 

the straight one. As shown in FIG.7, the values of Qbend/Qstraight are equals to 1.031, 1.022 and 1.014 

when Kn≈0 (MRT-LBM result), 0.01 and 0.05 (DVM results), respectively. To further elucidate the 

enhancement of MFR in the bent channel, we also plot the relative pressure difference (pbend-pstraight)/pin 

along the center line direction in FIG. 8, where pin is the inlet pressure, while pbend and pstraight are the 

pressures along the centerlines of the bend and straight channels, respectively. When the Knudsen 

number is relatively small (Kn=0.05), the pressure before the corner is slightly lower than that in the 

straight channel, while the pressure after the corner is slightly higher. This pressure distribution is quite 

similar to the one in the channel which contains expansion part54. Therefore, the increased cross-section 

at the corner plays a role like an expansion tube, which leads to the result that the MFR is larger than 

that in the straight channel. So this slight increment in MFR is caused by the increasing cross-section at 

the corner instead of the rarefied gas effect. 
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FIG. 7. The ratio of Qbend and Qstraight in the near continuum and slip flow regimes. 

 

 

 

FIG. 8. The pressure difference (pbend-pstraight)/pin along the centerline for Kn=0.05, 0.5 and 5.0. l 

represents the distance from the inlet along the centerline, pin is the inlet pressure, while pbend and pstraight 

are the pressures along the centerlines of the bent and straight channels, respectively. 

 

As the Knudsen number increases, the rarefaction effect tends to dominate, which triggers a 

variety of counter-intuitive phenomena. One of them is called the Knudsen minimum where the 

dimensionless MFR in Poiseuille flow could increase when the gas pressure decreases.4 This is a 

paradoxical behavior because, based on the Navier-Stokes equations, one would expect the mass flux to 

decrease with the increasing Knudsen number. Whereas if the MFR in straight long channel is plotted 

over the Knudsen number, a distinct minimum is observed around Kn=0.8. The balance of two 

competing effects could explain the mechanism behind this intuitively: on the one hand, the imposed 

pressure gradient gradually penetrates the bulk flow field through gas-gas and gas-surface collisions. 

As the Knudsen number rises, the interaction between the gas molecules are weakened, which could be 

characterized as the increase of viscosity qualitatively and thus the MFRs drops; on the other hand, as 

rarefaction effect becomes evident, the impact of the collisions between gas molecules and solid 

surfaces gradually become dominant. Thus the slip velocity in the Knudsen layer (the gas layer of a few 

mean free paths to the wall) becomes large, which eventually helps to increase the MFR. The 
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combination of the two mechanisms induces the existence of the Knudsen minimum in the Poiseuille 

flow inside straight channel. 

However, when there is a corner in the channel, the collision and rebound direction between the 

gas and the wall changes. This result in the slip velocity inside the Knudsen layer is no longer parallel 

to the main flow direction, which may disturb and even slow down the mainstream gas flow. To further 

reveal the reason for the change of the Knudsen minimum effect, we plot the normalized velocity 

magnitude U/Umax and the flow streamline in the bent channel with ș=90° at three different Knudsen 

numbers in Fig. 9, where Umax is chosen as the maximum magnitude of the velocity under the 

corresponding Knudsen number in the whole flow field. It is seen that the flow fields are similar under 

different Knudsen numbers except for the contour near the corner. The smooth streamline through the 

corner indicates that no vortices or flow separations happen for such low-speed flows.38,55 For the sake 

of convenient comparison, FIG. 10 illustrates the contour of the normalized velocity magnitude U/Umax 

at the first corner by using the maximum magnitude of velocity as the reference. It is shown that the 

contour line of the velocity at the bend possesses concave, as if the flow is squeezed by the corner. This 

effect aggravates with the increase of Knudsen number, which indicates that with the increase of the 

rarefaction effect, the disturbance caused by the corner gradually rises, resulting in a larger area of low 

velocity at the corner. What’s more, Fig. 7 shows that the pressure before the corner increases as 

compared to that in the straight channel while the pressure after the corner drops, which is very similar 

to the pressure distribution of the fluid through the narrowing tube or throttle.54 Under this 

circumstance, the corner plays a role similar to a “valve”, which results in a decrease of the effective 

flow section. The main cause of this “rarefaction throttling effect” should be attributed to the sudden 

change of the mainstream direction imposed by the bend corner. 

It should be noted that, even though we carefully selected the aspect ratio of the bent channel 

/ 13.5L H   in the two-dimensional simulations according to the previous literature [5,40,41] in order 

to maintain reasonable results in the three-dimensional cases, there might be different behavior due to 

greater wall interactions in the corners of the bend under three-dimensional conditions, which may lead 

to more pronounced Rarefaction Throttling effect. 

 

   

FIG. 9. Contours of the normalized velocity magnitude (U/Umax) and the flow streamlines for the bent 

channel when (a) Kn = 0.05, (b) Kn=0.5, (c) Kn=5.0. Umax is chosen as the maximum velocity 

magnitude under the corresponding Knudsen number. 
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FIG. 10. Contours of the normalized velocity magnitude U/Umax at the first corner when (a) Kn = 0.05, 

(b) Kn = 0.5, (c) Kn = 5.0. The lines marked with 0.2, 0.4, 0.6, and 0.8 represent velocity contour lines 

of the 20%, 40%, 60%, and 80% of the maximum velocity magnitude, respectively. 

 

D. Effect of the chamfering in bent channel 

To give guidance for the design of the channel, we add a chamfer of 45° to the corner of bend. FIG. 

11 shows the contour of the normalized velocity magnitude U/Umax in the 90° bent channel with 

chamfer. It is found that the chamfer makes the gas turn smoothly at the bend, and the area of the local 

low-velocity area is no longer concentrated near the outer wall of the corner. However, the comparison 

of the MFRs in channels before and after chamfering (shown in FIG. 12) indicates that the MFR only 

increases slightly after chamfering, and the amount of increase gradually drops with the increasing 

Knudsen number. This is consistent with the result shown in FIG. 2, where the change of the bend angle 

from 90° to 45° only causes an increase in the MFR of less than 1.7%.  

 

 
  

 

FIG. 11. Contours of the normalized velocity magnitude at the chamfered corner. The lines marked 

with 0.2, 0.4, 0.6 and 0.8 represent velocity contour lines of the 20%, 40%, 60% and 80% maximum 

velocity magnitude, respectively.  
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FIG. 12. The mass flow rate Q in the straight channel, channel with chamfering corner and channel 

with 90 degrees corner.  

 

E. Effect of the tangential momentum accommodation coefficient in bent channel 

Finally, we change the TMAC   to examine the effect of different wall conditions on gas flow 

in micro-channel with bend. FIG. 13(a) shows the MFR in the straight channel under different  . It 

can be found that the present DVM solutions agree well with those from Cercignani et al.35 with 

relative error less than 0.5%. FIG. 13(b) shows the results for the MFR in the channel with bend angle 

of 90° under different  . The MFR increases with the drop of   at the same Knudsen number. This 

is because   represents the proportion of the diffusive reflection on the wall. As   decreases, the 

proportion of diffuse reflectance decreases and the specular reflectance increases, so that the velocity 

slip gradually becomes significant (note that the slip coefficient is roughly proportional to 

(2 ) /  ). The ratio of MFRs in the channel with bend and the one in the straight channel 

Qbend/Qstraight at different TMACs are given in FIG. 14. It can be seen that, for a fixed value of  , the 

MFR ratios decrease with the increase of Knudsen number. The smaller the TMAC is, the more rapidly 

the MFR ration drops as Kn increases. For a fixed Knudsen number, the MFR ratio drops as the TMAC 

decreases. This indicates that the slip velocity at the corner is a vital factor in the generation of the 

“throttling effect”, and with small TMAC, the “throttling effect” could become significant even at 

relatively small Knudsen numbers.  
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FIG. 13. (a) The dimensionless mass flow rate Qstraight 
in the straight channel, and (b) the dimensionless 

mass flow rate Qbend 
in

 
bent channel with bend angle of 90° under different tangential momentum 

accommodation coefficients Į. 

 

  

FIG. 14. The ratio of the MFR in the channel with bend and the one in the straight channel Qstraight/Qbend under 

different tangential momentum accommodation coefficients Į. 

 

V. CONCLUSIONS 

In summary, based on the linearized Bhatnager-Gross-Krook equation, we have investigated the 

behavior of a two-dimensional pressure-driven gas flow through a micro-channel with two bends. The 

mass flow rates (MFR) of the gas flows in the bent micro-channel with different bend angles are 

obtained. Our results show that the effects of the corners on the flow field depend on Knudsen numbers. 

The main findings could be summarized as follows. 

1. At small Knudsen numbers, the dimensionless MFR through the bend is slightly higher than 

that in the straight channel. Since this phenomenon is also found in the continuum flow 

regime by using MRT-LBM method that solves the Navier-Stokes equation with zero 

velocity-slip boundary condition, for the first time we find that the slight increase of MFR is 

not due to the rarefaction gas effect but to the increase in cross-section induced by the corner.  

2. As the Knudsen number increases, the MFR in the bent channels starts to decline and the 

amount of reduction increases significantly compared to the straight channel. The increase of 

the bend angle would also reduce MFR under the same Knudsen number. Besides, the 

Knudsen number corresponding to the minimum location of MFR gradually increases with the 

bend angle, and even disappears in the slip and transition flow regimes when the bend angle 

reaches 90 degrees. The distributions of normalized velocity at different cross sections show 

that, as the Knudsen number increases, the zone of low velocity at the bend gradually expands 

and the gas flows are “squeezed” into the inner corner, which is very similar to the throttling 

effect. 

3. Moreover, the MFR through the micro-channel with chamfer corner is calculated. Although 

the low-velocity area is not as concentrated as the 90° corner, the reduction of MFR is not 

improved apparently. 

4. The decrease in tangential momentum accommodation coefficient would enhance the slip 
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velocity on the wall, which could exacerbate the rarefaction throttling effect and allow it to 

occur at very low Knudsen numbers. 

Finally, it is noted that the bent channel should not only be considered as itself, but also a very 

basic component of complex geometry. Understanding this rarefaction throttling effect would help to 

evaluate the MFRs affected by the complex geometry under low-velocity and rarefied circumstances, 

especially in a quite tortuous geometry such as micron-sized chips and shale rocks.  
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