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1. INTRODUCTION 

1.1 Motivation 

Seaborne operations have a major role in today’s 
economy, with 90% of the world trade carried by the 
international shipping sector (Sherbaz et al., 2015). 
However, the shipping sector has recently been fac-
ing challenges due to environmental legislations and 
bunker’s prices fluctuations. Thus, environmental 
and economic sustainability in shipping operations 
has gained great interest (Mansouri et al., 2015). 

1.2 Literature Review 

In recent years, the environmental regulations im-
posed in the shipping industry by the International 
Maritime Organisation (IMO) have significantly in-
creased, due to society’s efforts to reduce global an-
thropogenic emissions, because of their adverse ef-
fect on health and ecosystems. Regulations have 
been imposed, which set limits on the emissions of 
NOx, SOx and particulate matter PM from ships’ 

exhausts and prohibits deliberate emissions of ozone 
depleting substances (IMO, 2011). Two areas are 
acknowledged, the global areas and the Emission 
Control Areas (ECA). In the latter, more stringent 
limits are imposed to SOx and NOx emissions from 
ships (IMO, 2011). 

 In addition, the shipping industry is responsible 
for a great proportion of the global climate change 
problem and it is estimated that the CO2 emissions 
from marine bunkers in 2013 were 64% higher than 
1990 (IEA, 2015). However, the IMO has not yet 
taken actions for establishing limits for the CO2 ex-
haust emissions, but the EU is discussing whether 
shipping should enter the EU emission trading 
scheme (EU ETS) (Eyring et al., 2010). 

Although limits have not yet been set for the CO2 
emissions, on the 1st of January 2013 IMO intro-
duced the first maritime energy efficiency regulation, 
because energy efficiency is a prerequisite for the re-
duction of the greenhouse gas emissions (Lu et al., 
2015). According to the regulation all new built ves-
sels have to comply with the Energy Efficiency De-
sign Index (EEDI) (IMO, 2014) and all new and ex-
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isting ships need to have a specific Ship Energy Ef-
ficiency Management Plan (SEEMP) (IMO, 2012). 
Even though these measures will bring improve-
ments, it is not feasible with only these two 
measures to reach the global objectives (Bazari and 
Longva, 2011). As a result, the EU adopted a moni-
toring, reporting and verification system (MRV) for 
carbon dioxide emissions on April 2015, which will 
enter into action on January of 2018 (EU, 2014).  

In light of the environmental legislation, uncer-
tainties on fuel prices and the fact that bunker fuel 
prices can account more than 50-60% of the vessel’s 
operating costs (Wang and Teo, 2013) there has been 
extended literature investigating solutions. Scholars 
focused on the operational phase, in order to mini-
mise the fuel consumption of merchant ships and 
therefore reduce fuel-related costs and emissions 
(Armstrong, 2013; Diakaki et al., 2015; Lu et al., 
2015; Psaraftis and Kontovas, 2014).  

Hence, there have been studies focusing on slow 
steaming, which has as consequences reduction in 
fuel consumption and emissions. However, the ship 
speed is related to the load conditions, sea states, 
current and wind, as well as, any existing constraints 
on estimated time of arrival (ETA) (Diakaki et al., 
2015). Thus, shipping companies that adopt slow 
steaming have the disadvantage that their vessels 
complete fewer roundtrips for a given route, which 
has therefore lower revenues per vessel for the ship-
ping company. On the other hand, adding vessels to 
a route leads to an increase in operating and capital 
costs (Wang & Teo, 2013). Other researches, em-
phasise on voyage optimisation, where an optimal 
route is chosen according to weather forecast, ves-
sel’s performance characteristics, energy consump-
tion and finally environment (Lu et al., 2013), in or-
der to achieve energy and cost efficiency.  

Both techniques consider the operational profile 
of the ship in providing solutions to achieve energy 
efficiency with the given vessel’s system design. 
Few researchers have focused on including the oper-
ational profile of the ship in the early design phases 
before irreversible decisions are made and the sys-
tem becomes operational, so that the opportunities 
for optimal environmental and cost efficiency are 
maximised.  

Besides the early design phase is a critical time in 
order to achieve better environmental performance 
(Winnes & Ulfvarson 2006). In this phase, the envi-
ronmental, economic and technical requirements 
need to be defined, along with other important pa-
rameters concerning constraints from international 
regulations, design codes, mission of the vessel and 
layout. Thus, all these requirements and expectations 
can be equally evaluated and trade-offs between 
them can be assessed in order to achieve the most 
sustainable and efficient solution. 

Furthermore, the operational profile of the vessel 
should be included in the early design phases with 

the aim of improving the energy efficiency of the 
ship. Depuis & Neilson (1997) have stressed how 
significant it is to consider the complete operational 
profile of the ship, even though it can be complex 
since it is affected by many parameters. Motley et al. 
(2012) suggested later that in order to improve the 
energy efficiency of the vessel for its life cycle oper-
ation it is important to include a real operational pro-
file of the vessel and not just a single design point. 
Baldi (2013) in his thesis with subject the improve-
ment of ship’s energy efficiency included the com-
plete operational cycle of the ship and concluded that 
for a 4-stroke engine there is a small improvement 
when the operational cycle is considered.  

In addition, Sciberras and Norman (2012) identi-
fied the importance of the operational profile and in-
cluded it in sizing the system with respect to the re-
duction of fuel consumption and installation’s 
weight. In that respect, Baldi et al., (2013) in their 
research used the engine’s load occurrence to opti-
mise the carbon footprint of the system. As a result, 
they proved that the use of the whole operational 
profile for the evaluation of the propulsion arrange-
ment has impact on multi-engine arrangements, like 
in 4-stroke engines. Also, Baldi (2016) concluded 
that the operational profile needs to be taken into 
consideration during the optimisation of ship energy 
systems, with respect to improving the ship energy 
efficiency.   

From the literature, the importance of the ship 
operational profile in the improvement of the ship 
energy efficiency is highlighted as well as the conse-
quential carbon footprint. However, there has not 
been any research including the operational profile 
of the ship while evaluating the life-cycle sustaina-
bility performance of the ship critical energy sys-
tems. 

Thus, the purpose of this paper is to investigate 
the influence of the real operational profile of the 
ship on its life-cycle environmental and economic 
performance.  

2. METHODOLOGY 

2.1 Introduction to the method 

The influence of the vessel’s operational profile in 
the operational life cycle sustainability of the ship 
systems is going to be investigated through a case 
study in this paper. A specific type of ship is chosen 
and real data of its main energy systems performance 
(main engine, oil-fired boiler, auxiliary generators) 
are provided by the engine’s manufacturer and sea 
trials performed after the construction of the vessel. 
The operation of each energy system according to 
the operational mode and profile of the ship is de-
fined. The environmental impact and fuel consump-
tion of each system are also identified. Thus, by im-



 

 

plementing different case scenarios of operational 
profiles (speed, % of time), the environmental and 
economic performance of the main ship energy sys-
tems can be estimated.  

2.2 Ship propulsion power requirements 

According to data that are provided from the sea 
trials of the vessel the propulsion power require-
ments as a function of the speed are available both 
for ballast and laden conditions for specific loads. 
Using these measured results and the Equation 1 
provided from Man Diesel & Turbo (2011), the pro-
pulsion power requirements are calculated: 

 
 

aVcP                        (1) 
 
where P is the propulsion power requirement in 

kW, c is a constant, V is the speed in knots and a is a 
constant that depends on the ship type. 

In the estimations of the power requirements, a 
sea margin of 15% is added to simulate the envi-
ronmental conditions.  

2.3 Sustainability indicators 

The environmental indicators used in this paper to 
evaluate the influence of the operational profile in 
the systems sustainability performance are SOx, 
NOx, CO2 and Particulate Matter (PM) emissions. 
These emissions are according to the literature the 
most significant in shipping and they are strictly reg-
ulated. Other indicators used in the study are VOC 
emissions, according to Annex VI, about regulations 
for prevention of air pollution from ships. VOC are 
to be regulated from tanker ships at loading and un-
loading. Another indicator, used in the study is the 
amount of fuel, which is highly important in order to 
estimate the fuel costs of the ship. These indicators 
are indicative and in future studies, more indicators 
can be introduced for the assessment of the envi-
ronmental and economic impact of the ship systems. 

In Table 1 the Emissions Factors (EF) that are 
used to calculate the environmental indicators for the 
main systems are shown. The CO2 EF follow the lat-
est IMO GHG Study and depend on the fuel used. 
For the SOx emissions indicator the assumption is 
that when the ship sails in ECA area the Sulphur 
contentis 0.1% and when it sails in non-ECA the 
sulphur content is 3.5%, according to IMO regula-
tions (IMO, 2011). The oil fired boiler VOC, NOx 
and PM emissions are calculated according to the EF 
estimated by the U.S. Environmental Protection 
Agency (1999). The other EF in Table 1 are estimat-
ed by Entec UK and can be found in Trozzi et al. 
(2006).  

Table 1  Emissions Factors for critical energy sys-
tems. 
 Emissions Factors 

 CO2 NOx PM  
 

VOC  
 

Main En-
gine 

3.021 
tn/tn fuel 

14 
g/kWh 

0.6 
g/kWh 

1.7 
g/kWh 

Oil Fired 
Boiler 

3.021 
tn/tn fuel 

5.63 
kg/m3 

4.24*  
kg/m3 

0.12  
      kg/m3 

Auxiliary 
Engines 

3.082 
tn/tn fuel 

13.5 
g/kWh 

0.3 
g/kWh 

0.4 
g/kWh 

*When ship is sailing inside ECA areas PM EF for boilers is 

0.5 kg/m3, because it depends on the Sulphur content. 

 

For the main engine, the NOx emissions are esti-
mated according to the EF given from the EIAPP 
certificate of the engine for various loads. When the 
ship sails in the ECA areas the NOx are considered 
3.4g/kWh to comply with the Tier III regulations. 

As a result, for each operational profile given, the 
emissions and fuel consumption per unit of cargo 
can be calculated. Adopting this methodology, an in-
tegrated evaluation of the environmental impact of 
the ship systems can be performed for each opera-
tional profile. 

Another important aspect of the sustainability 
performance of the ship systems is the economic di-
mension. The first indicator that is used for the eco-
nomic evaluation of the systems performance is the 
amount of fuel consumed during the operation and 
consequently the cost of fuel.  
 This is a comparative study, thus for the evalua-
tion of the economic sustainability the costs that are 
going to be considered are those that change due to 
the different operational profiles. As a result, the fuel 
costs, the harbor dues and the operational costs for 
crew wages and maintenance are included in the as-
sessment, since they are related with the number of 
voyages and the duration the ship sails. Installation 
costs of the engine and machinery and depreciation 
of the ship and systems, as well as, the insurance and 
the building cost are not included since they are in-
dependent of the changes on the operational profile 
and a full life cycle costing of the vessel is out of the 
scope of this paper. 

In addition, the freight rate for the cargo transpor-
tation is considered and a time chartering is assumed 
for costing calculation purposes, were the charterer 
pays only a freight rate per day of the voyage (laden 
conditions). In this paper the same assumption as in 
Psaraftis and Kontovas (2014) is adopted, where it is 
stated that the freight rate is independent of the char-
ter duration within a narrow range. As a result, the 
freight rate of the transportation of the cargo from 
port A to port B is going to be estimated for the av-
erage duration of the voyage and not for its specific 
operational profile, as it is assumed independent of 
the duration and as a predetermined value. 



 

 

2.4 Main energy systems performance 

The critical systems included in this paper, are the 
main engine, the auxiliary engines and the oil fired 
boilers and were chosen because they are the main 
energy producers and have the highest fuel consump-
tion among the energy systems (Baldi et al., 2015). 
For the purpose of this study, it is important to esti-
mate their performance. 

The shop trials of the energy systems provide the 
specific fuel consumption for various loads of the 
systems. These data are elaborated in order to esti-
mate the fuel consumption for all loads. Thus, with 
the particular percentage of time spent in each load, 
which is given as an input from the operational pro-
file of the ship, the fuel consumption is calculated.  

Another important step is to relate the energy sys-
tems’ performance with the operational mode of the 
ship. In the specific case, the following modes are 
identified: 

 ballast 
 laden 
 port loading 
 port unloading 

From the ship and sea trials, the thermal and elec-
tricity power needs for each of those modes are es-
timated. However, even if those data are not availa-
ble it is possible to make some initial estimations on 
the electrical and thermal power demand (SNAME, 
1990). Thus, by changing the operational profile the 
time that the ship spends in every operational mode 
changes, as well as the systems’ parameters, like the 
fuel consumption and the emissions. For the main 
engine as it was previously stated, the power re-
quirements arise directly from the ship’s operational 
profile according to Equation 1. 

3. CASE STUDY 

3.1 Ship specifics 

The ship investigated in this paper is a crude oil 
Aframax tanker, which main characteristics are pre-
sented in Table 2 and 3. 
 
Table 2 Tanker main characteristics. 

Characteristics Value 

Size 115000 DWT 
Displacement 134356 MT 

Length 249 m 
Beam 44 m 

Draft 15 m 

Propulsion Fixed Pitch Propeller 

 
Table 3 Tanker main systems. 

Systems Sets Capacity Fuel 

Main Engine 1 14400 kW HFO, ULSFO 

Auxiliary 
Gen Sets 

3 800 kW MDO 

Oil Fired Boiler 2 3000 kg/h HFO, ULSFO 

 For the specific case study, it is assumed that the 
tanker is sailing from King Abdul Aziz Port 
Dammam at the Persian Gulf to Port of Atlantic City 
in North America. The distance of the one-way voy-
age is 9129nm. The area of the Port of Atlantic is 
regulated as an ECA area. It is thus assumed that, 
when the ship is approaching or leaving the Port of 
Atlantic, it spends 10% of the distance in an ECA 
area, as well as when it is unloading the cargo.  
 The ship is considered to operate only 80% of the 
calendar year due to maintenance issues (Livanos et 
al., 2014), so it is assumed that the tanker operates 
292 days of the year. The life span of the vessel is 
considered to be 20 years. In addition, it is assumed 
that the ship tanker spends 4 days on average at each 
port for loading and unloading. 

3.2 Operational Modes  

For the different operational modes previously 
mentioned, the thermal and electrical power needs 
were provided from the ship trials and the average 
values are shown in Table 4. 

 
Table 4 Thermal & Electrical Needs. 
Operational Modes Thermal Needs Electrical Needs 

laden 7020 kg/h 800 kW 
ballast 500 kg/h 800 kW 

unloading 23400 kg/h 800 kW x 2 
loading 1050 kg/h 800 kW 

These needs are considered constant at every op-
erational profile, however the amount of time on 
each operational mode changes due to the change of 
the speed distribution of the ship, thus the actual fuel 
consumption and emissions are different.  

3.3 Operational Profiles  

The scope of the paper is to investigate the influ-
ence of the operational profile in the environmental 
and economic impact of the vessel. Thus, different 
case scenarios of speed distributions are introduced 
and the aforementioned economic and environmental 
indicators are calculated for the main energy sys-
tems.  

The data for the operational profiles in ballast and 
laden conditions are taken for an Aframax tanker 
from Banks et al. (2013). The data refer to the year 
of operation 2011 and the speed distribution for the 
first case scenario are according to Figure 1 and 2. 

 
 
 
 
 
 

 

 

Figure 1. Speed distribution on ballast conditions, Aframax 

2011 data (Banks et al., 2013). 



 

 

 
 
 
 
 

 
Figure 2. Speed distribution on laden conditions, Aframax 2011 

data (Banks et al., 2013). 

In this paper, the speed distribution of the ship on 
ballast conditions is considered the same in every 
case scenario, as a simplification. In future studies a 
different distribution of the speed can be introduced 
on ballast conditions, even though according to 
Banks et al. (2013) the speeds are evenly distributed 
to lower speeds the last years. In addition, ballast 
conditions do not offer economic value since the 
ship has no cargo to transport and the emissions as 
well as the fuel consumption are lower since the ship 
sails at the ballast draft. 

However, a sensitivity analysis was performed on 
the operational profile on laden conditions. Three 
profiles were investigated: a) Base Case (Banks et 
al., 2013), b) Lower speeds and c) Higher speeds. 
The shift in the distribution of speeds was derived 
from the data provided by Banks et al. (2013) for the 
operation of Aframax tankers on 2011 according to 
the following process. On the second case scenario 
the speed distribution profile was calculated with 
1kn shift to lower speeds and on the third case sce-
nario the profile was calculated with 1kn shift to 
higher speeds. Figure 3 shows the operational pro-
files that are used for the sustainability assessment of 
the ship energy systems. 

 
 

 
 

 
 
 
 

 
Figure 3. Operational profiles. 

3.4 Economic data 
 
In order to evaluate the influence of the operation-

al profile of the tanker to the economic sustainability 
of the ship systems, the data shown in Table 5 were 
used. 
Table 5 Data for economic investigation. 

Economic data Values  
MDO  450 $/mt 

IFO380 (S% =3.5%) 258.3 $/mt 
ULSFO (S%<0.1%) 400.4 $/mt 

Harbor Dues 12000 $/visit 
Operating costs* 5605 $/day of operation 

Freight Rate 15000 $/day of operation 

*Includes crew costs, ship’s stores costs, repairs and mainte-

nance, administration costs. 

The fuel prices are an average price of bunker 
prices online on the period September 2016 
(http://shipandbunker.com/prices). The operating 
costs are according to Počuča (2006) for an Aframax 
tanker. The freight rate price is according to Psaraftis 
and Kontovas (2014) and finally the harbour dues 
are an average price according to ship markets 
(Konovessis, 2011). 

4. RESULTS 

The aim of this paper is to investigate the influ-
ence of the operational profile of the ship on the sus-
tainability performance of ship systems. The differ-
ent case scenarios of operational profiles shown in 
Figure 3 were used to calculate the duration the ship 
needs to sail in each case (a, b, c) for the specific 
voyage Table 6.  

 
Table 6 Duration of voyage for the different profiles. 
Operational Profile Duration of Voy-

age (hours)* 

Percentage 

a 1443 - 

b 1481 +2.68% 

c 1424 -1.31% 

*In the duration of the voyage the laden, ballast time as well as 

the time spend in the port are included. 

 

The results are divided in three parts. First, the 
outcomes of the emissions, fuel consumption and 
cost per tonne of cargo transported are presented, 
secondly the operational lifetime estimations of the 
indicators are shown and finally the differences in 
the profits and emissions per year due to the differ-
ent case scenarios are depicted. During the calcula-
tions, it was noticeable that the major impact on the 
emissions and the fuel consumption comes from the 
main engine. The only exception are the PM emis-
sions, were the major contributor is the oil fired 
boiler, since according to Table 1 the EF is 35.4gal/h 
outside ECA areas. 

4.1 Indicators per tonne of cargo transported 
 
In Tables 7, 8 and 9 the estimated environmental 

and economic indicators per tonne of cargo trans-
ported for the three case scenarios are displayed.   

It is evident from the results of the environmental 
indicators (Table 7, 8) that the energy systems emit 
fewer emissions per tonne of cargo transported on 
the profile with lower speeds. PM emissions per 
tonne of cargo are higher on lower speed. This is be-
cause the biggest contribution for PM emissions 
comes from the oil fired boilers (almost 60% of PM 
emissions) instead of the main engine. The calcula-
tion of the PM emissions from the oil fired boilers is 
dependent from the hours of operation of the boiler, 
because the emissions depend on the steam flow 

http://shipandbunker.com/prices


 

 

(kg/h) produced. Thus, since the second scenario op-
erates for more hours (38 hours more than the base 
case) due to the lower speed, the result of the PM 
emissions is justified. Accordingly, it is expected 
that the PM emissions on the third scenarios, which 
operates for fewer hours (19 hours less than the base 
case), are going to be less. However, the PM emis-
sions on the base case and the higher speed scenario 
are almost equal, due to minor difference of the voy-
age hours between the base case and the third sce-
nario and the fact that the PM emissions from the 
main engine are higher on the third scenario.   

 
Table 7 Tonnes of emissions per tonne of cargo 
transported. 
Profiles NOx 

(x10-3) 

SOx 

(x10-3) 

CO2 

(x10-2) 

PM 

(x10-4) 

VOC 

(x10-5) 

a 1.73 1.40 7.78 3.82 7.27 

b 1.71 1.37 7.69 3.86 7.10 

c 1.81 1.43 7.91 3.83 7.45 

 
Table 8 Percentage of difference of emissions per 
tonne of cargo transported. 
Profiles NOx SOx 

 

CO2 

 

PM 

 

VOC 

 

a - - - - - 

b -1.05% -1.66% -1.21% +1.05% -2.33% 

c +4.54% +2.11% +1.71% +0.28% +2.61% 

  
The following Table 9 depicts the economic im-

pact per tonne of cargo of the different operational 
profiles. The results show that when the speed is 
lower the fuel consumption and consequently the 
fuel cost are lower.  
 
Table 9 Tonnes of fuel and $ of fuel costs per tonne 
of cargo transported. 
Profiles Tonnes of 

fuel 

Percentage Fuel costs 

($) 

Percentage 

A 2.57x10-2 - 7.13 - 

B 2.54x10-2 -1.22% 7.05 -1.06% 

C 2.62x10-2 +1.72% 7.24 +1.57% 

 
From the results of the economic indicators like 

in the environmental indicators it is noticeable that 
the shift to lower speeds reduces the fuel consump-
tion as well as the fuel costs per tonne of cargo. The 
percentage of reduction on the tonnes of fuel and 
cost of fuel is not the same due to the mix of fuels, 
since it is assumed that the ship while sailing on 
ECA areas consumes ULSFO. 

4.2 Indicators per operational life time 
 

In the following section the operational life time 
economic and environmental sustainability of the 
energy systems is investigated (Figures 4, 5, 6, 7, 8). 
Since the ship has a 20 years life span of operation, 
it is important to study the environmental and eco-

nomic impact it has on the human and ecosystems. 
Another important aspect in these results is that the 
number of voyages per lifetime, which is conse-
quence of the voyage duration of each profile, is in-
corporated. 

 
 
 
 
 
 
 
  
Figure 4. Operational Life time Fuel expenses. 
 
 
 
 
 
 
 

 
Figure 5. Operational Life time CO2 emissions. 

 

 
 
 
 
 
 
 

 
Figure 6. Operational Life time SOx & NOx emissions. 

 

 

 

 

 

 

 

 

 

Figure 7. Operational Life time VOC emissions. 

 

 

 

 

 

 

 

 

 

Figure 8. Operational Life time PM emissions. 

  
The previous figures contain the absolute numbers 

of the tonnes of emissions and fuels from the opera-
tional life time of the ship energy systems. The re-
sults show that the more environmental profile is 
more cost efficient too. In addition, PM emissions 



 

 

for the ship lifetime are lower when sailing at lower 
speed, even though in reality the PM emissions per 
tonne of cargo transported are higher (Table 7). Due 
to the fact that PM emissions are highly dependent 
on the hours of operation and in the last case the ship 
sails for more voyages than the other cases. 

4.3 Indicators per year of operation 
 

In the following Tables 10, 11 and 12 the eco-
nomic and environmental indicators per year of op-
eration were calculated. In the scenario with the 
lowest speed, the vessel completes fewer journeys 
than in the other cases so the income from the cargo 
transportation is lower. However, it is noticeable that 
the profits per year are exceeding the other cases due 
to the lower operational costs. In addition, the 
amount of emissions are much lower, so the second 
scenario is the most economic and environmentally 
sustainable option among the three cases. 

 
Table 10 Percentage of difference of emissions per 
year of operation. 
Profiles NOx SOx 

 

CO2 

 

PM 

 

VOC 

 

a - - - - - 

b -3.34% -3.93% -3.49% -1.29% -4.59% 

c +5.76% +3.31% +2.90% +1.45% +3.81% 

 
Table 11 Percentage of difference of fuel tonnes and 
fuel costs per year of operation. 

Profiles Tonnes of fuel Fuel costs ($) 

a - - 

b -3.50% -3.34% 

c +2.90% +2.76% 

 
Table 12 Percentage of difference profits, income 
and operating costs per year. 

Profiles Operating 

Costs* 

Income Profit 

a - - - 

b -2.28% -2.31% +2.26% 

c +1.89% +1.17% -2.34% 

*Includes crew wages, maintenance, fuel costs and harbor 

dues. 

 

The analysis has as a result that the operational 
profile influences both the economic and the envi-
ronmental sustainability of the ship energy systems. 
Lowering the speed leads to emissions as well as op-
erational costs  decrease, however the profits are in-
creased.  

In addition, it is worth to note that the shift of the 
speed distribution to 1kn less has a bigger impact in 
percentage absolute values on the decrease of emis-
sions and costs than the operational profile with the 
shift of the distribution to 1kn more has. According 
to the simulation carried out, it results that the emis-

sions and costs decrease more than proportionally 
when the speed of the vessel is decreased.  

5. CONCLUSION 

This paper aimed to investigate the impact of the 
ship operational profile on the environmental and 
economic sustainability of its energy systems. A 
specific case ship was investigated for the transpor-
tation of crude oil from the Persian Gulf to North 
America. Three scenarios of speed distributions were 
compared with focus on the aspects that are affected 
by different operational profiles. 

The sustainability analysis of the scenarios 
showed that changes in the operational profiles af-
fect the emissions as well as the fuel consumption 
and costs. Generally, the emissions and fuel costs 
per tonne of cargo are reduced when sailing with 
lower speed, except the PM emissions. However, 
when measuring the emissions per year or per life-
time it is noticeable that all emissions are reduced 
when the ship sails on lower speeds. In addition, 
from the calculations of emissions per year of opera-
tion, it is evident that the shift to lower speeds has a 
higher absolute percentage on the decrease of emis-
sions and costs than the shift to higher speed has on 
the increase. Furthermore, it is evident that a win-
win situation exists: the lower speeds scenario is the 
most environmental and economic efficient, even 
though the voyages of the vessel per life cycle are 
less.  

In conclusion, the broad range of the vessel’s op-
eration and not only the design conditions should be 
considered on the synthesis of the ship energy sys-
tems, in order to assess and to improve their sustain-
ability, since the operational profile influences the 
systems sustainability.  

6. REFERENCES 

Armstrong, V.N. (2013), “Vessel optimisation for 
low carbon shipping”, Ocean Engineering, Vol. 
73, pp. 195–207. 

Baldi, F. (2013), Improving Ship Energy Efficiency 
through a Systems Perspective, Chalmers 
University of Technology. 

Baldi, F. (2016), Modelling , Analysis and 
Optimisation of Ship Energy Systems PhD 
Thesis, Chalmers University of Technology. 

Baldi, F., Bengtsson, S. and Andersson, K. (2013), 
“The influence of propulsion system design on 
the carbon footprint of different marine fuels”, 
Low Carbon Shipping Conference, pp. 1–12. 

Baldi, F., Johnson, H., Gabrielii, C. and Andersson, 
K. (2015), “Energy and exergy analysis of ship 
energy systems – the case study of a chemical 
tanker”, International Journal of 
Thermodynamics, Vol. 18, available 



 

 

at:http://doi.org/10.5541/ijot.5000070299. 
Banks, C., Turan, O., Incecik, A., Theotokatos, G., 

Izkan, S., Shewell, C. and Tian, X. (2013), 
“Understanding Ship Operating Profiles with an 
Aim to Improve Energy Efficient Ship 
Operations”, Low Carbon Shipping 
Conference, pp. 1–11. 

Bazari, Z. and Longva, T. (2011), Assessment of 
IMO Mandated Energy Efficiency Measures for 
International Shipping: Estimated CO2 
Emissions Reduction from Introduction of 
Mandatory, IMO, available 
at:http://doi.org/MEPC 63/INF.2. 

Depuis, R. and Neilson, J.J. (1997), “Dynamic 
Analysis鳥: Sail the Ship Before it’s Built”, 
Naval Engineers. 

Diakaki, C., Panagiotidou, N., Pouliezos, A., 
Kontes, G.D., Stavrakakis, G.S., Belibassakis, 
K., Gerostathis, T.P., et al. (2015), “A decision 
support system for the development of voyage 
and maintenance plans for ships”, International 
Journal of Decision Support Systems, Vol. 1, 
pp. 42–71. 

EU. (2014), Proposal for a Regulation of the 
European Parliament and of the Council on the 
Monitoring, Reporting and Verification of 
Carbon Dioxide Emissions From Maritime 
Transport and Amending Regulation (EU) No. 
525/2013 – Political Agreement. 

Eyring, V., Isaksen, I., S., A., Berntsen, T., Collins, 
W., J., Corbett, J., J., Endresen, O., Grainger, 
R., G., et al. (2010), “Transport impacts on 
atmosphere and climate: Shipping”, 
Atmospheric Environment, Vol. 44, available 
at:http://doi.org/10.1016/j.atmosenv.2009.04.05
9. 

IEA. (2015), “CO2 Emissions from fuel 
combustion”, IEA Statistics, pp. 1–139. 

IMO. (2011), Annex 19-Resolution MEPC.203(62), 
Amendments to the Annex of the Protocol of 
1997 to Amend the International Convention 
for the Prevention of Pollution from Ships, 
1973, as Modified by the Protocol of 1978 
Relating Thereto. 

IMO. (2012), Annex 9, Resolution MEPC.213(63), 
2012 Guidelines for the Development of a Ship 
Energy Efficiency Management Plan (SEEMP). 

IMO. (2014), Annex 5, Resolution MEPC.245(66), 
Guidelines on the Method of Calculation of the 
Attained Energy Efficiency Design Index 
(EEDI) for New Ships. 

Konovessis, D. (2011), “Shipping Markets”, Lecture 
Notes, University of Strathclyde, Glasgow. 

Livanos, G.A., Theotokatos, G. and Pagonis, D.-N. 
(2014), “Techno-economic investigation of 
alternative propulsion plants for Ferries and 
RoRo ships”, Energy Conversion and 
Management, Vol. 79, pp. 640–651. 

Lu, R., Turan, O. and Boulougouris, E. (2013), 
“Voyage optimization, prediction of ship 
specific fuel consumption for energy efficient 
shipping”, Low Carbon Shipping Conference 
(LCS), London, pp. 1–11. 

Lu, R., Turan, O., Boulougouris, E., Banks, C. and 

Incecik, A. (2015), “A semi-empirical ship 
operational performance prediction model for 
voyage optimization towards energy efficient 
shipping”, Ocean Engineering, Vol. 110, 
available 
at:http://doi.org/10.1016/j.oceaneng.2015.07.04
2. 

Man Diesel & Turbo. (2011), Basic Principles of 
Ship Propulsion, Man Diesel & Turbo, 
available at: 
http://www.mandieselturbo.com/files/news/file
sof5405/5510_004_02 low.pdf. 

Mansouri, S.A., Lee, H. and Aluko, O. (2015), 
“Multi-objective decision support to enhance 
environmental sustainability in maritime 
shipping: A review and future directions”, 
Transportation Research Part E: Logistics and 
Transportation Review , Vol. 78, pp. 3–18. 

Motley, M.R., Nelson, M. and Young, Y.L. (2012), 
“Integrated probabilistic design of marine 
propulsors to minimize lifetime fuel 
consumption”, Ocean Engineering, Vol. 45, 
available 
at:http://doi.org/10.1016/j.oceaneng.2012.01.03
2. 

Počuča, M. (2006), “Methodology of day-to-day ship 
costs assessment”, Promet - Traffic - Traffico, 
Vol. 18, pp. 337–345. 

Psaraftis, H.N. and Kontovas, C.A. (2014), “Ship 
speed optimization: Concepts, models and 
combined speed-routing scenarios”, 
Transportation Research Part C: Emerging 
Technologies, Vol. 44, available 
at:http://doi.org/10.1016/j.trc.2014.03.001. 

Sciberras, E. a. and Norman, R. a. (2012), “Multi-
objective design of a hybrid propulsion system 
for marine vessels”, IET Electrical Systems in 
Transportation, Vol. 2, p. 148. 

Sherbaz, S., Maqsood, A. and Khan, J. (2015), 
“Machinery Options for Green Ship”, Journal 
of Engineering Science and Technology 
Review, Vol. 8, pp. 157–173. 

SNAME. (1990), Marine Diesel Power Plant 
Practises, T&R Bulletin 3-49. 

Trozzi, C., Consulting, T., Gregorio, V., Curbastro, 
R. and Roma, I. (2006), Emission Estimate 
Methodology for Maritime Navigation.  

U.S. Environmental Protection Agency. (1999), 
Emissions Factors, External Combustion 
Sources, Vol. I, available at: 
https://www3.epa.gov/ttn/chief/ap42/ch01/inde
x.html. 

Wang, X. and Teo, C.-C. (2013), “Integrated 
hedging and network planning for container 
shipping’s bunker fuel management”, Maritime 
Economics & Logistics, Vol. 15, available 
at:http://doi.org/10.1057/mel.2013.5. 

Winnes, H. and Ulfvarson, A. (2006), 
“Environmental Improvements in Ship Design 
by the Use of Scoring Functions”, Journal of 
Engineering for the Maritime Environment, 
Vol. 220, pp. 29–39. 

 
 


