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Abstract

In this paper, we present a method that combines the Boundary Element Method (BEM) with

IsoGeometric Analysis (IGA) for numerically solving the system of Boundary Integral Equations

(BIE) arising in the context of a 2-D steady-state heat conduction problem across a periodic

interface separating two conducting and conforming media. Our approach leads to a fast converg-

ing solver that achieves the same level of accuracy for fewer degrees of freedom, when compared

with low-order BEM. Additionally, an optimization procedure is developed and test cases of in-

terface’s shape optimization, with the aim of heat transfer maximization under given constraints,

are demonstrated.
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1. Introduction

Consider a 2-dimensional slab of thickness H, with flat and isothermal upper and lower surfaces

at temperature T1 and T2, respectively. The heat flux is q′′ = k(T2 − T1)/H [1], where k is the

thermal conductivity. Any extension from the surfaces of the slab would result in a reduction of the

heat flux and any depression would result in an enhancement of the heat flux based on the inclusion

theorems [2] and physical intuition. If the surfaces are not flat, but rather they are wavy and

periodic with zero mean, the heat flux is enhanced depending on the geometry of the surface. For

small amplitude corrugations, the enhancement of the heat flux is proportional to the square of the

amplitude of the corrugations [3]. An isoperimetric optimization algorithm developed by Leontiou,

Fyrillas & Kotsonis [4] has revealed that there is an optimum periodic geometry that maximizes

the heat flux. Furthermore, if one of the surfaces of the slab is subjected to convection, then a

single parameter optimization revealed the existence of a critical Biot number [5, 6] associated with

extended surfaces, and the existence of a critical depth and thickness associated with embedded

isothermal pipes [7, 8].

∗Corresponding author: konstantinos.kostas@nu.edu.kz

Preprint submitted to Elsevier December 26, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195293138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Next, consider a flat interface separating two slabs with thicknesses H1 and H2 and conduc-

tivities k1 and k2, respectively. If the exposed surfaces are flat and isothermal with temper-

ature T1 and T2, the heat flux can be obtained using the concept of thermal resistance to be

q′′ = (T2−T1)/(H1/k1 +H2/k2). Any extension of the interface from the high conductivity mate-

rial into the low conductivity material would result in an enhancement of the heat flux, while any

depression would result in its reduction. For a wavy, periodic interface with zero mean, the results

are similar to those of a single slab; there is an enhancement of the heat flux, which depends on the

geometry of the interface, and for small amplitude corrugations the enhancement is proportional

to the square of the amplitude of the corrugations [3]. An isoperimetric optimization algorithm

developed by Fyrillas, Leontiou, & Kostas [9] revealed that there is an optimum periodic geometry

that maximizes the heat flux.

In the above references [4, 9], besides optimum corrugations, the authors also consider the

optimal design of high conductivity inserts, and the optimal design of fins. The optimization

problems considered are shape optimization problems and fall into the general area of inverse

problems. In general, inverse problems associated with heat transfer have as a constraint the

conduction or the conduction-convection partial differential equation. The objective function, any

additional constraints and the variables of the optimization vary, depending on the application.

For example, the objective function can be the difference between the computed temperature and

the measured/prescribed temperature and the unknowns can be the boundary conditions, physical

properties or the geometry of the configuration [10, 11, 12, 13, 14, 15]. Another example is to have

the heat flux as the objective function and obtain the shapes that optimize it [16, 17, 18, 19, 20,

21, 9].

In general, inverse problems are ill-posed due to random errors in the numerical solution of

the governing partial differential equation, and due to the sensitivity of the objective function

on the constraint and the parameters; for example a small change in the parameters could lead

to an enormous change in the estimated model, and/or there could be an infinite number of ge-

ometries with approximately the same heat flux. Hence the solver gets trapped in local minima

or diverges. Regarding inverse shape optimization problems, remedies to address the ill-possing

include mapping the physical domain onto a fixed computational domain [16, 17, 18, 19, 20, 21]

and redistribution of ill-ordered nodal points [12, 13, 14, 15], Tikhonov regularization [22], homog-

enization [23], or transforming the problem into a parameter estimation by expanding the shape

in terms of a small number of parameters, e.g. adaptive mesh [24], eigenfunction expansion [10],

and mesh-morphing [25]. Recently, a method that proved effective is to use the boundary element

method and define the variables of the optimization as the angles between adjacent elements [9].

As we have mentioned earlier, the partial differential equation governing the heat transfer

process appears as a constraint in the optimization problem (inverse problem). Hence, unlike
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direct heat transfer problems where only a single solution of the PDE is necessary [26, 27, 28],

in inverse problems each iteration requires the solution of the PDE at least as many times as

the number of the optimization variables. In addition, accuracy is very significant due to the

sensitivity of the solution on the parameters of the optimization. Hence, where applicable, the

boundary element method [29, 30, 31] provides a natural selection for the numerical solution of

the PDE due to its superiority of handling, with high accuracy, a large number of elements and

intricate wall geometries [16, 17, 18, 4, 19, 20, 21, 9].

In this work we reconsider the case of an interface separating two slabs, which was mentioned,

above but this time we employ the isogeometric approach in its solution. The IsoGeometric Anal-

ysis concept, introduced by Hughes et al (2005) [32] in the context of Finite Element Method, was

extended to the Boundary Element Method by various authors, see, e.g., Politis et al (2009) [33],

Simpson et al (2012) [34], Scott et al (2013) [35], Belibassakis et al (2013) [36], Peake et al

(2013) [37], Simpson et al (2014) [38], Ginnis et al (2014) [39]. The developed Isogeometric-BEM

is based on a NURBS representation of the interface curve and employs the very same basis of the

geometry for representing the temperature (T ) and its normal derivative (∂T
∂n ) on the interface.

The Boundary Integral Equation is numerically solved by collocating at the Greville abscissas

of the knot vector of the interface’s parametric representation. Numerical error analysis of the

Isogeometric-BEM, using h-refinement technique (knot insertion), is performed and compared with

classical low-order panel methods. Finally, the developed isogeometric-BEM is also demonstrated

in the context of shape optimization with aim of acquiring the interface’s shape the maximizes

heat transfer under given constraints.

2. Problem formulation

2.1. Continuous formulation

We consider a 2-D steady-state heat conduction problem across a periodic interface separating

two conducting and conforming materials. The interface S is an L-periodic planar, continuous,

free-form curve. At the outer boundaries of the two mediums we specify isothermal conditions,

where, without loss of generality, we can assume T̄1 = 1 and T2 = 0; see Fig. 1.

Having in mind to use the Boundary-Integral Equation method to solve the arising boundary-

value problems, and in order to unify the use of Green’s function in both domains (materials),

we transform the temperature field in medium 1 by setting T1 = T̄1 − 1, which results in a

homogeneous boundary condition on its outer boundary and a discontinuity of the temperature

on the interface. Due to the periodicity of the interface we confine ourselves to a domain of length

L and nondimensionalize lengths with the period L; see Fig. 2.

The temperature fields T1 and T2 satisfy the following conditions:

• Laplace Equation:
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Figure 1: L-periodic interface between two conducting and conforming materials
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Figure 2: One period of the interface and domain boundaries

∆Ti(x, y) = 0, (x, y) ∈ Ωi, i = 1, 2, (1)

where Ωi denotes the open domain occupied by material i.

• Boundary conditions on the horizontal outer boundaries Si
h:

Ti(x, y) = 0, (x, y) ∈ Si
h, i = 1, 2 (2)

• Periodic conditions on the vertical boundaries Si
v:

Ti(0, y) = Ti(1, y), y ∈ [0, h1], i = 1, 2 (3a)

Ti,x(0, y) = Ti,x(1, y), y ∈ [h1, H], i = 1, 2 (3b)

where Ti,x stands for the partial derivative of Ti with respect to x.

• Matching conditions on the interface S, requiring continuity of the temperature and the flux:
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T̄1(x, y) = T1(x, y) + 1 = T2(x, y), (x, y) ∈ S (4a)

k1
∂T1(x, y)

∂n1
= −k2

∂T2(x, y)

∂n2
, (x, y) ∈ S, (4b)

where ni, i = 1, 2 denote the normal vectors to the interface directed inwards to the domain Ωi.

In order to derive an integral-equation formulation of the above problem we introduce the periodic

Green’s functions for the Laplace equation:

∆Gi(x,x0) = δ(x− x0), (x,x0) ∈ Ωi, i = 1, 2, (5)

where x = (x, y) and x0 = (x0, y0), which satisfy the wall conditions (2) and the periodic conditions

(3a) and (3b). Using the method of images, these Green’s functions are given as follows (see [30]):

Gi(x,x0) =
1

4π
ln[cosh(2π(y − y0))− cos(2π(x− x0))]−

− 1

4π
ln[cosh(2π(y − yi))− cos(2π(x− x0))]

(6)

where y1 = −y0, y2 = 2H − y0 and H is the dimensionless thickness of the composite wall.

As it can be easily seen from (6), Gi(x,x0), i = 1, 2, have a logarithmic singularity as x→ x0. By

applying Green’s second identity for the functions T1(x) and G1(x,x0), (x,x0) ∈ Ω1, and using

equations (1-3b) we obtain the following Fredholm-type integral equation of the second kind for

the temperature field T1(x),x ∈ S:

T1(x0)

2
=

∫
S

G1(x,x0)
∂T1(x)

∂n1(x)
d`(x)−

∫
S

T1(x)
∂G1(x,x0)

∂n1(x)
d`(x), x0 ∈ S. (7)

Similarly, for the temperature field T2(x),x ∈ S we obtain,

T2(x0)

2
=

∫
S

G2(x,x0)
∂T2(x)

∂n2(x)
d`(x)−

∫
S

T2(x)
∂G2(x,x0)

∂n2(x)
d`(x), x0 ∈ S. (8)

Now, using relations (4a) and (4b), as well as the obvious relation n1(x) = −n2(x),x ∈ S, we can

write (8) as follows:

T1(x0) + 1

2
= −

∫
S

G2(x,x0)
k1

k2

∂T1(x)

∂n1(x)
d`(x) +

∫
S

(T1(x) + 1)
∂G2(x,x0)

∂n1(x)
d`(x), x0 ∈ S. (9)

Equations (7) and (9) are combined to give the final system of equations with respect to T1(x)
and ∂T1(x)/∂n1(x), x ∈ S, which reads as follows:∫

S

G1(x,x0)
∂T1(x)

∂n1(x)
d`(x)−

∫
S

T1(x)
∂G1(x,x0)

∂n1(x)
d`(x)− T1(x0)

2
= 0. (10a)

−k1
k2

∫
S

G2(x,x0)
∂T1(x)

∂n1(x)
d`(x) +

∫
S

T1(x)
∂G2(x,x0)

∂n1(x)
d`(x)− T1(x0)

2
=

1

2
−

∫
S

∂G2(x,x0)

∂n1(x)
d`(x). (10b)

Finally, the dimensionless heat transfer across the interface per period is defined by,

hT =

∫
S

∂T1(x)

∂n1(x)
d`(x). (11)
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2.2. A discrete IGA-BEM formulation

In this subsection we present a method that combines Boundary Element Method (BEM) with
IsoGeometric Analysis (IGA) for solving numerically the system of boundary integral equations
(10a) and (10b). IGA philosophy is equivalent to approximating the field quantities (dependent
variables) of the boundary-value problem in question by the very same basis that is being used
for representing (accurately) the geometry of the involved domain boundary. In our case the
dependent variables are the temperature field and its normal derivative on the interface S, T1(x)

and ∂T1(x)
∂n1(x) , x ∈ S, see Eqs. (10a) and (10b). For this purpose, we shall presume that the interface

S can be accurately represented as a parametric NURBS curve x(t), t ∈ [0, 1], which is regular,
i.e., the derivative vector is well defined and not vanishing. More specifically,

x(t) = (x(t), y(t)) :=

n∑
i=0

diRi,k(t), t ∈ I = [tk−1, tn+1] := [0, 1], (12)

where {Ri,k(t)}ni=0 is a rational B−spline basis of order k, defined over a knot sequence J =
{t0, t1, . . . , tn+k} and possessing non-negative weights wi, i = 0, . . . , n, while di are the associated
control points; see, e.g., Piegl & Tiller [40]. Using this parametric representation of the interface
S, equations (10a) and (10b) can be written in the following form:∫

I

G1(t, τ)
∂T1(t)

∂n1(t)
‖ẋ(t)‖dt−

∫
I

T1(t)
∂G1(t, τ)

∂n1(t)
‖ẋ(t)‖dt− T1(τ)

2
= 0. (13a)

−k1
k2

∫
I

G2(t, τ)
∂T1(t)

∂n1(t)
‖ẋ(t)‖dt+

∫
I

T1(t)
∂G2(t, τ)

∂n1(t)
‖ẋ(t)‖dt− T1(τ)

2
=

1

2
−

∫
I

∂G2(t, τ)

∂n1(t)
‖ẋ(t)‖dt. (13b)

where, for the sake of simplicity, we define T1(t) := T1(x(t)) and G1(t, τ) := G1(x(t),x(τ)).
In order to handle equations (13a) and (13b), in the context of IGA, we project, in a suitably

defined manner, the temperature field T1(t) and its normal derivative ∂T1(t)
∂n1(t) on the spline space

Sk(J (`)), Sk(J (0)) := Sk(J ), expressed in the form:

T1,s(t) := Ps(T1(t)) =

n+∑̀
i=0

T1,iR
(`)
i,k(t), t ∈ I,R(0)

i,k (t) := Ri,k(t), (14)

h1,s(t) := Ps

(
∂T1(t)

∂n1(t)

)
=

n+∑̀
i=0

h1,iR
(`)
i,k(t), t ∈ I,R(0)

i,k (t) := Ri,k(t), (15)

where ` ∈ N0 denotes the number of knots inserted in I. Recalling the fundamental property of knot
insertion, we can say that {Sk(J (`)), `∈N0} constitutes a sequence of nested finite dimensional-
spaces, i.e., Sk(J (`)) ⊂ Sk(J (`+1)).
Introducing the projections (14) and (15) into equations (13a) and (13b) we obtain:∫

I

G1(t, τ)

n+∑̀
i=0

h1,iR
(`)
i,k(t)‖ẋ(t)‖dt−

∫
I

n+∑̀
i=0

T1,iR
(`)
i,k(t)

∂G1(t, τ)

∂n1(t)
‖ẋ(t)‖dt− 1

2

n+∑̀
i=0

T1,iR
(`)
i,k(τ) = 0. (16a)

− k1
k2

∫
I

G2(t, τ)

n+∑̀
i=0

h1,iR
(`)
i,k(t)‖ẋ(t)‖dt+

∫
I

n+∑̀
i=0

T1,iR
(`)
i,k(t)

∂G2(t, τ)

∂n1(t)
‖ẋ(t)‖dt− 1

2

n+∑̀
i=0

T1,iR
(`)
i,k(τ) =

=
1

2
−

∫
I

∂G2(t, τ)

∂n1(t)
‖ẋ(t)‖dt. (16b)

Several methods are available for defining the projection Ps (see Eqs. (14) and (15)) onto the finite-
dimensional space Sk(J (`)) and discretizing equations (16a) and (16b), like Galerkin and collocation.
In the present work, a collocation scheme is adopted, which consists in projecting on Sk(J (`)) through
interpolation at a set of collocation points τ = τj , j = 0, . . . , n + `, which are chosen to be the Greville
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Figure 3: Media Layout and interface shapes for examples 1 & 2.

abscissas associated with the knot vector J (`). This leads to the following linear system for the unknown
coefficients T1,i and h1,i, i = 0, . . . , n+ `:

n+∑̀
i=0

h1,i

(∫
I

G1(t, τj)R
(`)
i,k(t)‖ẋ(t)‖dt

)
+

n+∑̀
i=0

T1,i

(∫
I

∂G1(t, τj)

∂n1(t)
R

(`)
i,k(t)‖ẋ(t)‖dt− 1

2
R

(`)
i,k(τj)

)
= 0,

(17a)

−k1

k2

n+∑̀
i=0

h1,i

(∫
I

G2(t, τj)R
(`)
i,k(t)‖ẋ(t)‖dt

)
+

n+∑̀
i=0

T1,i

(∫
I

∂G2(t, τj)

∂n1(t)
R

(`)
i,k(t)‖ẋ(t)‖dt− 1

2
R

(`)
i,k(τj)

)
=

1

2
−
∫
I

∂G2(t, τj)

∂n1(t)
‖ẋ(t)‖dt.

(17b)

The solution of the linear system defined by equations (17a) and (17b) provides the values of T1,i

and h1,i, i = 0, . . . , n + `, which can be used to calculate the heat transfer across the interface S
per period:

hT =

n+∑̀
i=0

h1,i

(∫
I

R
(`)
i,k(t)‖ẋ(t)‖dt

)
. (18)

3. Numerical results & optimization examples

3.1. Convergence results

As a first attempt to test the accuracy and effectiveness of the IGA-BEM method, discussed in
Section 2.2, we present numerical results for the heat transfer value along with the temperature and
normal flux distributions along the interface of two infinite-length, conductive media, as depicted
in Figs. 3a and 3b. The bilayered structure height and the period length examined for both
example cases equal to 1, while the conductivity coefficients for the bottom medium (medium 1)
and top medium (medium 2) are κ1 = 1 W

mK and κ2 = 0.5 W
mK , respectively.
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Figure 4: Comparison of temperature and normal flux distributions for the interface of example 1 against the
corresponding COMSOL reference solutions.

The presented results are benchmarked against a reference solution from the commercial finite
element computational package COMSOL[41], acquired with an extremely fine mesh of around
6 × 104 elements. Different numbers of degrees of freedom are utilized for calculating the values
for the IGA-BEM approach and a low-order Boundary Element Method; see [9]. The resulting
deviations from the reference solution, for both methods, are plotted on the same diagram so
that the differences in the convergence rate and accuracy can be demonstrated. The agreement of
IGA-BEM solution, both with respect to heat transfer values and the distributions of temperature
& normal flux, is very satisfactory as will be demonstrated in the following discussion. We recall
that the degrees of freedom (DoFs) for the IGA approach correspond to the number of the control
coefficients used in the NURBS approximation of the temperature T and normal flux h; see Eqs. 14
and 15.

In Fig. 5, the deviation of heat transfer value (hT ) from the COMSOL reference solution
along with the L2 norm of the normal flux distribution are depicted for the interface of Example
1; see Fig. 3a. The L2 norm for the normal flux distribution is computed as follows: L2 =∫ 1

0
|f(t(x))− f̂(x)|2dx, where f̂(x) is the reference value of the normal flux at the longitudinal

position x. The reference solution, in this case, has been acquired via COMSOL using an extremely
fine mesh comprising 56005 elements. The resulting deviations from both the IGA-BEM approach
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Figure 5: Example 1 results: Deviation of BEM and IGA-BEM heat transfer (hT ) and normal flux values from
COMSOL reference solution.

and the low-order BEM are plotted in the same figure for several different number of DoFs, where
we can easily see that the convergence rate for the IGA-BEM approach is very fast (≈ O(n4))
and we can attain, with just 50 DoFs the same level of accuracy that requires 103 DoFs for the
low-order BEM.

The same picture is revealed when examining deviation values for hT and normal flux distri-
butions in the case of the 2nd example’s interface; see Fig. 3b. Specifically, as can be seen in
Fig. 6, we once again get very fast convergence rates for the IGA-BEM approach and the accuracy
attained with just 50 DoFs is even better than the one attained with 103 DoFs with the low-order
BEM approach. In this case the reference solution has been attained from COMSOL with an
extremely fine mesh of 57945 elements.

3.2. Shape optimization

In the first optimization example, we assume that we start with two media of infinite length
and equal thicknesses (H1 = H2 = 0.5H) with their contact surface (interface) being a straight
line as depicted in Fig. 7a. Obviously, within the period L, each medium has an area of 0.5 square
units and our optimization goal is to modify the two media’s distribution so that the heat transfer,
between the two media, is maximized while the area for each one of them remains constant. Fur-
thermore, we assume that the top surface of the bilayered construction is an isothermal boundary
with a temperature T = 1K, while the bottom surface is once again isothermal with a temperature
equal to 0 degrees. Finally, we assume that the conductivity coefficient for the bottom medium
(medium 1) is κ1 = 1 W

mK , while for the top medium (medium 2) is κ2 = 0.1 W
mK .

As discussed in previous sections, we may represent the interface between the two conductive
media as a B-Spline curve c(t) = (cx(t), cy(t)) =

∑n
i=0 biNi,k(t), t ∈ [0, 1], where bi, i = 0, . . . , n

are the curve’s control points, k − 1 is the curve’s degree and Ni,k are the kth order B-Spline
bases. In this example, we assume that it is represented as a cubic spline (k = 4) with 12 control
points, i.e., n+1 = 12. All control points have a y-coordinate equal to 0.5 (yi = 0.5, i = 0, . . . , 11)
while their x-coordinates have as follows x = { 0

9 ,
1
18 ,

1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9 ,

17
18 ,

9
9}. Assuming that

we keep the x-coordinates constant, then, with the aid of Eq. 15, we can state our heat transfer
(hT ) optimization problem as follows:

maxhT (y) = max

∫ 1

0

h(t,y)‖ċ(t,y)‖dt = min
1

hT (y)
(19)
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Figure 6: Example 2 results: Deviation of BEM and IGA-BEM heat transfer (hT ) and normal flux values from
COMSOL reference solution.
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Figure 7: First optimization example
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Figure 8: Deviation of optimum shape heat transfer (hT ), temperature & normal flux distribution from COMSOL’s
solution, using approximately 5 × 104 elements. Temperature and flux deviations are measured using the L2 norm
while hT deviation is depicted as a percentage of COMSOL’s value.

subject to:

y11 = y10 = y1 = y0 (20a)∮
∂Ω1

(cx(t,y)ċy(t,y)− cy(t,y)ċx(t,y)) dt = 1, ∂Ω1 = S1
h ∪ S2

v,r ∪ S ∪ S1
v,l (20b)

0.01 ≤ yi ≤ 0.99 (20c)

The first constraint (Eq. 20a) guarantees the periodicity and G1 continuity of our interface
while the second constraint (Eq. 20b) enforces the area-equality for the two media. Obviously,
in this particular case where the interface curve S is a function, Eq. 20b can be simplified as∫ 1

0
cy(t,y)ċx(t,y)dt = 0.5. Finally, due to Eq. 20a the design space drops from R12 to R9 which

essentially means that the design vector y appearing in Eq. 19 is y = {y0, y2, . . . , y9} and equiva-
lently the set of unknown control points is bi = ( i

9 , yi)
T , i = 0, 2, 3, . . . , 9.

Several deterministic and guided random search algorithms have been tested which converged
to a very similar shape with the best results, with respect to hT value, coming out of matlab’s
Genetic Algorithm implementation. The resulting optimum shape of the interface is depicted in
Fig. 7b where a hT value of 0.4688 has been achieved. In comparison, the heat transfer for the
straight-line interface, is equal to hT0 = 1

0.5·κ1
κ2

+H−0.5
≈ 0.1818; see [9]. The resulting value of the

heat transfer for the optimum interface along with the temperature and normal flux distribution
along it have been verified with the commercial FEM computational package COMSOL as depicted
in Fig. 8. As can be seen in Fig. 8 for the case of 30 DoFs, which were used during optimization,
the hT value deviates only around 0.008% from the COMSOL acquired value. Finally, in Fig. 9,
the optimization history for the 1st shape optimization example is depicted, where Fig. 9a includes
the complete optimization history while Fig. 9b is limited to results after the first 600 iterations.

In the second optimization example, we once again assume that we start with two media of
infinite length having as contact surface an infinite straight line as depicted in Fig. 10a. However,
this time the two media have unequal thicknesses. Assuming once again a height of H = 1 for the
bi-layered structure, the two media will have an area of 1/3 and 2/3 square units within a period
of L = 1 as is also depicted in Fig. 10a. The boundary conditions and conductivity coefficients
are the same ones used in the first optimization example.

This time, both the interface curve representation and the optimization problem are slightly
different when compared to the case solved in our first example. Specifically, the end points of the
interface are bound to a fixed height equal to 1/3 at both ends and G1 continuity is satisfied by
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Figure 9: Optimization history
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3
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3
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Figure 10: Second optimization example

appropriately positioning the next to last control point. Hence, since x-coordinates are distributed
uniformly1, the actual optimization problem variables are the y-coordinates of the control points
excluding the first and the last two of them. Thus, assuming that we represent our interface with
a cubic B-Spline consisting of 13 control points, we can state our heat transfer (hT ) maximization
problem as follows:

maxhT (y) = max

∫ 1

0

h(t,y)‖ċ(t,y)‖dt = min
1

hT (y)
(21)

subject to:

y12 = y0 =
1

3
(22a)

y1 − y0

x1 − x0
=
y12 − y11

x12 − x11
(22b)∮

∂Ω1

(cx(t,y)ċy(t,y)− cy(t,y)ċx(t,y)) dt =
2

3
, ∂Ω1 = S1

h ∪ S2
v,r ∪ S ∪ S1

v,l (22c)

0.01 ≤ yi ≤ 0.99 (22d)

As in the first case, Eq.22c can be substituted by
∫ 1

0
cy(t,y)ċx(t,y)dt = 1

3 , since the interface
S is a functional curve. Furthermore and similar to the first optimization example, deterministic
and evolutionary algorithms have been employed in the solving process. All algorithms converged
practically in the same interface-shape shown in Fig. 10b while achieving a heat transfer equal
to 0.3997. In comparison, the straight line interface achieves a heat transfer rate equal to hT0

=
1

2
3

κ1
κ2

+H− 2
3

≈ 0.142857

4. Conclusions and future work

In the present work, an isogeometric boundary element method (IGA-BEM) is applied for
solving the BIE system associated with the 2-D steady-state heat transfer problem across a periodic

1with the possible exception of the next to last control point that is positioned in a way that satisfies G1-
continuity
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interface separating two conducting and conforming media. The isogeometric concept, in this
context, is based on the exploitation of the same NURBS basis, used for the exact representation
of interface’s geometry, to approximate, via refinement, the physical quantities of temperature and
normal heat flux.

The enhanced accuracy and efficiency of the present method has been demonstrated for two
free-form interface geometries. The accuracy achieved for temperature & normal flux distributions
with 21 and 48 DoFs is checked against the results acquired by the commercial computational
package COMSOL with an extremely fine mesh of around 6 × 104 elements. Furthermore, the
superior convergence rate of our IGA-BEM approach is compared with convergence rates achieved
by classical low order BEM for the same two interface geometries.

Finally, a simple parametric model for the interface’s geometry is devised and employed in
finding the optimum shape that maximizes heat transfer between the two media for two sets of
varying geometrical constraints.

Future work is planned towards further exploitation of the developed approach in shape opti-
mization and the extension of this work for additional heat transfer problem formulations.
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