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Summary 13 

The increase in availability of spatial data and the technological advances to handle such data allow for 14 

subsequent improvements in our ability to assess risk in a spatial setting. We provide a generic framework 15 

for quantitative risk assessments of disease introduction that capitalises on these new data. It can be 16 

adopted across multiple spatial scales, for any pathogen, method of transmission or location. The 17 

framework incorporates the risk of initial infection in a previously uninfected location due to registered 18 

movement (e.g. trade) and unregistered movement (e.g. daily movements of wild animals). We discuss the 19 

steps of the framework and the data required to compute it. We then outline how this framework is 20 

applied for a single pathway using lumpy skin disease as a case study, a disease which had an outbreak in 21 

the Balkans in 2016. We calculate the risk of initial infection for the rest of Europe in 2016 due to trade. We 22 

perform the risk assessment on 3 spatial scales – countries, regions within countries, and individual farms. 23 

We find that Croatia (assuming no vaccination occurred) has the highest mean probability of infection, with 24 

Italy, Hungary and Spain following. Including import detection of infected trade does reduce risk but this 25 

reduction is proportionally lower for countries with highest risk. The risk assessment results are consistent 26 

across the spatial scales, while in addition, at the finer spatial scales, it highlights specific areas or individual 27 

locations of countries on which to focus surveillance. 28 

Introduction 29 

The viability and usefulness of spatial quantitative risk assessment has been increasing with the availability 30 

of larger datasets, more detailed data, and improved computational power. This has been manifest across 31 

human, animal and plant health, following the growth of data on, for example, human movement via air 32 

travel (Grais et al. 2004, Tatem et al. 2006a, Tatem et al. 2006b), tracking and communication of spread of 33 

diseases using social media tools (Schmidt 2012, Bengtsson et al. 2015), improved climate predictions 34 

(Brownstein et al. 2005, Gale et al. 2012) as well as the development of geospatial software (Wardrop et al. 35 

2012) and next generation sequencing of disease strains (Vayssier-Taussat et al. 2013). Assessing risk on a 36 

spatial scale allows for active surveillance to be directed to areas deemed most at risk, spatially-varying 37 

procedures prepared to prevent infections occurring, and different management plans depending on which 38 

spatial locations become infected, should infection occur. Targeting prevention and control spatially, in this 39 

manner, can save time, money and resources. 40 

Whilst there are clear outlines and recommendations on how to perform risk assessment for initial 41 

infections and spread of infectious diseases generally, which include quantifying entry, exposure and 42 

consequence assessments (Murray 2004), there is, however, no generic framework for performing 43 

quantitative risk assessments in a spatial setting. A framework allows for standardisation across different 44 
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countries and organisations to facilitate policy and decision making. In this paper, we outline a proposed 45 

generic framework for completing spatial quantitative risk assessments for risk of infection. The defining 46 

feature of the framework will be its emphasis on disease introductions from one area to another. However, 47 

the aim is for the framework to be generic across the type of pathogen, method of transmission, species of 48 

host(s) and spatial resolutions. To outline what the framework aims to achieve, we formulate the risk 49 

question as: “What is the risk of infection of a pathogen in Area B given the presence of that pathogen in 50 

Area A?” It thus focuses on initial infection by means of introduction. 51 

We introduce the generic framework and undertake the risk assessment for one pathway, namely the risk 52 

of initial infection by means of registered movement of hosts, using a case study. In the case of livestock 53 

this implies a focus on trade but human movement via airplanes or other ticketed travel between countries 54 

is also applicable. Calculation of the risk of infection due to unregistered movement of hosts across 55 

borders, such as vectors, wild birds or illegal trade, is not considered in our case study. Through this case 56 

study we highlight the degrees of detail possible in the risk assessments using our framework when the risk 57 

assessor has access to data at a country level only, country level data with some regional data, and lastly 58 

detailed individual farm level data. 59 

Lumpy skin disease (LSD) is used as the case study for assessing the risk of infection by legal trade. LSD 60 

virus, which affects cattle and buffalo, is in the Capripoxvirus genus along with sheeppox and goatpox. It 61 

causes nodules on the skin, mucus membranes and internal organs; reduction in milk production; fever; 62 

oedema; and sometimes death (Davies 1991, Tuppurainen and Oura 2012). Mortality is usually low (<10% 63 

Kumar (2011)), but it can cause significant economic losses and hence the World Organisation for Animal 64 

Health (OIE) classifies LSD as a notifiable disease. Mechanical transmission by vectors is believed to be the 65 

primary method of transmission but direct contact, infected semen, and contaminated feed and water 66 

sources are also considered as rare but possible routes of transmission (Carn and Kitching 1995b, Magori-67 

Cohen et al. 2012). There are many different species that have been implicated as mechanical vectors, such 68 

as biting flies (e.g. Stomoxys calcitrans, Yeruham et al. (1995)), mosquitoes (e.g. Aedes aegypti, Chihota et 69 

al. (2001)) and ixodid (hard) ticks with evidence for transstadial and transovarial transmission in these ticks 70 

(e.g. Rhipicephalus spp, Tuppurainen et al. (2011)).  71 

There has been rapid geographical spread of LSD over the last 30 years with emergence in south-east 72 

Europe for the first time in 2015. Historically, it had been restricted to sub-Saharan Africa and appeared to 73 

be in decline, but a resurgence occurred in the 1980s and subsequently it has been steadily spreading 74 

northwards (Hunter and Wallace 2001). Although there had been infrequent incursions before, since 2006 75 

it has become endemic throughout the Middle East (Tuppurainen and Oura 2012). Similarly, it has been 76 

present in Turkey since 2013 and is now considered endemic. A few cases of LSD occurred in Greece for the 77 

first time during 2015, followed by a widespread outbreak in the Balkan regions in 2016, specifically in 78 
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Greece, Bulgaria, The Former Yugoslav Republic of Macedonia, Serbia, Kosovo and Albania, as well as in 79 

Russia (Mercier et al. 2017). These cases and those in 2015 predominantly occurred in the summer months, 80 

highlighting the seasonal nature of the disease spread, likely shaped by the environmental requirements of 81 

arthropod vectors and pastoralism (Thevenin 2011). Given the potential for further spread within the EU, 82 

the disease was considered to be a timely case study for the application of our generic framework. 83 

Estimation of the risk of initial infection within each EU country would provide information to aid targeted 84 

surveillance. In addition, as the disease is notifiable, we anticipated that there would be more data than 85 

would be available for non-notifiable diseases.  86 

We demonstrate our generic framework for spatial quantitative risk assessment for risk of initial infection, 87 

specifically due to registered movement of animals or people, by considering the potential import of 88 

infected animals in 2016 during the outbreak of LSD in the Balkan region. This is outlined by the following 89 

specific risk question: “What is the risk of initial infection of lumpy skin disease in Europe (not including the 90 

countries which had notified cases) from legal trade in 2016 due to the presence of lumpy skin disease in the 91 

rest of the World?” 92 

Methods 93 

The Generic Framework 94 

We define the risk of infection as the probability of one or more initial infections in the native susceptible 95 

population in Area B. The risk pathway outlining the probabilistic steps involved in risk of infection for the 96 

generic risk question is set out in Figure 1. Infection can only occur if there is incursion of infected species, 97 

non-detection of that species, the survival of that species, and subsequent exposure of native susceptible 98 

hosts resulting in transmission, as shown in Figure 1. We use the term “species” but it could be even more 99 

generic than this, such as infected products or feed, provided that they could be in contact with native 100 

susceptible hosts. The term “contemporaneous survival” in Figure 1 indicates that some species are only 101 

active part of the year (e.g. only summer months in Northern EU countries in the case of vector-borne 102 

diseases) and the two species need to coincide for infection to be possible. It also includes the time period 103 

over which the infected species is infectious. Thus, animals that are imported directly for slaughter are 104 

assumed to have a survival length of 0 days. We combine these steps in the pathway together to produce 105 

the probability of one or more infections occurring in Area B for each pathway. Different methods of 106 

transmission, different infected species entering Area B or even different pathogen strains require different 107 

risk pathways that are then combined together to create the total risk of infection for each location within 108 

Area B. Locations at highest overall risk are of most interest to policy makers. 109 
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Risk of Infection 110 

We can mathematically describe and combine the 5 steps of the risk pathway (Figure 1) and can therefore 111 

compute a quantitative probability of initial infection at each location thus giving a spatial risk map. This is 112 

adapted from a model that assesses the risk of species jumps in avian influenza (Hill et al. 2015). At first, we 113 

describe a single disease pathway from 𝑖 to 𝑗. Inclusion of other pathways resulting in initial infection in 114 

Area B from Area A, in which species  𝑖 and 𝑗 may be different, is outlined afterwards. As the risk 115 

assessment may be calculated on different spatial scales, we use k to denote subregions of Area A and 𝑔 for 116 

locations in Area B. Both of these will be determined by the spatial data available. Step 1 of the risk of initial 117 

infection is the estimation of the number of infected hosts (𝐼𝑘) entering Area B. Based on the prevalence in 118 

Area 𝐴𝑘 and the total number of hosts exported, the number of infected hosts (𝐼𝑘) entering location 𝑔 of 119 

Area B during a set time interval is given by:  120 

𝐼𝑘(𝑔)~𝐵𝑖𝑛(𝑁𝑘(𝑔), 𝑝𝑘) 121 

Here 𝑁𝑘(𝑔) is the number of hosts imported to or entering location 𝑔 from Area 𝐴𝑘 in a unit time interval 122 

and 𝑝𝑘 is the prevalence of infected hosts in Area 𝐴𝑘. We use a stochastic representation in the number of 123 

imported hosts that will be infected to better describe the potential variability. This requires an assumption 124 

of independence and therefore an assumption that infected and non-infected hosts are equally likely to be 125 

exported. The number of infected hosts entering location 𝑔 in Area B from Area A is derived by summing 126 

over all sub-regions in Area A, thus 127 

𝐼(𝑔) =  ∑ 𝐼𝑘(𝑔)

𝑘

 128 

However, some infected hosts may not make it through import control due to detection of symptoms or 129 

testing of hosts, Step 2 in Figure 1. The probability of detection and the sensitivity of the tests can also vary 130 

by location 𝑔. We assume, however, that the probability of detection is independent of which country is 131 

the exporter. Therefore, we denote 𝑝𝐷(𝑔) as the probability of successfully detecting and removing an 132 

infected host. The actual number of infected hosts 𝐽(𝑔) entering location 𝑔  in Area B will be given by 133 

𝐽(𝑔)~𝐵𝑖𝑛(𝐼(𝑔), 1 − 𝑝𝐷(𝑔)) 134 

We next calculate Steps 3 – 5 (Figure 1), namely the survival rate of the species, the contact rate between 135 

hosts and the probability of transmission leading to initial infection of susceptible hosts in each location 𝑔 136 

of Area B. We combine these components using the basic reproductive number 𝑅0. The basic reproductive 137 

number gives the number of susceptible hosts likely to be infected by the introduction of one infected host 138 

at each location 𝑔. 𝑅0 is a fundamental metric of disease systems, but the equation to represent 𝑅0 139 

depends on how the transmission of the disease is modelled. Therefore, using 𝑅0 facilitates adaptation to 140 
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different methods of transmission due to different interactions between species 𝑖 and 𝑗, e.g. vector-borne 141 

transmission, direct transmission or sexual transmission, as well as specific aspects that are only applicable 142 

in some cases, such as environmental factors, in determining survival of species. For example, direct 143 

transmission would be represented by the equation: 144 

𝑅0(𝑔) =
𝑐𝛽𝑆(𝑔)

𝑟
 145 

In this equation, 𝑐 is the contact rate between hosts (Step 4), 𝛽 is the probability that contact results in 146 

successful transmission (Step 5), 𝑆(𝑔) is the population size of susceptible hosts of species 𝑗 in location 𝑔 147 

and 𝑟 is the recovery rate, based on the length of time infected hosts of species 𝑖 remain present and 148 

infectious in location 𝑔 (Step 3). Additionally, 𝑅0 can change depending on the location 𝑔 to incorporate 149 

differences in transmission in different regions. And if the data are available 𝑅0 could be a function of 150 

temperature, changing for each location based on average temperatures. For calculating the risk of initial 151 

infection occurring within location 𝑔 we assume that there is homogeneous mixing between the newly 152 

introduced species and the native susceptible population, but this could be adapted to other scenarios in 153 

which homogeneous mixing is not a good assumption by changing the contact rate 𝑐.  154 

Based on our definition of risk of infection, we calculate the probability of one or more infections occurring 155 

in the susceptible population within location 𝑔, per unit time by combining the information from Steps 1 – 156 

5. The probability of random events, such as infections, happening is described by a Poisson process with 157 

parameter 𝜆 where 𝜆 is the expected number of events occurring per unit time. For each observation of 158 

𝐽(𝑔) we can estimate the expected number of new infections occurring in a unit time in location 𝑔 by 159 

𝑅0(𝑔)𝐽(𝑔). Hence, in our framework the number of new infections per unit time follows a Poisson process 160 

with parameter 𝜆 = 𝑅0(𝑔)𝐽(𝑔). The probability of no events happening in a Poisson process is 𝑒−𝜆. Hence, 161 

the risk of infection, alternatively the probability of one or more infections occurring in the susceptible 162 

population, in location 𝑔 from introduction of infected hosts from Area A is given by: 163 

𝑅𝐼(𝑔) = 1 − 𝑒−𝑅0(𝑔)𝐽(𝑔) 164 

If there are multiple routes of transmission (which could involve different species 𝑖 and 𝑗) then all 165 

parameters, including the contact rates, number of susceptible animals and number of imported infected 166 

hosts, may be different for each route. To incorporate these different routes, we denote the route with an 167 

additional subscript 𝜔 and, hence, re-write the above equation as 168 

𝑅𝐼,𝜔(𝑔) = 1 − 𝑒−𝑅0,𝜔(𝑔)𝐽𝜔(𝑔) 169 

for each route 𝜔. Therefore, the complete risk of infection over all routes of transmission would become: 170 
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𝑅𝐼(𝑔) = 1 − ∏[1 − 𝑅𝐼,𝜔(𝑔)]

𝜔

 171 

This risk of infection calculation is capable of representing different methods of transmission, a wide range 172 

of pathogens with different environmental requirements, any spatial scale and any route of introduction. 173 

Data Requirements 174 

The data requirements necessary to calculate the risk of initial infection are presented in Table 1. The data 175 

needs to be on the spatial scale for which the risk assessment is to be performed as well as a suitable time 176 

scale. The major determinant of the time scale will be the movement data which could be on a daily, 177 

monthly or yearly scale. Data on the quantity of susceptible hosts is not likely to be censored as often but 178 

can be assumed to stay relatively constant. Prevalence data can be on any time scale depending on 179 

availability, although if different from the time scale of the movement data then assumptions either have 180 

to be made that the prevalence is constant over the duration of multiple movements, or on how to split the 181 

movement data up to be on the same time scale as the prevalence data. 182 

Lumpy Skin Disease case study 183 

We outline the data that we use to compute the risk of infection for our LSD case study (Table 2). Since we 184 

assess the risk due to the potential import of infected animals in 2016, during the outbreak in the Balkan 185 

region, we use 2016 data as much as possible. Our Area B is defined as all countries in Europe excluding 186 

those countries which had notified cases in 2016, namely Greece, Bulgaria, The Former Yugoslav Republic 187 

of Macedonia, Serbia, Kosovo, Albania, Turkey and Russia. Our Area A is the whole world. To highlight the 188 

ability for the framework to cope with different spatial resolutions, we use three different scales of 189 

locations in Area B. We compute risk of infection for countries, for regions within each country, and at 190 

individual farms within Europe. The spatial regions that we use are based on the NUTS classification 191 

(Nomenclature of territorial units of statistics) which is a system for dividing up the European Union (EU) 192 

into hierarchical levels in order to collect and harmonise European regional statistics. These regional 193 

classifications are created and maintained by Eurostat (Eurostat 2017b), the statistical office for the 194 

European Union. There are three NUTS regions below a country level, which decrease in size and socio-195 

economic status, labelled as NUTS 1, NUTS 2 and NUTS 3. Some small countries have NUTS 1 and even 196 

NUTS 2 defined to be the whole country. Some non-EU European countries also have NUTS regions and 197 

provide some regional data to Eurostat, namely Iceland, Norway and Switzerland. Those non-EU European 198 

countries which do not have NUTS regions assigned and which do not give regional data to Eurostat are 199 

excluded from our regional and postcode risk assessments, specifically, Belarus, Bosnia and Herzegovina, 200 

Moldova and Ukraine. 201 
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Trade data (𝑁𝑘(𝑔)) 202 

We use two different sources of trade data which represent the most common resolutions of data 203 

available. In the first case, we assume the risk assessor has access to individual farm trade data, i.e. the 204 

number of animals each farm in Area B imports from Area A. Obtaining individual farm trade data across 205 

the whole of Area B is likely to be difficult in many cases, unless Area B is a single country. Nevertheless, 206 

using these data we can calculate the risk of infection for individual farms. In the second case, we assume 207 

the much more frequent scenario, that the risk assessor has access to country trade data only. This allows 208 

for computation of risk of infection at a country level only. However, based on the assumption that it is 209 

often possible to access a higher resolution of data for your own country, we outline a method to infer 210 

regional trade data for all countries based on regional trade data for one country and country-level trade 211 

data for all countries. For specific details on this method see Appendix A. Thus, we compute risk of infection 212 

at a regional level based on country trade data for all countries and regional trade data from one country. 213 

For all trade data, we assume that cattle are imported to a farm and are not moved elsewhere during the 214 

time they are infectious. 215 

For the risk of initial infection at individual farm level, we use the Trade Control and Expert System (TRACES 216 

2017), a primarily EU-based trade system. On request TRACES kindly provided us with data on all cattle 217 

trade registered through their system in 2016 and included the postcode of the final destination. The 218 

country trade data which we use for the country and regional risk assessments is the freely available 219 

dataset COMEXT, also provided by Eurostat (Eurostat 2017a), which denotes all trade of any product from 220 

any country in the world to any other. We subset the data by product code so that we only include trade in 221 

live cattle not for slaughter. Using the methodology described in Appendix A, we infer the distribution of 222 

the imported cattle amongst regions in each country. To do this, we use trade data at the regional level for 223 

the UK, from 2012-2015 obtained from TRACES, to estimate predictors for determining the proportion of 224 

cattle going to each region. This is under the assumption that UK regional trade data is similar to regional 225 

trade data in the rest of Europe. Based on data availability at a regional level, we analysed the number of 226 

cattle farms in each region and the proportion of those which are dairy as predictors. Our model in 227 

Appendix A identifies both as important predictors for predicting the proportion of cattle trade to each 228 

region. Data on cattle farms across Europe, including how many are dairy, are provided by Eurostat 229 

(Eurostat 2017a). Thus, we use this COMEXT data, alongside the model for distribution of cattle imports 230 

across regions, in our calculations for risk both at the country and regional level. 231 

Since we have the TRACES data at a farm level for the whole of Area B, we can use it to calculate regional 232 

risk instead of inferring distribution of cattle amongst regions based on the country trade data. However, as 233 

it is much more likely for the risk assessor to only have access to the country level data, we highlight in the 234 

main text the use of country level data for computing regional risk. It also highlights the differences that 235 

occur between the two datasets. We plot the country risk based on TRACES data in Appendix B and 236 
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compare this to country risk using COMEXT data to assess whether these differences impact significantly on 237 

the risk calculations. 238 

Prevalence of LSD around the world (𝑝𝑘) 239 

We use 2016 data from the EU-funded SPARE project (Simons et al. 2017), which estimates prevalence of 240 

disease around the world using OIE data on the number of outbreaks and the number of cases per 241 

outbreak of the disease in the past 10 years. These data were provided to us in the form of distribution 242 

parameters, thus giving a distribution of prevalence of LSD for each country. We use these distributions to 243 

represent our uncertainty in the prevalence in one year for each country. The data do not assume that a 244 

country is free of the disease if it has not notified the OIE of any cases because it takes into account under 245 

reporting and the occurrence of notified cases in bordering countries.  246 

Probability of import detection (𝑝𝐷(𝑔)) 247 

Although our locations 𝑔 can be either countries, regions or even farms, it is unlikely to know the 248 

probability of import detection of infected hosts on the finer scales. Even on a country level it may be 249 

difficult to determine, especially for diseases which do not have a specific test on import. Therefore, for this 250 

case study we set 𝑝𝐷(𝑔) = 0 to indicate no testing of imports occurs and perform a scenario analysis for 251 

𝑝𝐷(𝑔) = 0.5 for all countries. Approximately 30-50% of animals with LSD will show severe clinical signs, 252 

with more showing mild symptoms, and thus may be detected by physical examination (Weiss 1968, Ali et 253 

al. 1990, Carn and Kitching 1995b). A health certificate signed by an official veterinarian is the only health 254 

requirement for movement between different EU countries, although individual countries within the EU 255 

may have their own regulations.  For example, the UK tests on import (and quarantines animals until results 256 

are confirmed negative) for LSD from high-risk countries. However, we do not know the procedures of 257 

other countries in Europe and therefore we maintain that an import detection of 0.5 is in a realistic range 258 

for LSD. 259 

Number of susceptible hosts (𝑆(𝑔)) 260 

For the country level assessment of risk, the data is based on cleaned data from the OIE from 2014 which 261 

gives the numbers of cattle and  farms in each country (World Organisation for Animal Health (OIE) 2017). 262 

This is to be consistent with the prevalence data which uses OIE data in its methodology. Since OIE data on 263 

number of cattle is rare at the regional level, we use data from Eurostat for the numbers of cattle and farms 264 

in each region in 2016 (some countries are for 2015 due to a lack of 2016 data) for the regional risk 265 

assessment (Eurostat 2017a). Most countries that provide data to Eurostat do so at a NUTS 2 level 266 

(approximately the size of counties), whilst the UK and Germany provide their data on the NUTS 1 level 267 

(larger regions consisting of multiple counties). We, therefore, calculate regional risk of infection depending 268 

on the scale of regional data on susceptible hosts provided to Eurostat. We calculate the average number 269 

of cattle on a farm in each country/region to represent the number of susceptible animals the imported 270 
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animals will be in contact with. Although we have data on trade to individual farms (determined by their 271 

postcode), we do not have detailed information about those farms, such as the number of cattle. Thus, we 272 

use the regional average number of cattle per farm for the relevant region. We do not include differences 273 

in the types of farming and husbandry systems that may occur throughout the various countries, however, 274 

if data is available for LSD or in a different case study, this could be included by changing the underlying 275 

formula for 𝑅0. 276 

Lumpy Skin Disease data (𝑐, 𝛽, 𝑟) 277 

There is a great deal of uncertainty over which transmission routes are most important for LSD, the contact 278 

rates along those routes, the minimum infective dose required for each route and the probability that the 279 

infective dose would be met. Therefore, it would be exceedingly difficult to produce reliable estimates for 280 

contact rates (𝑐) and the probability of transmission (𝛽) separately. Instead, we combine the contact rate 281 

between animals and probability of transmission into a transmission rate (𝜉) and use results from a 282 

statistical analysis of an outbreak on a single farm (Magori-Cohen et al. 2012) which estimated transmission 283 

rates. This study, followed up by personal communication with the authors, determined that vector 284 

(mechanical) and direct transmission were key transmission routes, with rates of 0.026 and 0.006 per day, 285 

respectively. In Magori-Cohen et al. (2012) the mechanical transmission term from cow to cow is 286 

represented by the formula 𝜉𝑆𝐼 rather than using frequency-dependent transmission therefore we use the 287 

same formula to represent mechanical transmission. Magori-Cohen and authors (personal comm.) provided 288 

us with estimates of the uncertainty for the two transmission rates through 95% confidence intervals, 289 

[0.013, 0.052] and [0.003, 0.012] for mechanical and direct transmission, respectively. Since mechanical 290 

vector transmission is thought of as the most important mode of transmission for LSD (Carn and Kitching 291 

1995b) we use the upper and lower confidence interval bounds for this parameter in a sensitivity analysis 292 

to estimate our uncertainty in the risk calculations due to our uncertainty in transmission rate. We assume 293 

that across the whole of Europe there are suitable vectors which are able to transmit LSD virus. This is a fair 294 

assumption considering the wide range of species that have been implicated as potential mechanical 295 

vectors. The number of days that cattle will exhibit viremia, as well as shedding of virus from nasal, oral and 296 

conjunctival secretions, has been estimated to be between 6-18 days (Carn and Kitching 1995a, 297 

Tuppurainen et al. 2005, Babiuk et al. 2008). However, virus has been detected by PCR in skin nodules on 298 

cattle up to 42 days post inoculation (Babiuk et al. 2008) and up to 159 days in the semen of experimentally 299 

infected bulls (Irons et al. 2005). We assume a 15 day infectious period (𝑟) to represent the shorter viremic 300 

period and perform a sensitivity analysis for a 42 day infectious period to incorporate the effects of 301 

potential longer skin nodule infectivity.  302 

All of our calculations are performed in R (R Core Team 2016).  We take random draws from the prevalence 303 

distribution to estimate the prevalence in each country but reject those samples which fall outside the 5 304 
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and 95 quantiles due to long tails of this distribution. This is based on the methodology from the SPARE 305 

project which provides the prevalence data. We then randomly draw the number of infected animals 306 

entering a country, as described earlier. In total, we use 10,000 iterations. Executing the calculations 307 

described earlier, the model outputs a distribution of the risk of infection. To present the results the mean 308 

and variance of this distribution are provided. The default scenario considered is a 15 day infectious period, 309 

a mechanical transmission rate of 0.026 and no detection on import. Modifications to the default scenario 310 

are considered in the sensitivity and scenario analyses and are clearly stated; otherwise it can be assumed 311 

that the parameters are those of the default scenario. 312 

Results 313 

We reiterate here that we define the risk of infection as the probability of one or more initial infections in 314 

the native susceptible population in Area B. In nearly all simulations, we find that virtually all locations will 315 

have a probability very close to or indistinguishable from 1 if an infected animal is imported to the farm and 316 

obviously a probability of 0 if no infected animal is imported. Therefore, each simulation of the risk is 317 

essentially a Bernoulli distribution. Combining all the simulations together produces a distribution akin to a 318 

scaled Binomial distribution. Hence, the mean and variance of the risk can be interpreted similarly to the 319 

mean and variance of a Binomial distribution. The variance is a representation of our total uncertainty 320 

arising from the model and input parameters and is only driven by the distribution for prevalence.   321 

The mean annual probability of initial infection per location, at a country level assessment for the default 322 

scenario is plotted in Figure 2. Many countries in Europe import only from countries which have an 323 

estimated zero prevalence, according to our prevalence data within each country. Therefore, they have 324 

negligible risk of having one or more native susceptible animals becoming infected due to importing an 325 

infected animal. Croatia, with a mean probability estimated at 0.87, has the highest annual risk, followed by 326 

Italy (mean risk 0.72), Hungary (mean risk 0.62), Spain (mean risk 0.6) and Slovenia (mean risk 0.448). This 327 

indicates a probability of 87% for at least one infected native host in Croatia in 2016. We also plot the 328 

variance in this estimate of risk of infection. There is little uncertainty in our estimate of risk for Croatia, 329 

indicating that the high risk assessment holds true regardless of the stochastic nature of prevalence within 330 

countries. On the other hand, uncertainty is high for Italy, Spain, Hungary and Slovenia, with variance 331 

between 0.2 and 0.25.   332 

The mean probability of infection due to trade at a regional level also highlights Croatia, Italy and Hungary 333 

as countries with the highest risk (Figure 3). However, now it is possible to observe that this risk is focussed 334 

in specific regions of these countries. Croatia has high risk across the whole country whereas Italy has 335 

highest risk in the northern regions, and in Hungary the highest risks are in the southern part of the 336 

country. Similarly, the variance of this risk is plotted on a regional scale. Some countries, for example 337 
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Romania and Germany, have regions with both low probability of infection and low variance in this 338 

probability, as well as other regions which have low mean probability but a higher variance. This allows for 339 

better understanding of where to focus surveillance activities. 340 

Risk of initial infection at an individual farm level (Figure 4) indicates that the majority of trade within Area 341 

B with countries that have non-zero prevalence occurs in Croatia, hence why Croatia had such a high risk at 342 

a country and regional level. The two farms with the highest probability of infection are in Croatia including 343 

one farm with a risk of 0.65. However, Spain follows closely behind with the next 3 highest risk farms with 344 

probabilities of infection between 0.51 – 0.54. Some countries which are assessed as having negligible risk 345 

due to not importing from infected countries (according to the COMEXT dataset, Figure 2), have individual 346 

farms in the TRACES data doing so, e.g. France and UK, Figure 4. This is due to differences that occur 347 

between the two different trade datasets (see Appendix B). However, the regional and individual farm risk 348 

maps agree on the regions with highest risk in Italy, Germany, Poland and Hungary. The plot of variance in 349 

the risk of initial infection at an individual farm level indicates much uncertainty in the risk assessment 350 

centred in Croatia, in contrast to the country and regional level risk assessments which indicated lower 351 

uncertainty in Croatia’s risk. Although each farm has high uncertainty as to whether infection is likely to 352 

occur in a native host, the combination of multiple farms with high risk culminates in more certainty that 353 

infection would occur. Hence, the result of many farms with high risk and high uncertainty results in high 354 

risk with little uncertainty at a regional or country level. 355 

Sensitivity Analysis 356 

We performed sensitivity analysis on the two main parameters that have uncertainty, the length of the 357 

infectious period in cattle (15 or 42 days) and the mechanical (vector) transmission rate (in the range 0.013-358 

0.052). Varying either of these parameters within these values does not make a noticeable difference to the 359 

results. The high transmission rates, the ability for hosts to infect any of the susceptible hosts on the farm 360 

and the long infectious period, lead to high 𝑅0 values at each location, even when these parameters vary. 361 

Scenario Analysis 362 

A risk assessment at a country level when the import detection probability is increased from 0 to 0.5 for all 363 

countries indicates, as expected, a decrease in the overall probability (Figure 5). Although import detection 364 

approximately halves the number of imported infected animals, it does not halve the value of risk. This is 365 

because in many simulations no infected animals enter due to low prevalence, which will not change when 366 

import detection does occur. In general, the values for risk are reduced most for countries with low to 367 

medium risk with, for example, Germany, the Netherlands, Romania and Poland reducing their probability 368 

of infection by 30 – 50%. In contrast, import detection is not as successful for countries with higher risk, 369 

with Italy and Croatia only reducing their risk by 13% and 7% respectively. This is due to high import rates 370 
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from countries with non-zero prevalence, so that with 50% detection many infected animals could still 371 

enter the country. 372 

Discussion 373 

Our risk assessment was performed at various spatial scales, both to show the flexibility of the framework, 374 

and to understand more clearly how LSD risk is distributed across Europe. In comparison to the risk of 375 

infection calculation at a regional or country level, the individual level informs whether higher risk arises 376 

due to a large number of farms with low to medium risk, or due to a small number of farms with high risk. 377 

For example, only a few individual farms in Spain import but they have a high risk of LSD, whereas in Italy 378 

and Hungary many farms import from countries with non-zero prevalence but they have low to mid risk 379 

(Figure 4). This is particularly pertinent for Spain, in this case, as at a country level its risk is lower than a 380 

few other countries. This could lead to less overall surveillance than those countries when in reality there 381 

are a few farms with very high risk. This level of detail is not possible in the regional and country level risk 382 

assessment. We reiterate that our regional risk assessment involves the assumption that the distribution of 383 

animal imports amongst regions will be similar between the UK and the rest of Europe. Our model for trade 384 

distribution (see Appendix A) found that the number of farms and the proportion that are dairy are 385 

significant determinants of cattle being imported into different regions of the UK but this may not be the 386 

case for other European countries. Comparing Figure 3 and Figure 4 we can see that while most countries 387 

have similar areas of risk predicted at a regional level and at an individual farm level, this is not true for 388 

Spain. The regional areas at risk are predicted to be in the north west of Spain but according to the TRACES 389 

dataset, Figure 4, the individual farms at risk are in the north east. This is likely due to Spain not importing 390 

according to our model for trade distribution amongst regions. However, for most countries our results are 391 

consistent across the spatial scales. Whilst individual farm risk provides the most detailed information, 392 

when time is short or data are not available, country and regional risk assessments provide a useful and 393 

relevant measure of risk.  394 

This risk assessment for LSD is focussed on 2016, coinciding with the outbreak in the Balkans, and highlights 395 

Croatia as the country with the highest risk. However, our risk assessment did not take into account any 396 

control measures, other than import detection, which countries may have implemented during this 397 

outbreak. In fact, Croatia started to vaccinate its cattle population for LSD in August 2016, achieving 100% 398 

coverage by November 2016 (European Food Safety Authority (EFSA) 2017). This risk assessment, alongside 399 

Croatia’s close location to infected countries, suggests that Croatia was wise to vaccinate to avoid infection. 400 

In fact, the FAO have released a position paper (FAO 2017), following a number of confirmed cases of LSD in 401 

2017, suggesting full-scale vaccination policies in countries with high risk in Eastern Europe, regardless of 402 

whether they have had infected cases, in order to reduce the likelihood of another outbreak. This is to 403 
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avert the spread of the disease and reduce the need for a total stamping-out policy, which can significantly 404 

affect farmers, especially smallholders. As in other models of the spread of infectious diseases (Keeling and 405 

Rohani 2007), our model can include the role of vaccination by reducing the number of susceptible animals 406 

in Area B that may come into contact with the imported infected species. This reduction would be based on 407 

available data on the proportion of animals that are vaccinated at each location in Area B. Vaccination 408 

could also lower the transmission rates, as vaccinated cattle may be less susceptible to the disease, or it 409 

could reduce infectivity of cattle by shortening the length of the infectious period, both of which can be 410 

easily changed in our model. 411 

However, vaccination against LSD may not be suitable or recommended for all countries due to the fact it is 412 

a live vaccine with no test to distinguish infected from vaccinated cattle (Tuppurainen and Oura 2012). As 413 

an alternative, increasing the probability of detection on import does reduce the risk from trade imports. 414 

However, the effects of import detection are not equivalent across countries, and the countries with 415 

highest risks would need higher probabilities of successful detection to be able to reduce their risk by the 416 

same proportion. 417 

Italy, Hungary, Spain and Slovenia had higher risk than many other countries, demonstrating the potential 418 

for LSD to lead to local infections in cattle populations across Europe due to trade. However, this risk 419 

assessment assumed that a suitable active vector is always present in all locations – this may not be the 420 

case in more northern countries in Europe, or during certain times of the year. This could significantly 421 

reduce the risk estimates in more northerly countries as the transmission rates through direct contact are 422 

significantly smaller than through mechanical vector contact (Carn and Kitching 1995b, Magori-Cohen et al. 423 

2012). Croatia, Italy and Spain have similar Mediterranean climates to Greece, where infection has 424 

occurred and spread, indicating disease suitability in that climate for at least part of the year provided 425 

vectors are present. 426 

This case study did not assess the risk of initial infection through vector movement across borders or other 427 

unregistered trade/movement, such as illegal trade or movement of people, including refugees who may 428 

bring cattle with them. Undoubtedly, this would increase the risk in those countries which are neighbouring 429 

infected countries, such as Croatia, Bosnia and Herzegovina, Hungary and Romania, depending on the 430 

political climate, wind events, presence of vectors and temperature requirements of vectors. Furthermore, 431 

if transtadial and transovarial transmission of LSD is shown to occur in many tick species (Tuppurainen et al. 432 

2011), this may be an important transmission pathway to consider for spread of LSD.  433 

The difference in risk for LSD across Europe is primarily driven by prevalence in export countries and the 434 

number of cattle imported, whereas specific disease parameters and the differences between 435 

countries/regions in the average number of susceptible animals on a farm did not have much impact on risk 436 
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estimates. This finding is expected to be similar for most diseases, although different formulas for 𝑅0 to 437 

estimate disease transmission within each area could affect it, especially if the 𝑅0 parameters are 438 

dependent on environmental factors, which vary between areas. The lack of consensus on which vectors of 439 

LSD are the most influential in spreading the disease (via mechanical transmission) mean that we are not 440 

able to vary 𝑅0 with location based on how the vectors respond to environmental variables. Therefore, our 441 

LSD case study is not able to include details surrounding a key element of transmission. However, as the 442 

difference in risk is primarily driven by the import trade and as the greatest risk is located in countries 443 

which are likely to have similar climates to those which had outbreaks in 2016, we believe our results 444 

provide a robust estimation of risk across Europe for 2016. 445 

Our generic framework can be adapted for different modes of transmission by changing the formula used 446 

for 𝑅0. This provides flexibility to consider other case studies which involve different transmission 447 

pathways, such as vector-borne transmission, environmental and contaminated feed and water sources. 448 

Furthermore, the generic framework can also be used for different types of movement in to Area B, such as 449 

unregistered movement. Movement of terrestrial wildlife, migratory birds and local and windborne travel 450 

of vectors can be included in to the framework through the parameter 𝑁𝑘(𝑔) in the same way as the 451 

import of animals by trade. The difference is that the estimation of 𝑁𝑘(𝑔) will likely be based on a model of 452 

animal movement instead of a global database, such as we used for trade in the LSD case study. Similarly, 453 

we estimated the number of susceptible animals using databases on the number of animals on farms in 454 

each country, but for other pathways a more useful measure could be the number of animals in a 10km2 455 

area extracted from density maps of animals, depending on the data used for movement of animals. 456 

Importantly, however, the framework itself remains unchanged for these different pathways of disease 457 

introduction. 458 

The accuracy of our framework to predict the risk of initial infection for different diseases will depend 459 

greatly on the quality and quantity of data available for the disease and relevant animal species. Even 460 

though the framework is applicable to all disease introductions as outlined above, it may not always be 461 

possible to calculate the risk of initial infection if there is insufficient data available. If exact data required 462 

by the model are not available, it is possible to use proxy data, although this increases the uncertainty 463 

associated with the results. For example, it is possible to use cattle density as a proxy for vector density but 464 

there may be greater uncertainty over the reliability of the proxy data at low and high densities. In general, 465 

a focus on a risk ranking of countries is likely to produce more reliable predictions rather than 466 

concentrating on the risk estimates themselves. Missing or inaccurate data can always bias the results, 467 

even if under-reporting factors or models are used to estimate the true values. This can be seen in 468 

Appendix B, Figure B2, in which the risk estimates at a country level are compared using either the Comext 469 

dataset or the TRACES dataset, indicating that there are clear differences between these datasets. 470 

However, it is not possible to state with any certainty which is the better dataset to use. Similarly, reliable 471 
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estimates for prevalence of a disease in all countries throughout the world are difficult to obtain. The data 472 

we use for prevalence from Simons et al. (2017) is based on OIE notified cases, the best freely-available 473 

source for worldwide animal disease outbreaks. But it is judicious to remember that the resulting data on 474 

prevalence is the result of a model with uncertainty and assumptions. We provide a risk assessment for LSD 475 

based on the best available data. Conversely, the generic framework we present is applicable for all data 476 

sources and can be re-used as better data becomes available.  477 

A major advantage of a framework that promotes the computation of risk at various spatial scales is that it 478 

allows for the identification of hotspots of disease, and hence it can guide policy decisions regarding the 479 

implementation of more specific and directed surveillance of potential infection. Enhancing surveillance 480 

methods has the potential to reduce time to detection of infection thus reducing the likelihood of 481 

widespread outbreaks, as well as decreasing the costs of, and time spent, on surveillance. Clearly countries 482 

with a range of low, medium and higher risks should target surveillance within those regions appropriately. 483 

On the other hand, countries with low risk may also want to have surveillance in place but this may be too 484 

costly to implement across the whole country. In this case, the variance in the risk can provide additional 485 

information for directing surveillance. Additionally, the generic framework can also be expanded to include 486 

a method for risk of spread from the hotspots of infection. Combining the risk of initial infection with risk of 487 

spread would allow the risk assessor to determine not only which locations have highest risk of infection 488 

occurring from outside sources but also, of those locations, which are most likely to spread the disease 489 

further within Area B. Our generic framework provides a method for the calculation of risk of initial 490 

infection for the introduction of any pathogen from any Area A to Area B, and specifically it allows these 491 

calculations to be made across many different spatial scales depending on the question in mind and the 492 

data available to the risk assessor. This is a powerful tool that can be used to determine not only which 493 

diseases are of most concern for different countries, but also where to focus surveillance within countries 494 

for different pathogens. 495 
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 592 

Tables 593 

 594 

Table 1 Data required to calculate the risk of initial infection for the generic framework. 595 

Parameter Specific Data Further Details Potential Data Sources 

Movement 

from Area 

A to Area B 

(𝑁𝑘(𝑔)) 

Trade/Registered 

Movement 

Trade in livestock or registered movement of 

hosts from regions in Area A to locations in Area 

B. Reason for movement helpful to determine 

final location of host. For illegal trade an 

underreporting factor is necessary or estimates 

for locations with no reported data. 

UN Comtrade data 

Eurostat COMEXT data 

Trade Control and 

Expert System 

(TRACES) 

 

Import Detection 

(𝑝𝐷(𝑔)) 

The probability that locations in Area B will 

detect infection in animals imported through 

trade. 

Published literature 

Movement of 

wild animals 

Average home range size or distance routinely 

travelled by wild animals. This may be affected 

by weather events. For birds, this would include 

migration routes together with time of year. 

Published literature 

Location and 

abundance of 

Approximate spatial distribution and numbers of 

wild animals in Area A.  

Published literature 

http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home
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wild animals in 

Area A 

Global Biodiversity 

Information Facility 

(GBIF) 

Prevalence 

(𝑝𝑘) 

Prevalence of 

the disease in 

Area A 

Preferably for the same regions in Area A as the 

movement data. 

OIE 

Animal Disease 

Notification System 

FAO EMPRES-i 

Susceptible 

Hosts 

(𝑆(𝑔)) 

Size of farms in 

Area B 

When importing to farms this determines how 

many susceptible hosts will be in contact with 

the infected imports. Depending on spatial scale, 

this could be the number of hosts on a specific 

farm, or the average number of hosts on farms in 

a region. 

OIE 

Eurostat 

 

Spatial 

distribution of 

wild animals or 

people 

To determine where and how many susceptible 

hosts the imported hosts will have contact with 

Published literature 

Global Biodiversity 

Information Facility 

(GBIF) 

Specific 

host and 

disease 

data 

(𝑐, 𝛽, 𝑟) 

Length of the 

infectious period 

(𝑟) 

This could be affected by whether disease is 

detected at locations in Area B once symptoms 

appear and if they perform culling or eradication 

measures. 

Published literature 

OIE for control 

measures 

Average lifespan 

of species 𝑖 and 𝑗 

in Area B (𝑟) 

This could be affected by climate data. Published literature 

Probability of 

transmission (𝛽) 

between species 

𝑖 and 𝑗  

 Published literature 

Contact rates (𝑐) 

between species 

𝑖 and 𝑗 

This could be affected by climate data. Published literature 

 596 



21 
 

Table 2 Parameter values and data sources used in the lumpy skin disease case study for the default 597 
scenario. Different values used in the sensitivity and scenario analyses are provided in square brackets. 598 

Parameter Description Value Source 

Movement from Area A 

to Area B (𝑵𝒌(𝒈)) 

Legal trade - Country & Regional 

level: Eurostat Comext 

data (Eurostat 2017a) 

Farm level: TRACES data 

(TRACES 2017) 

Prevalence (𝒑𝒌) Prevalence of the 

disease in Area A 

- EU-funded SPARE 

project (Simons et al. 

2017) 

Susceptible Hosts 

(𝑺(𝒈)) 

Average (Country or 

regional level) or 

specific (farm level) 

number of animals on a 

farm 

- Eurostat data (Eurostat 

2017a) 

Import Detection 

(𝒑𝑫(𝒈)) 

Probability of detecting 

infected animals on 

import  

0 

[0.5] 

- 

Infectious period (𝒓) Length of infectious 

period in days 

15  

[42] 

(Carn and Kitching 

1995a) 

Transmission rate (𝝃) Direct transmission 

Mechanical 

transmission via vectors 

0.006 

0.026 

[0.013 – 0.052] 

 

Magori-Cohen et al. 

(2012) 

 599 

  600 
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Figure Legends 601 

 602 

Figure 1  The 5 steps of the risk pathway for the generic spatial risk question “What is the risk of infection of 603 

a pathogen in Area B due to the presence of that pathogen in Area A?” The term “unit” in Step 1 refers to a 604 

generic source of infection such as species, products or feed, provided that they could be in contact with 605 

native susceptible hosts. 606 

 607 

Figure 2  The mean annual risk of infection (A) and the variance of this risk (B) are plotted in shades of 608 

purple across Europe, calculated at the country level. Countries in yellow have negligible risk due to only 609 

trading with countries that have zero prevalence, according to our prevalence data. Countries which had 610 

notified cases in 2016 are in red. Comext trade data is used. 611 

 612 

Figure 3  The mean annual risk of infection (A) and the variance of this risk (B) are plotted in shades of 613 

purple across Europe, calculated at the regional level. Countries in yellow have negligible risk due to only 614 

trading with countries that have zero prevalence, according to our prevalence data. Countries which had 615 

notified cases in 2016 are in red. Countries in grey have insufficient data for calculating risk. Comext trade 616 

data is used. 617 

 618 

Figure 4  The mean annual risk of infection (A) and the variance of this risk (B) are plotted in shades of 619 

purple across Europe, calculated at the individual farm level. Individual farms are only plotted if they trade 620 

with a country that has non-zero prevalence. In (C) and (D), the mean and variance, respectively, of the 621 

annual risk of infection are again plotted, but zoomed in to the areas outlined by rectangles in (A) and (B). 622 

Regions in yellow have negligible risk due to farms within those regions only trading with countries that 623 

have zero prevalence, according to our prevalence data. Countries which had notified cases in 2016 are in 624 

red. Countries in grey have insufficient data for calculating risk. TRACES trade data is used. 625 

 626 

Figure 5  The percent that mean risk is reduced by when the probability of detection is increased from 0 to 627 

0.5 is plotted in shades of purple across Europe, calculated at the country level. Countries in yellow have 628 

negligible risk due to only trading with countries that have zero prevalence, according to our prevalence 629 

data. Countries which had notified cases in 2016 are in red.  Comext trade data is used. 630 
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Appendix A 10 

Distributing cattle amongst regions  11 

The country trade data that we use only indicates which country is importing the cattle, and not the region 12 

within that country. This hinders us from performing risk assessment at the regional level. To estimate the 13 

distribution of cattle amongst each region given the number that enter the country, we extrapolate based 14 

on Great Britain (GB), in which we are able to access a higher resolution of data. We use the Trade Control 15 

and Expert System (TRACES) database, which collects data on trade of live animals from both within and 16 

outside Europe (TRACES 2017). Importantly, it provides detailed information, such as addresses, when the 17 

import country is the country through which you have access to the database. Therefore, we collate this 18 

data from 2012-2015 to calculate the proportion of imported animals to each region relative to the total 19 

number of imports to GB overall. We perform a generalised linear regression with a logit transformation on 20 

the number of imports into each region versus the number which are imported into all GB regions 21 

(hereafter referred to as the proportion of imports). The null hypothesis is that cattle imported to GB are 22 

randomly distributed amongst regions. We use the following predictors: the number of farms in each 23 

region, and the proportion of farms in each region which are dairy farms, both of which are accessed on a 24 

NUTS 1 level through Eurostat (Eurostat 2017). Pearson’s correlation coefficient indicates no correlation 25 

between the number of farms in each region and the proportion which are dairy farms. We compare the 26 

models with each and all of the predictors using Akaike’s Information Criterion (AIC) to choose the best 27 

fitting model. 28 



Including the two predictors, the number of cattle in each region and the proportion of cattle farms that 29 

are dairy farms, as well as the interaction term is the best model by AIC to describe how imported cattle to 30 

GB are distributed amongst regions of GB, with all coefficients statistically significant. An increase in the 31 

proportion of dairy farms in a region always leads to an increase in imports, but this is not true for the 32 

number of farms (Table A, Figure A 1). If the number of farms increases but none of them are dairy, imports 33 

go down but this relationship changes when the dairy proportion increases. Regions with large numbers of 34 

farms and high proportion of dairy farms will import the most cattle. 35 

 36 

Table A  Model results from the generalised linear model with a logit transformation. In the model, 37 

PropImport indicates the proportion imported to each region, Farms and Dairy and the number of farms 38 

and the proportion of dairy farms in each region, respectively. *** indicates a p-value less than 0.001. 39 

Model: PropImport ~ logit(𝛽0 + 𝛽1 ∗ 𝐹𝑎𝑟𝑚𝑠 + 𝛽2 ∗ 𝐷𝑎𝑖𝑟𝑦 + 𝛽3 ∗ 𝐹𝑎𝑟𝑚𝑠 ∗ 𝐷𝑎𝑖𝑟𝑦) 

Variable Estimate Std. Error P-value 

Intercept (𝛽0) -5.61 2.23 x10-2 *** 

Farms (𝛽1) -3.52 x10-4 1.15 x10-5 *** 

Dairy (𝛽2) 3.87 6.94 x10-2 *** 

Farms*Dairy (𝛽3) 2.44 x10-3 3.54 x10-5  *** 

 40 

 41 

Figure A 1  The proportion of cattle imported in to each region plotted against each predictor. The curve of 42 

best fit is plotted in red against each predictor while the other predictor is held at its mean value.  43 



 44 

 45 

Now we have this model for how to distribute cattle amongst regions for GB, we use it to estimate the 46 

proportion of imports into each region of each country across Europe in 2016. To calculate the predicted 47 

proportion, we input the number of cattle farms and the proportion of dairy farms for each region in each 48 

country and then normalise the predicted proportions, as the sum of all the regional predicted proportions 49 

of a country should sum to 1. We then multiply each proportion by the total number of imports to the 50 

country to get the number of imports to each region. Finally, we round these numbers off to the nearest 51 

integer for whole animals, ensuring that the total is still equal to the total imported to the country as a 52 

whole. 53 

 54 

Appendix B 55 

Comparing Data Sources 56 

The trade data that we use in the main text to compute country and regional risk is COMEXT, a source of 57 

freely available trade data listing all products traded between countries in 2016. However, we also had 58 

access to the TRACES data, a primarily EU-based trade system, which provided us with data on all cattle 59 

traded in 2016 to the EU, including the postcode of the final destination. We used this for our calculation of 60 

risk at the individual farm level. However, as these are different data sources, it is not clear how accurately 61 

they match up and whether they would lead to very similar results. We consolidate the TRACES data into 62 

the total imports into each country as a whole in order to compute the risk assessment at a country level 63 

with TRACES data (Figure B 1A). This can then be compared with the risk assessment using the COMEXT 64 

data (Figure 2) to produce Figure B1B. 65 

Figure 4 and Figure B 1 demonstrate the presence of data in the TRACES (postcode) data that is not in the 66 

COMEXT (country) data. In particular, some countries now have a risk estimate whereas in the COMEXT risk 67 

map they were recorded as having negligible risk due to not trading with any infected partner. Mostly this 68 

arises from a single farm (see Figure 4, e.g. France, UK, Finland). However, the most notable country that 69 

changes from negligible risk is Austria, with a probability of infection now of 0.45. Other countries also have 70 

higher probabilities, most notably Spain, while Germany’s risk estimate is significantly smaller. The 71 

Netherlands has negligible risk according to the TRACES data whereas COMEXT predicts a probability of 72 

infection in the range 0.1-0.2. 73 



Clearly, there are differences between the two different data sources in terms of how much trade occurs 74 

with partner countries. However, looking at the level of risk throughout Europe overall, both datasets 75 

predict a very similar ordering of countries with the highest risk. Both outline Croatia as the only country in 76 

the highest risk bracket, with Italy, Hungary and Spain having the next highest risks. It is not possible to 77 

determine which of the two data sources is more reliable. We choose to focus on the COMEXT dataset in 78 

the main text due to its freely available nature, with the use of TRACES restricted to when we have no other 79 

dataset available at that resolution.  80 

 81 

Figure B 1  In (A) the mean annual risk of infection is plotted in shades of purple across Europe, calculated 82 
at the country level, when the trade data is from TRACES. In (B) the difference between the mean risks 83 
calculated using TRACES (Figure B1A) or COMEXT data (Figure 2A) is plotted across Europe. Positive values 84 
(in green) indicate TRACES predicts a higher risk. Negative values (purple) indicate COMEXT predicts a 85 
higher risk. Countries in yellow have negligible risk due to only trading with countries that have zero 86 
prevalence, according to our prevalence data. Countries which had notified cases in 2016 are in red. 87 
Countries in grey have insufficient data for calculating risk. 88 
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