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Previously we have shown that the topos approach to quantum theory of Doering and Isham can

be generalised to a class of categories typically studied within the monoidal approach to quantum

theory of Abramsky and Coecke. In the monoidal approach to quantum theory H∗–algebras provide

an axiomatisation of states and observables. Here we show that H∗–algebras naturally correspond

with the notions of states and observables in the generalised topos approach to quantum theory. We

then combine these results with the †–kernel approach to quantum logic of Heunen and Jacobs, which

we use to prove a structure theorem for H∗–algebras. This structure theorem is a generalisation of

the structure theorem of Ambrose for H∗–algebras the category of Hilbert spaces.

1 Introduction

The present work is part of an ongoing project [10, 11] to bridge the monoidal approach to quantum

theory of Abramsky and Coecke [1], and the topos approach to quantum theory of Butterfield, Doering

and Isham [17, 9]. Both the monoidal and topos approaches to quantum theory are algebraic, in that they

seek to represent some aspect of physical reality with algebraic structures. By taking the concept of a

“physical observable” as a fixed point of reference we cast the difference between these approaches as

internal vs. external points of view. In particular, in the monoidal approach one encodes the notion of “ob-

servable” as an internal commutative algebra (for example a Frobenius algebra [7] or an H∗–algebra [2])

in some suitable monoidal category A – traditionally the category Hilb of Hilbert spaces and bounded

linear maps. The topos approach to quantum theory, as presented in [12], considers representations of

commutative algebraic structures (for example C∗–algebras, or von Neumann algebras [8]) on Hilb. The

topos approach makes essential use of the fact that the sets Hom(H,H) for Hilb carry the structure of a

C∗–algebra. In [10] we showed that the categories considered in the monoidal approach have a similarly

rich algebraic structure on their sets of endomorphisms Hom(A,A), allowing one to take the external

perspective for a broad class of categories, not just Hilb. Here we show that there is a natural way to pass

from the internal algebraic structures which represent observables to external algebraic representations

of observables, and hence we show the monoidal approach to quantum theory and the generalised topos

approach to quantum theory have compatible interpretations of states and observables.

In the topos approach to quantum theory [12, 9] for a fixed Hilbert space H , one takes Hilb-Alg(H) to

be the poset of commutative C∗–subalgebras of Hom(H,H) considered as a category and Hilb-AlgvN(H)
its subcategory whose objects are the commutative von Neumann C∗–subalgebras of Hom(H,H). We

will briefly discuss a physical interpretation for this definition. Representing physical systems by C∗–

algebras of the form Hom(H,H) allows us to make calculations which accurately predict the outcomes

of experiments, however it is not at all clear how we are to interpret this algebraic structure, or indeed

quantum theory in general. According to Bohr’s interpretation of quantum theory [6], although physical

reality is by nature quantum, as classical beings conducting experiments in our labs we only have access

to the “classical parts” of a quantum system. Much of classical physics can be reduced to the study

commutative algebras; this approach is carefully constructed and motivated in [21] where the following

picture is given:

http://dx.doi.org/10.4204/EPTCS.266.13
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Physics lab → Commutative unital

R–algebra A

Measuring device → Element of the algebra A

State of the observed → Homomorphism of unital

physical system R–algebras h : A → R

Output of the → Value of this function h(a),

measuring device a ∈ A

Figure 1: Algebraic interpretation of classical physics

In [21] the author stresses that in the interpretation Figure 1. the choice of scalars is unimportant,

however since many measurable quantities in classical physics, length, time, energy, etc., can be rep-

resented by real numbers, R is a reasonable choice. In quantum theory the complex numbers are the

traditional choice of scalars, but one can take any ring, or as we will see a semiring in their place.

According to Bohr’s interpretation, having access to only the classical parts of a quantum system rep-

resented by Hom(H,H) means that we only have access to the commutative subalgebras of Hom(H,H).
In the topos approach presented in [12] one considers all of the classical subsystems simultaneously by

considering the category of presheaves [Hilb-AlgvN(H)
op

, Set], which is a topos. One presheaf of central

importance to the topos approach is characterised by the Gelfand spectrum. Recall the Gelfand spectrum

of a commutative C∗–algebra A is the set of characters

SpecG(A) = { ρ : A → C | ρ a C∗–algebra homomorphism }

For a fixed Hilbert space H this defines a functor

Hilb-AlgvN(H)
op

Set
SpecG

with the action on morphisms given by restriction. By the above physical interpretation of Figure 1. we

see this functor as assigning to each classical subsystem the set of possible states of that system.

While the topos approach introduces new a mathematical language to the study of quantum theory

it still ultimately rests upon the traditional notions of Hilbert spaces and von Neumann algebras. The

monoidal approach to quantum theory [1] is an entirely separate approach to quantum theory, using

different mathematical structures, abstracting away from the Hilbert space formalism altogether.

Definition 1.1. A †–category consists of a category A together with an identity on objects functor

† : A
op

→A satisfying †◦†= idA . A †–symmetric monoidal category consists of a symmetric monoidal

category (A ,⊗, I) such that: A is a †–category; † is a strict monoidal functor; and all of the symmetric

monoidal structure isomorphisms satisfy λ−1 = λ †.

Symmetric monoidal categories admit a graphical calculus [22], which we assume the reader is

familiar with.

The category Hilb is the archetypal example of a †–symmetric monoidal category. Many aspects

of quantum theory can be expressed purely in terms of this monoidal structure on the category Hilb.

For finite dimensional quantum mechanics the notion of an observable can be axiomatised internally by
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commutative Frobenius algebras [7], and for infinite dimensional quantum mechanics we can encode an

observable by a commutative H∗–algebra [2]. A concrete H∗–algebra [4] is a (not–necessarily unital)

Banach algebra such that for each x ∈ H there is an element x∗ ∈ H such that for all y,z ∈ H

〈xy|z〉 = 〈y|x∗z〉

In [2] the authors give an axiomatisation for H∗–algebras in terms of the monoidal structure of the

category Hilb, which we review in Sect. 3. Because they generalise Frobenius algebras, H∗–algebras are

proposed as a possibly infinite dimensional notion of “observable” in a †–symmetric monoidal category

A .

We are interested in †–symmetric monoidal categories with some additional structure and properties.

Definition 1.2. A †–symmetric monoidal category (A ,⊗, I) is said to be monoidally well–pointed if for

any pair of morphisms f ,g : X ⊗Y → Z we have f ◦ (x⊗ y) = g◦ (x⊗ y) for all x : I → X and y : I → Y

implies f = g.

Definition 1.3. A category A is said to have finite biproducts if it has a zero object 0, and if for each

pair of objects X1 and X2 there exists an object X1 ⊕X2 which is both the coproduct and the product of

X1 and X2. If A is a †–category with finite biproducts such that the coprojections κi : Xi → X1 ⊕X2 and

projections πi : X1 ⊕X2 → Xi are related by κ†
i = πi, then we say A has finite †–biproducts.

In a category with a zero object 0, for every pair of objects X and Y we call the unique map X → 0→Y

the zero–morphism, which we denote by 0X ,Y : X → Y , or simply 0 : X → Y . We say that a pair of

composable morphisms f and g are orthogonal if f ◦g = 0.

For a category with finite biproducts each hom-set Hom(X ,Y ) is equipped with a commutative

monoid operation [20, Lemma 18.3] which we call biproduct convolution, where for f ,g : X → Y we

define f +g : X →Y by the composition

X X ⊕X Y ⊕Y Y
∆ f ⊕ g ∇

where the additive unit is given by the zero–morphism 0X ,Y : X →Y .

Categories with finite †–biproducts admit a matrix calculus [20, Chap. I. Sect. 17.] characterised as

follows. For X =
n⊕

j=1

X j and Y =
m⊕

i=1

Yi a morphism f : X →Y is determined completely by the morphisms

fi, j : Xi →Yj, and morphism composition is given by matrix multiplication. If f has matrix representation

fi, j then f † has matrix representation f
†
j,i.

In Sect. 2 we review previous work [10] in which we showed how the topos approach described

above can be generalised away from Hilb to arbitrary †–symmetric monoidal categories with finite †–

biproducts, and then in Sect. 4 we show that this framework is versatile enough to easily incorporate

aspects of the †–kernel approach to quantum logic of Heunen and Jacobs [16]. Integrating the †–kernel

framework allows us to prove a structure theorem for H∗–algebras in monoidal categories A which

generalises the following structure theorem of Ambrose for H∗–algebras in Hilb [4].

Theorem 1.4. A concrete commutative H∗–algebra µ : H ⊗H → H is isomorphic to a Hilbert space

direct sum µ ∼=
⊕̂

i

µi of one–dimensional algebras µi : C⊗C→ C.

2 Preliminaries

Here we review a construction introduced in [10] which generalises the topos approach of [9, 12]. This

is done using the language of semirings, semimodules [13], and semialgebras.
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Definition 2.1. A semiring (R, ·,1,+,0) consists of a set R equipped with a commutative monoid oper-

ation, addition, + : R×R → R with unit 0 ∈ R, and a monoid operation, multiplication, · : R×R → R,

with unit 1 ∈ R, such that · distributes over + and 0 · s = s · 0 = 0 for all s ∈ R. A semiring is called

commutative if · is commutative. A ∗–semiring, or involutive semiring is one equipped with an operation

∗ : R → R which is an involution, a homomorphism for (R,+,0), and satisfies (s · t)∗ = t∗ · s∗ and 1∗ = 1.

Definition 2.2. Let (R, ·,1,+,0) be a commutative semiring, an R–semimodule consists of a commutative

monoid +M : M×M → M, with unit 0M, together with a scalar multiplication • : R×M → M such that

for all r,s ∈ R and m,n ∈ M:

1. s• (m+M n) = s•m+M s•n ;

2. (r · s)•m = r • (s•m) ;

3. (r+ s)•m = (r •m)+M (s•m);

4. 0•m = s•0M = 0M ;

5. 1•m = m.

Definition 2.3. For R a commutative semiring, an R–semialgebra (M, ·M,1M ,+M,0M) consists of an R–

semimodule (M,+M,0M) equipped with a monoid operation ·M : M ×M → M, with unit 1M , such that

(M, ·M,1M ,+M,0M) forms a semiring, and where scalar multiplication obeys s•(m ·M n) = (s•m) ·M n =
m ·M (s•n). An R–semialgebra is called commutative if ·M is commutative.

Definition 2.4. Let R be a ∗–semiring. An R∗–semialgebra consists of an R–semialgebra (M, ·M ,1M ,+M,

0M), such that the semiring (M, ·M,1M ,+M,0M) and R have a compatible involution, i.e. one that satisfies

(s•m)∗ = s∗ •m∗ for each s ∈ R and m ∈ M.

Clearly every ∗–semiring R is an R∗–semialgebra with scalar multiplication taken to be the usual

multiplication in R. Homomorphisms for R∗–semialgebras are defined in the obvious way. A unital R–

subsemialgebra i : N →֒ M of M is a subset N containing 0M and 1M which is closed under all algebraic

operations. A subsemialgebra N ⊂ M consists of a subset N containing 0M and which is closed under

all algebraic operations making N an R–semialgebra in its own right, but possibly with a different mul-

tiplicative unit to M. A (unital) R∗–subsemialgebra of a R∗–semialgebra is a (unital) R–subsemialgebra

closed under taking involutions.

Elements x and y of a semialgebra are said to be orthogonal if x ·y= 0. An element p of a semialgebra

is called a subunital idempotent if p = p · p and there exists q = q ·q, orthogonal to p such that p+q = 1.

A primitive subunital idempotent p is one such that there are no orthogonal subunital idempotents s and

t such that p = s+ t. Subunital idempotents are also called weak projections [14].

Theorem 2.5. For a locally small †–symmetric monoidal category (A ,⊗, I) with finite †–biproducts the

set S = Hom(I, I) is a commutative ∗–semiring.

The biproduct convolution gives us the additive operation, morphism composition gives us the multi-

plicative operation, and the functor † provides the involution. It is shown in [18] that this multiplicative

operation is commutative.

Theorem 2.6. For a locally small †–symmetric monoidal category (A ,⊗, I) with finite †–biproducts

where S=Hom(I, I), for any pair of objects the set Hom(X ,Y ) is an S–semimodule, and the set Hom(X ,X)
is a S∗–semialgebra.

Addition on the set Hom(X ,Y ) is given by biproduct convolution. For a morphism f : X → Y the

scalar multiplication s• f for s : I → I is defined [15] by

X X ⊗ I Y ⊗ I Y
∼ f ⊗ s ∼

For Hom(X ,X) multiplication is given by morphism composition and † provides the involution.
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Definition 2.7. For (A ,⊗, I) a locally small †–symmetric monoidal category with finite †–biproducts

and X an object, we define the category A -Alg(X) to be the category with objects commutative unital

S∗–subsemialgebras of Hom(X ,X), and arrows inclusion of unital subsemialgebras.

For any subset of B ⊂ Hom(X ,X) the set B′ = { f : X → X | f ◦g = g◦ f for all g ∈ B } is called the

commutant of B. We define its full subcategory of commutative von Neumann S∗–subsemialgebras

A -AlgvN(X) A -Alg(X)

to have objects those S∗–subsemialgebras A which satisfy the double commutant identity A = A′′.

The following lemma states some well–known properties of the commutant.

Lemma 2.8. Let B and A be subsets of Hom(X ,X)

1. B′ is a unital subsemialgebra of Hom(X ,X);

2. if B is closed under † then so is B′;

3. if A ⊂ B then B′ ⊂ A′;

4. all elements of B commute if and only if B ⊂ B′.

An object A of A -Alg(X) is maximal if it is not properly contained in any other commutative sub-

semialgebra. Being maximal is equivalent to satisfying A = A′.

In [10] we gave a direct generalisation of the Gelfand spectrum of a commutative C∗–algebra.

Definition 2.9. The generalised Gelfand spectrum for the object X in A is the functor

A -Alg(X)
op

Set
SpecG

defined on objects SpecG(A)= { ρ : A→ S | ρ an S∗–semialgebra homomorphism } the set of characters

on A, while the action on morphism is given by restriction.

The physical interpretation of Figure 1. remains valid, and we still think of the Gelfand spectrum as

assigning to each classical subsystem the set of possible states of that subsystem. When we take A to be

the category of Hilbert spaces we obtain exactly the category studied in the topos approach to quantum

theory [9, 12], and where the Gelfand spectrum reduces to the conventional notion.

Remark 2.10. A principal result of the topos approach is that the Kochen–Specker theorem [19] – which

asserts the contextual nature of quantum theory – is equivalent to the statement that the Gelfand spectrum

has no global sections [12, Corollary 9.1]. Hence studying the global sections of SpecG allows us to

address a more general notion of contextuality which we develop in [11].

Remark 2.11. The Gelfand spectrum of a C∗–algebra is not just a set, but a compact Hausdorff topolog-

ical space. In [11] we showed that for A in A -Alg(X) the Gelfand spectrum SpecG(A) comes naturally

equipped with the structure of a compact topological space.

3 From Internal to External Algebraic Structures

For a †–symmetric monoidal category (A ,⊗, I), an algebra in A consists of a carrier object X , and a

multiplication morphism µ : X ⊗X →X ( in the graphical calculus). Dually, a coalgebra in A consists

of a carrier object X , and a comultiplication morphism δ : X → X ⊗X ( in the graphical calculus). An
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algebra–coalgebra pair consists of a carrier object with given multiplication and comultiplication maps.

Note that in a †–symmetric monoidal category each algebra (X ,µ) also defines coalgebra (X ,µ†) and

hence every algebra in a †–symmetric monoidal category forms an algebra–coalgebra pair. A pair of this

type will be referred to as a †–algebra. Consider the following axioms for a †–algebra:

there exists such that = = (U)

= (S)

= (A)

= (C)

for each
x

there exists x̃ such that

x

=
x̃

(H)

Note that since we are considering †–algebras we get the corresponding inverted equations (U), (A)

and (C) for the comultiplication morphism.

Definition 3.1. A commutative H∗–algebra in a †–symmetric monoidal category A is a †–algebra satis-

fying axioms (A), (C), (S) and (H). A commutative H∗–algebra is said to be unital if it satisfies (U).

It is shown in [2, Lemma 5.5] that in the finite–dimensional setting commutative unital H∗–algebras

serve as a axiomatistaion for observables. This is done by showing the close relationship between the ax-

iom (H) and the Frobenius axioms, and hence the authors propose commutative non–unital H∗–algebras

as an axiomatisation for observables in infinite dimensional quantum theory.

For an algebra (X ,µ) the set–like elements (or copyable elements, group–like elements, or classical

elements) are the morphisms α : I → X satisfying

α

=

α α

Under the interpretation of (X ,µ) as an observable, one typically views the set–like elements as corre-

sponding with the observable outcomes or states associated with that observable. We will require that the

set–like elements of a H∗–algebra satisfy α† = α̃ . Furthermore we will require that a H∗–algebra admits

a family of orthonormal set–like elements, meaning that for set–like elements α and β the composition

α ◦β † : I → I is the zero–morphism if α 6= β and is the identity morphism if α = β . The cardinality of

the set of set–like elements is the dimension of (X ,µ).
The following theorem shows how the notion of observable in the monoidal approach to quantum

theory – a commutative H∗–algebra (X ,µ) in A – lifts naturally to the notion of observable in the

generalised topos approach – a commutative von Neumann S∗–semialgebra X in A -AlgvN(X).
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Theorem 3.2. Let A be a monoidally well–pointed †–symmetric monoidal category with finite †–biproducts,

and let (X ,µ) be an H∗–algebra in A . Consider the set of endomorphisms on X

R(µ) = { Rx =

x

| for all points
x

}

The commutant R(µ)′ is a maximal commutative von Neumann S∗–semialgebra. Moreover, if (X ,µ)
satisfies (U) then R(µ) = R(µ)′.

Proof. It is easy to verify from axioms (A) and (C) that the elements of R(µ) commute with one another,

and hence by Lemma 2.8.4. R(µ) ⊂ R(µ)′. By the (H) axiom R(µ) is closed under † and by Lemma

2.8.2. so is R(µ)′. By Lemma 2.8.1. R(µ)′ is closed under the algebraic operations and hence R(µ)′ is a

commutative S∗–semialgebra.

The set R(µ)′ is a maximal commutative von Neumman S∗–semialgebra if and only if R(µ)′ =
R(µ)′′. Since R(µ) is commutative, Lemma 2.8.4. implies R(µ)⊂ R(µ)′, and therefore by Lemma 2.8.3.

R(µ)′′ ⊂ R(µ)′, and hence to prove maximality of R(µ)′ it is enough to show R(µ)′ ⊂ R(µ)′′, which by

Lemma 2.8.4. is equivalent to all elements of R(µ)′ commuting. Consider h ∈ R(µ)′, then if for all
x

x h
=

x

h

then by well–pointedness
h

=
h

(1)

Hence for g and h in R(µ)′ we have

h

g
=

h

g

=
h

g

= hg =

g

h

=
g

h

=

g

h

and hence R(µ)′ ⊂ R(µ)′′, as required.

If (X ,µ) is unital then for each h ∈ R(µ)′ we have

h =
h

=
h

and hence h ∈ R(µ), and therefore R(µ) = R(µ)′, as required. �

Definition 3.3. Given an H∗–algebra (X ,µ) we say that R(µ)′ is the S∗–semialgebra generated by (X ,µ).

Hence an “observable” in the monoidal approach – an H∗–algebra – gives rise to an “observable”

system in the topos approach. Next we show that the notion of states in the former – set–like elements –

determine states in the latter – elements of the Gelfand spectrum.

The next theorem shows how the set–like elements naturally form a subset of the spectrum.
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Theorem 3.4. Let (X ,µ) be an H∗–algebra with orthonormal set–like elements and X the von Neumann

semialgebra it generates. Each set–like element α of (X ,µ) determines an S∗–semialgebra homomor-

phism ρα : X → S defined as

f 7→
α

α

f

Proof. It is easy to check ρα preserves zero, the multiplicative unit, that it respects the dagger, that it

preserves biproduct convolution. To see ρα preserves multiplication consider

α

α

f

g
=

α

α

f

g

α

α
=

α

f

g

α

α
=

α

g

α

α

f
=

α

g

α

α

f

α

and hence ρα(g f ) = ρα(g)ρα ( f ). �

4 A Structure Theorem for H∗–Algebras

In this section we incorporate concepts from a categorical approach to quantum logic [16] into the frame-

work and show that in the presence of this additional structure the external representations of an H∗–

algebra can be used to determine the structure of that H∗–algebra. This theorem is a generalisation of

Theorem 1.4, a structure theorem for concrete H∗–algebras.

Definition 4.1. A †–category A with zero object 0 is said have †–kernels if for every morphism f : X →
Y an equaliser k : K → X of f and the zero map 0 : X → Y exists and satisfies k† ◦ k = idK . We call

k : K → X the kernel of f .

Since A is a †–category if it has †–kernels then it also has †–cokernels, defined dually as a co-

equaliser.

Definition 4.2. A morphism f : X → Y in a †–kernel category is said to be zero–epi if for g : Y → Z

g◦ f = 0 implies g = 0. A morphism f is said to be zero–mono if f † is zero–epi.

It is shown in [16, Sect. 4.] that in a †–kernel category the collection of zero–epis and †–kernels form

an orthogonal factorisation system, and as a consequence every morphism f : X → Y has a factorisation

m◦e where m : Z →Y is a †–kernel and e : X → Z is zero–epi which is unique up to unique isomorphism.

Note that each coprojection κX : X → X ⊕Y is a †–kernel. We will require a level of compatibility

between the †–kernel structure and the †–biproduct specified in the following definition.

Definition 4.3. For A a †–category with †–kernels and finite †–biproducts, we say that the †–biproducts

are complemented if for every †–kernel k : X →Y then there exists X such that Y ∼= X ⊕X with k the first

coprojection.

Equivalently, A is complemented if every †–kernel is a coprojection for a †–biproduct. Throughout

this section we let A be a †–symmetric monoidal category with †–kernels, and finite complemented

†–biproducts.

Lemma 4.4. Let A be a †–kernel category. Let f : X →Y be a morphism, if f † ◦ f = 0 then f = 0.
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Proof. let k ◦ e = f be the zero–epi †–kernel factorisation, then we have f † ◦ f = e† ◦ k† ◦ k ◦ e = e† ◦ e.

Since e is zero–epi we have f † ◦ f = 0 implies e† = 0 which implies f = 0, as required. �

We call a morphism f : X → X normal if it commutes with its own adjoint, that is, f † ◦ f = f ◦ f †.

Clearly if a morphism f : X → X belongs to some X in A -AlgvN(X) then f must be normal. Normal

morphisms in the category Hilb admit a well known spectral decomposition. Here we show that normal

morphisms in general admit a similar structure.

Lemma 4.5. Let A be a †–kernel category with finite complemented †–biproducts. A normal morphism

f : X → X is of the form f1 ⊕0 : K ⊕K → K ⊕K for f1 a zero–epi.

Proof. Suppose f : X → X is normal and let f = k ◦ e be its zero–epi †–kernel factorisation where

k : K → X .

By the assumption that A has complemented finite †–biproducts we have X ∼= K ⊕K. Hence we

have the matrix representation f =
(

f1 f2

f3 f4

)
. It is easy to see that f2 = 0 and f4 = 0 and hence we have

f =
(

f1 0
f3 0

)
and f † =

(
f

†
1 f

†
3

0 0

)
. Therefore f ◦ f † =

( f1 f
†
1 f1 f

†
3

f3 f
†
1 f3 f

†
3

)
and f † ◦ f =

(
f

†
1 f1+ f

†
3 f3 0

0 0

)
. If f is normal then

we have f3 f
†
3 = 0, and hence by Lemma 4.4 we have f3 = 0 and therefore f =

(
f1 0
0 0

)
as required.

The zero–epi e : X → K has matrix representation e =
(

f1 0
)

and it is easy to verify that e is zero–

epi iff f1 is. Hence f has a factorisation k ◦ f1 ◦ k†, where k is a †–kernel, f1 is a zero–epi and k† is a

†–cokernel. �

A family of morphisms {gi : X → Y} is said to be jointly zero–epi if f ◦ gi = 0 for all gi, implies

f = 0. We will say that such a jointly zero–epi family forms a cover of Y .

We will ask that the set–like elements of (X ,µ) form a cover for X . The set–like elements of an

algebra forming a cover is a far weaker notion than that of an algebra having enough set–like elements,

which means that the set–like elements of (X ,µ) separate all morphisms out of X . For example, H∗–

algebras in Rel typically do not have enough set–like elements.

In [16] an object X in a †–kernel category is said to be KSub–simple if every †–kernel k : Y → X is

an isomorphism. The monoidal units of Hilb and Rel are KSub–simple. Note that if the monoidal unit

of a monoidal category is KSub–simple then the semiring of scalars has no zero–divisors.

We now prove an important lemma which lies at the heart of the proof of the main structure theorem.

Lemma 4.6. Let A be a †–symmetric monoidal category with †–kernels such that the monoidal unit is

KSub–simple. Let (X ,µ) be an H∗–algebra in A with covering orthogonal set–like elements and let X be

the von Neumann S∗–semialgebra generated by (X ,µ). There is a set of orthogonal primitive subunital

idempotents in X corresponding with the set–like elements of (X ,µ).

Proof. Let α be a set–like element and consider Rα . By Lemma 4.5 Rα =
(

α1 0
0 0

)
, for α1 a zero–epi.

Now consider g in X′, with corresponding matrix representation g =
(

g1 g2
g3 g4

)
. Since g◦Rα = Rα ◦g we

have
(

g1α1 0
g3α1 0

)
=

(α1g1 α1g2

0 0

)
. Since α1 is zero–epi and g3α = 0 we conclude g =

( g1 g2

0 g4

)
.

Since g◦R
†
α = R

†
α ◦g we have

(
g1α†

1 0

0 0

)
=

(
α†

1 g1 α†
1 g2

0 0

)
. and since α†

1 is zero–mono we have g2 = 0

and hence g =
(

g1 0
0 g4

)
. Clearly for eα =

(
id 0
0 0

)
and eα =

(
0 0
0 id

)
, we have g ◦ eα = eα ◦ g =

(
g1 0
0 0

)
and

g◦eα = eα ◦g =
(

0 0
0 g4

)
and hence eα and eα are elements of X′′ and hence, by Theorem 3.2, are elements

of X. It is easy to verify that the morphisms eα and eβ are orthogonal if and only if the set–like elements

α and β are orthogonal.

We have shown the existence of a family of subunital idempotents eα . It remains to show that these

subunital idempotents eα are primitive. Suppose there are subunital idempotents e1 and e2 in X such that
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e1 + e2 = eα . Since e1 belongs to X, and since X is maximal by Equation 1 in the proof of Theorem 3.2

we have

e1
=

e1

Define γ1 = e1 ◦α and γ2 = e2 ◦α . It is easy to check that γ1 and γ2 are orthogonal set–like elements and

that γ†
1 = γ̃1, and γ†

2 = γ̃2. By Lemma 4.4 α† ◦ γ1 and α† ◦ γ2 are non–zero, and since I is KSub–simple

their product is non–zero and therefore

γ1

α

γ2

α
=

γ1

α

γ2

=
α

γ1

γ2

=
α

γ1

γ2

γ1

but γ†
2 ◦ γ1 is zero and hence we have a contradiction, and so no such e1 and e2 can exist. �

For X the S∗–semialgebra generated by an H∗–algebra (X ,µ), Lemma 4.6 states that for the elements

eα the subsemialgebras eiX ⊂ X are indecomposable subsemialgebras.

Recall Theorem 1.4 states that a H∗–algebra is a Hilbert space direct sum of one–dimensional alge-

bras. The Hilbert space direct sum is not a categorical product or coproduct, but is a subdirect product

(or subdirect union [5]). In universal algebra an algebraic gadget A (e.g. a ring, vector space, semiring,

lattice or boolean algebra) is a subdirect product if there are objects Ai such that there is an inclusion

A →֒ ∏i Ai such that for each projection πi : ∏i Ai → Ai the composition A →֒ ∏i Ai → Ai is surjective.

The Hilbert space direct sum
⊕̂

i

Hi of a family of Hilbert spaces {Hi}i has as elements the sequences

(x1,x2, ...) ∈ ∏i Hi which are square summable, i.e. ∑i ||xi||
2 < ∞, and is a subdirect product of vector

spaces. The Hilbert space direct sum of a finite family is a finite †–biproduct, however for infinite fam-

ilies of Hilbert spaces the Hilbert space direct sum is not a categorical product nor a coproduct, neither

of which exist for infinite families of Hilbert spaces. The direct sum does retain some of the properties

of a product and coproduct: there are a family of orthogonal †–kernels κ : Hi →
⊕̂

i

Hi which are jointly

epimorphic, that is, if for all i we have f ◦πi = g◦πi then f = g. Given the family {Hi}i this object
⊕̂

i

Hi

is the unique Hilbert space admitting such a family of jointly epimorphic †–kernels.

Definition 4.7. A †–kernel category has sharp †–kernels if every jointly zero–epi family of †–kernels is

jointly epimorphic.

For example, the categories Hilb and Rel have sharp †–kernels.

Definition 4.8. Let A be a †–kernel category. We say that A has internal direct sums if for a set of

objects {Xi} there exists an object
⊕̂

i

Xi unique up to isomorphism together with a family of pairwise

orthogonal †–kernels κi : Xi →
⊕̂

i

Xi which are jointly epimorphic.

Given families of morphisms fi : Xi →Yi, if there exists a morphism f̂ such that for each i the diagram

Xi Yi

⊕̂
i

Xi

⊕̂
i

Yi

fi

f̂

ki li
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commutes, then we denote f̂ =
⊕̂

i

fi.

In the category Hilb f̂ exists if and only if there exists N ∈ N such that || fi|| ≤ N for all i.

It follows from [3, Proposition 11.6] (as an internal direct sum is an extremal mono–source) if the

product of the family {Xi} exists (e.g. if the family is finite, or if all biproducts in A exist) then
⊕̂

i

Xi and
⊕

i

Xi coincide.

For the family of indecomposable subsemialgebras ei X ⊂ X we can take the coproduct (in the cate-

gory of S∗–semialgebras with homomorphisms not necessarily preserving the multiplicative unit) of this

family

∏

i ei X which consists of sequences of elements (x1,x2, ...) where xi ∈ eiX such that all but a finite

number of elements are zero. The product ∏ i eiX consists of all sequences (x1,x2, ...) where xi ∈ eiX.

We have

∏

i ei X →֒ X →֒ ∏i eiX, and hence it is easy to see that X is a subdirect product of its indecom-

posable S∗–subsemialgebras ei X ⊂ X. Clearly if A has all biproducts, or if (X ,µ) is finite dimensional

then X ∼= ∏ i ei X.

Let (A ,⊗, I) be a †–symmetric monoidal category with †-kernels. We say that A has distributive

internal direct sums if they satisfy X ⊗ (
⊕̂

i

Yi)∼=
⊕̂

i

(X ⊗Yi).

We are now in a position to state and prove the main structure theorem.

Theorem 4.9. Let A be a †–symmetric monoidal category with KSub–simple unit, sharp †–kernels and

finite complemented †–biproducts. Let X be the S∗–semialgebra generated by (X ,µ), an H∗–algebra

in A with covering set–like elements. Let eiX ⊂ X be the indecomposable subsemialgebras on X with

ei = idXi
⊕0. If A has distributive internal direct sums then µ : X ⊗X → X is completely determined by

an internal direct sum of morphisms µi : Xi ⊗Xi → Xi.

Proof. Let ei be as in the proof of Lemma 4.6. Each ei : X → X is of the form ei = idXi
⊕ 0 : Xi ⊕Xi →

Xi ⊕Xi for some †–kernel ki : Xi → X and where ei = ki ◦ k
†
i . Consider the morphisms µ ◦ (ki ⊗ k j) :

Xi ⊗X j → X , we have

ki k j =
ei e j

ki k j
=

ki k j

ei

e j

and hence if i 6= j then µ ◦ (ki ⊗ k j) : Xi ⊗X j → X is the zero–morphism.

Now define the family of objects Xi, j, where Xi, j = Xi if i = j and Xi, j = 0 if i 6= j. We have a jointly

zero–epi family of pairwise orthogonal †–kernels ki : Xi → X and hence X ∼=
⊕̂
i, j

Xi, j and if internal direct

sums are distributive we have X ⊗X ∼= (
⊕̂

i

Xi)⊗ (
⊕̂

j

X j)∼=
⊕̂
i, j

(Xi ⊗X j).

Now define µi, j : Xi ⊗X j → Xi, j as k
†
i ◦µ ◦ (ki ⊗ ki) if i = j and the zero morphism when i 6= j. Then

µ : X ⊗X → X is isomorphic to
⊕̂
i, j

µi, j :
⊕̂
i, j

(Xi⊗X j)→
⊕̂
i, j

Xi, j. Since the only non–zero terms are for i = j

the morphism µ is completely determined by the family µi = µi,i : Xi ⊗Xi → Xi as claimed. �

Example 4.10. In [2] it is shown that a commutative H∗–algebra µ : A×A → A in Rel, the category of

sets and relations, is a disjoint union of abelian groups. Applying Theorem 4.9 to (A,µ), the components

µi : Ai ×Ai → Ai are exactly the abelian groups making up (A,µ).
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