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Restricted Structure Non-linear Generalized Minimum Variance

Control of a 2-link Robot Arm

C. Cebeci, M.J. Grimble, R.Katebi and L.F. Recalde

Abstract— The objective of this paper is to propose a re-
stricted structure non-linear generalized minimum variance
(RS-NGMV) controller for a two-link robot arm. The NGMV
control is a useful method for offering control solutions for non-
linear systems. The motivation is to provide the advantages of
NGMV control inside a low-order controller structure with an
intention to enable design simplicity and easy implementation
for engineers with classical training. The result will be an
optimal controller with simple tuning variables. Simulations of
the RS-NGMV controller are presented using Matlab/Simulink.

I. INTRODUCTION

It is the fifth decade of minimum variance (MV) con-

trollers since Åström first introduced them [1]. The strategy

was basically to minimize the variance of the stochastic

system output. Successful industrial applications of MV con-

trollers came out. However, the controller design was based

on the assumption that the plant is of minimum-phase. Re-

sults were unstable for non-minimum phase systems. Later,

Clarke and Hastings-James [2] proposed the generalized

minimum variance (GMV) control extending the MV control

law by introducing control costing terms to the cost function.

GMV controllers have proven useful in the industry and their

self-tuning versions are also available [3]. In 2004, a novel

GMV control algorithm was proposed by Grimble [4]. The

algorithm was derived for non-linear, multivariable, possibly

time varying systems and was called non-linear generalized

minimum variance (NGMV) control. It was succeeded by

the next generation of NGMV controllers [5 − 12] and has

shown potential for practical applications [13].
Restricted structure (RS) controllers are characterized by

their predefined order and structure. The order and structure

of the controllers are independent of the plant order. Typi-

cally, these controllers are of lower order than the plant and

appear in the form of phase lead, phase lag, phase lead-lag

or industrial PID controllers [16]. They are often viewed as

low-order approximations to high-order controllers. The fact

is, most optimal and predictive controllers are of high order

which may make them difficult to implement considering

the practical reasons. There comes the need to restrict such

advanced control strategies to simpler structures when the

design simplicity and the range of applications are taken into

account. As a consequence, researchers have taken initiatives

[14, 15] to use optimal and predictive control methods that

have restricted structures.

RS-NGMV control algorithm has been derived recently

by Grimble in [17] that is submitted for publication. The
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algorithm basically uses the same type of system with that of

the NGMV but restricted to the structure of either a general z-

transfer function or a PID. The cost function to be minimized

also remains the same. The task of optimization deals with

developing the optimal controller gains. As mentioned ear-

lier, the NGMV control is a powerful technique for handling

non-linear systems. It is indeed one of the simplest solutions

offered for the control of non-linear systems. Therefore,

providing an application of a novel NGMV controller with

a structure that engineers in the industry are familiar to has

been the driving force of this paper.

Linear Parameter Varying Systems (LPV Systems) are a

special type of non-linear systems which can be represented

as linear systems with parameters that change as the states

change. The parameters can either be measured or estimated.

A parameter is called exogenous if it is an external variable to

the system and called endogenous if it is already a function of

the state variables. The latter case is referred to as a quasi-

LPV (qLPV) system. They are often used to approximate

non-linear systems [22, 23].
Robot arms owing to their wide range of applications

from welding, assembly, painting, packaging in the industry

to space and surgical operation systems have attracted the

world wide attention of researchers and engineers. Due to

coupled dynamics and a highly non-linear nature, the control

of robotic arms might prove to be a tedious task. One way

of handling the non-linearities is to express the non-linear

system in what is called a state dependent form i.e. make

it look like a linear model while maintaining its non-linear

characteristics. For instance the qLPV representation of

robotic manipulators has examples in the literature [23− 26]
and has also been employed in this paper.

The paper is organized as follows. In Section II, the

state-space representation of the system is provided. It is

followed by the RS-NGMV control method in Section III.

Then, Section IV covers the 2-link robot arm model along

with the simulation studies comparing performances of PID

and RS-NGMV controllers in position tracking objective and

showing the time varying feedback gain deviations resulting

from the optimization. Lastly, conclusions are given.

II. STATE-SPACE SYSTEM DESCRIPTION

A. Augmented System Model

In this section, an augmented r×m multivariable system

is constructed using state dependent qLPV plant model and

linear disturbance, weighted error models. Therefore, the

state vector that corresponds to these models is represented as

x(t) =
[
x0(t), xd(t), xp(t)

]T
. Before going any further,



it should be noted that the models that compose the aug-

mented system will not be analyzed individually in this paper

as they are already available [12]. The elements of the state-

dependent qLPV system are functions of states, inputs and

parameters which are functions of the state variables. Thus

the qLPV system appears in the form of A0(x0(t), u0(t −
k), ρ(t)). However, in order to avoid notational complexity

it will be expressed by simply A0t. In the NGMV literature

[4−13], the total plant model including linear and non-linear

subsystems along with the delay operator is often denoted by

z−kW0k(W1ku)(t) which contains the input sub-system,

u0(t) = (W1u)(t) = z−k(W1ku)(t). (1)

For the analysis in this paper is only concerned with the

control of a qLPV system, W1k will be set to identity making

u0(t) = u(t). Taking into consideration these facts, the

augmented system model is demonstrated in the equation

below,

x(t+ 1) =




A0t 0 0
0 Adt 0

−BptC0t −BptC0t Apt


x(t) +




B0t

0
BptE0t


u0k(t− k)

+



D0t 0
0 Ddt

0 0



[
ξ(t)
ω(t)

]
+



I 0
0 0
0 Bpt



[

d0d(t)
(r(t)− d(t))

]
.

(2)

The weighted error ep(t) = Pc(z
−1)e(t) equation is given

by,

ep(t) = dp(t) + Cptx(t) + Eptu0(t− k), (3)

where Pc is an r×m size weighting operator that introduces

the penalty on the errors.

III. RS-NGMV CONTROL METHOD

A. Controller Structure

The restricted structure controller is basically obtained

from the multiplication of user pre-specified functions by

some feedback gains. It can be formulated as follows:

u(t) =

Ne∑

j=1

fj(z
−1, kj(t))e0(t) =

(
f1(z

−1, k1(t))e0(t) (4)

+ f2(z
−1, k2(t))e0(t) + · · ·+ fNe

(z−1, kNe
(t))e0(t)

)
,

where fj(z
−1, kj(t)) denotes the pre-specified functions

and kj(t) represents the feedback gains. A typical example

is the restricted structure PID control for a SISO system.

In this case, the controller has Ne = 3 function terms that

can be chosen as f1(z
−1) = 1, f2(z

−1) = 1/(1 − z−1),
f3(z

−1) = (1 − z−1)/(1 − αz−1) which stand for the

proportional, integral and the derivative terms respectively.

The PID control input can then be computed by,

u(t) = k1e(t) +
1

1− z−1
k2e(t) +

1− z−1

1− αz−1
k3e(t). (5)

For multivariable systems, it is much more rigorous to

derive the restricted structure controller form. Consider an

r×m multivariable system, under the assumption that r ≤ m,

the controller form in equation (4) expands as in,

u(t) =




Ne∑
j=1

r∑
l=1

{f j11(z
−1)kj1le0l(t)}

Ne∑
j=1

r∑
l=1

{f j21(z
−1)kj2le0l(t)}

...
Ne∑
j=1

r∑
l=1

{f jm1(z
−1)kjmle0l(t)}




,

m×1

The procedure to parameterize the controller u(t) for

multivariable systems can become easier by introducing

following matrices of functions and gains. Re-arranging the

elements from the rows of u(t) starting from the first as in,



f11e
f12e

...

f1re


 =




f111(z
−1)e01(t) f211(z

−1)e01(t) . . . fNe

11 (z−1)e01(t)

f112(z
−1)e02(t) f212(z

−1)e02(t) . . . fNe

12 (z−1)e02(t)
...

...
. . .

...

f11r(z
−1)e0r(t) f21r(z

−1)e0r(t) . . . fNe

1r (z−1)e0r(t)


 ,

r×Ne

and the second,



f21e
f22e

...

f2re


 =




f121(z
−1)e01(t) f221(z

−1)e01(t) . . . fNe

21 (z−1)e01(t)

f122(z
−1)e02(t) f222(z

−1)e02(t) . . . fNe

22 (z−1)e02(t)
...

...
. . .

...

f12r(z
−1)e0r(t) f22r(z

−1)e0r(t) . . . fNe

2r (z−1)e0r(t)


 ,

r×Ne

and until the mth row,



fm1
e

fm2
e

...

fmr
e


 =




f1m1(z
−1)e01(t) f2m1(z

−1)e01(t) . . . fNe

m1(z
−1)e01(t)

f1m2(z
−1)e02(t) f2m2(z

−1)e02(t) . . . fNe

m2(z
−1)e02(t)

...
...

. . .
...

f1mr(z
−1)e0r(t) f2mr(z

−1)e0r(t) . . . fNe

mr(z
−1)e0r(t)


 .

r×Ne

Then all they are all gathered in the matrix below,




ef1(t)
ef2(t)

...

efm(t)


 =




f11e f12e . . . f1re
f21e f22e . . . f2re

...
...

. . .
...

fm1
e fm2

e . . . fmr
e


 ,

m×r

(6)

and form the diagonal matrix Fe(t),

Fe(t) = diag{ef1(t), ef2(t), · · · , efm(t)}. (7)

Define a matrix gc(t) =
[
gc1(t) gc2(t) . . . gcm(t)

]

using elements of the gain kc(t) that consists of,

gc1(t) =




g11c (t)
g12c (t)

...

g1rc (t)


 =




k111(t) k211(t) . . . kNe

11 (t)

k112(t) k212(t) . . . kNe

12 (t)
...

...
. . .

...

k11r(t) k21r(t) . . . kNe

1r (t)


 ,

r×Ne

gc2(t) =




g21c (t)
g22c (t)

...

g2rc (t)


 =




k121(t) k221(t) . . . kNe

21 (t)

k122(t) k222(t) . . . kNe

22 (t)
...

...
. . .

...

k12r(t) k22r(t) . . . kNe

2r (t)


 ,

r×Ne

up until,

gcm(t) =




gm1
c (t)
gm2
c (t)

...

gmr
c (t)


 =




k1m1(t) k2m1(t) . . . kNe

m1(t)

k1m2(t) k2m2(t) . . . kNe

m2(t)
...

...
. . .

...

k1mr(t) k2mr(t) . . . kNe

mr(t)


 ,

r×Ne



which will help construct the (r×m×Ne)×1 size vector

of gains kc(t),

kc(t) =
[
kc1(t) kc2(t) · · · kcm(t)

]
. (8)

where kci(t) =
[
gi1c (t) gi2c (t) . . . girc (t)

]
with index

i = {1, 2, . . . ,m}. Finally, the control input for the multi-

variable system can be calculated by,

u(t) = Fe(t)kc(t) =




ef1(t)kc1(t)
ef2(t)kc2(t)

...

efm(t)kcm(t)


 .

m×1

(9)

B. Parallel Form of the Controller

The restricted structure controller gain kc(t) can be di-

vided into two components such as the constant component

kc and the time-varying deviation component k̃c(t). The RS

control input may then be re-arranged as in,

u(t) = Fe(t)kc(t) = Fe(t)kc + Fe(t)k̃c(t) (10)

=

Ne∑

j=1

fj(z
−1, kj)e0(t) +

Ne∑

j=1

fj(z
−1, k̃j(t))e0(t).

There are two special cases concerning the gains. If

kc = 0, it is the absolute gain case and kc(t) = k̃c(t). If

kc 6= 0, then kc(t) = kc + k̃c(t) and this is called the gain

deviation case. Once again, the PID implementation could

be considered as an example. The first case involves the

minimization of the total PID controller gains. The second

can resemble the case of having two parallel PID controllers

one with constant gains, the other with time-varying gains

which is especially practical if a PID controller is in hand

already. The task is then to compute the deviations from the

constant gains.

C. Optimal RS-NGMV Control Law

In this section the results from the analysis of the optimal

RS-NGMV control law are demonstrated. Let us define the

cost function to be minimized within the optimization task

as,

J = E{φp
T (t+ k)φp(t+ k)}, (11)

which is the variance of the pseudo-output signal given by,

φp(t+ k) = Pp(t)ep(t+ k) + Fc0u0(t) + Fc1k̃c(t)

+ Fc2∆k̃c(t) + FT
e (t)(Fcku)(t). (12)

The signal φp(t + k) is composed of control and er-

ror weightings that are, Pp(t) = FT
e (t)ET

pt+kΛp
2, Fc0 =

FT
e (t)Λu

2, Fc1 = Λk
2, Fc2 = Λd

2, Fck. The dynamic

weighting on tracking error is weighted by the constant

matrix Λp
2 ∈ Rr×m, the constant weightings on the control

inputs is defined as Λu
2 ∈ Rr×m, the constant weightings

on the deviations in controller gains is defined as Λk
2 ∈

R(r×m)×Ne diagonal matrix and the cost weighting on the

increments on the deviations in gains is denoted Λd
2 ∈

R(r×m)×Ne diagonal matrix. The control weighting operator

Fck is supposed to be full rank and invertible and can be

non-linear. It takes the form (Fcu)(t) = z−k(Fcku)(t).

Under the assumption that the plant is of the qLPV and

W1k = I , the controller gain that will minimize the cost

function J will be calculated as,

kc(t) = −X0(t)
−1

(Pp(t)d0pd(t+ k)) + ψk(t)), (13)

where terms ψk(t) = −Λ2
kkc −Λ2

dkc(t− 1), d0pd(t+ k) =
dpd(t + k) + Cpt+kx̂(t + k|t) and X0(t) is a time-varying

real symmetric matrix defined by,

X0(t) = FT
e (t)(Fck + (ET

pt+kΛpEpt+k + Λu
2W1k)Fe(t)

+ Λk
2 + Λd

2. (14)

Then the optimal RS-NGMV controller u(t) = Fe(t)kc(t)
can be implemented as shown in Figure 1,

Restricted Structure Controller
Plant

Observations

+
-

Kalman Filter Gain Computations

Error Terms Disturbance

OutputReference

RS-NGMV Controller 

Figure 1: RS-NGMV control block diagram.

representing the algorithm. The full derivation and solu-

tion of the controller gains kc(t) will be available in [17],
submitted for publication.

D. Prediction Model

For the online gain computation of the RS-NGMV con-

troller, a Kalman filter is used to estimate states x̂(t|j). The

notation x̂(t|j) means that the estimate of x̂(t) based on

all information up to and including the time j. The Kalman

filter considers delays if they are present in the system thus

a prediction model is needed. The k-steps ahead predictor

may be implemented as in the equation,

x̂(t+ k|t) = Ak
t x̂(t|t) +

k∑

j=1

Ak−j
t+j Bt+j−1u0(t+ j − 1− k)

+ ddd(t+ k − 1), (15)

which is obtained by using (2) iteratively. The full derivation

process of the predictor is available in [12]. The k-steps ahead

prediction errors can be calculated in a similar fashion,

ê(t+k|t) = dp(t+k)+Cpt+kx̂(t+k|t)+Ept+ku0(t). (16)



IV. ROBOT ARM EXAMPLE

The robotic manipulator (see Figure 2) used for our exam-

ple is composed of two rigid links and two revolute joints.

Euler-Lagrange approach has been taken for modelling of

it’s dynamics as given more in detail in [18− 21]. With the

help of the Lagrangian equations robot’s dynamics can be

expressed by,

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = τ, (17)

where M(q) represents the inertia matrix and C(q, q̇),
F (q̇), G(q) represent the Coriolis matrix, friction and gravity

vectors respectively. Torque is expressed by the vector τ
while q denotes the joint angle vector.

q1

l1

lc1 m1, I1

q2
lce

me, Ie

δe

Figure 2: Two-link robot arm.

A. System Model of the 2-link Robot Arm

In this study the forces of friction are neglected and it is

assumed that the robot is operating horizontally, i.e. moving

on 2-dimensional Euclidean plane which means that the

affect of gravitational forces can be further ignored. In this

regard, expanding the dynamics in the matrix form for the

2-link robot manipulator will yield to the equation,

[
M11 M12

M21 M22

] [
q̈1
q̈2

]
+

[
hq̇2 hq̇1 + hq̇2
hq̇1 0

] [
q̇1
q̇2

]
=

[
τ1
τ2

]
. (18)

The 2-link robot has strong non-linear characteristics due

to the nature of equation (18). The non-linearity becomes

more apparent when the elements of the inertia matrix M
are analyzed,

M11 = ρ1 + 2ρ3cosq2 + 2ρ4sinq2,

M12 =M21 = ρ2 + ρ3cosq2 + ρ4sinq2,

M22 = ρ2,

with parameters,

ρ1 = I1 +m1lc1
2 + Ie +melce

2 +mel
2
1,

ρ2 = Ie +melce
2,

ρ3 = mel1lcecosδe,

ρ4 = mel1lcesinδe,

and finally h = ρ3sinq2 − ρ4cosq2 of the Coriolis matrix

C. Since, the inertia matrix M is invertible, after some re-

arranging of the equations it is possible to represent the

system in the state-space form by (note that q = [q1, q2]
T

and τ = [τ1, τ2]
T ),

ẋ =

[
q̇
q̈

]
=

[
0 I
0 M−1(q)C(q̇)

] [
q
q̇

]
+

[
0

M−1(q)

]
τ.

y = q =
[
I 0

] [q
q̇

]
. (19)

B. Simulation Results

Robot parameters used within this simulation study have

been adopted from example 9.1 in [20]. They are given by,

m1 = 1, I1 = 0.12, l1 = 1, lc1 = 0.5, me = 2, Ie =
0.25, lce = 0.6, δe = 30◦. The control objective is to have

the robot follow a desired position trajectory qd = [q1d, q2d]
which is specified in detail as,

qd =





[60◦, 90◦], for t ≤ 50

[45◦, 45◦], for 50 < t ≤ 100

[60◦, 90◦], for t > 100

by sending torque signals to the joints and saturation limits

±2Nm is applied to torque inputs. The inputs are subject to

the torque disturbance of Td = 0.4Nm. The sampling time

for the simulation is Ts = 0.005s.
In the design of the RS-NGMV controller, the second

case of the parallel form in equation (10) is used which

implies that a PID controller already exists for the robot

whose parameters are chosen as,

kc =



kp
kI
kD


 =




3
0.5
7


 .

In the implementation of the controller time-varying gain

deviations k̃c(t) will be calculated and added to the constant

gains.

The error and control cost weightings are specified,

Pc(z
−1) =



87.5

1− 0.97z−1

1− z−1
0

0 87.5
1− 0.97z−1

1− z−1


,

Fck(z
−1) =



0.016

1− 0.9z−1

1− 0.4z−1
0

0 0.16
1− 0.9z−1

1− 0.4z−1


,

Λ2
k = 10−6 × diag{

[[
3, 0.5, 7

]
, · · · ,

[
3, 0.5, 7

]]
},

Λ2
d = 40× diag{

[[
1, 1, 1

]
, · · · ,

[
1, 1, 1

]]
},

Λ2
p =

[
10−4 0
0 10−4

]
,Λ2

u =
[
0.05 0
0 0.05

]
.



The simulation results are given in Figures 3 and 4. First,

the position tracking performances of RS-NGMV and PID

are compared in Figure 3.

Figure 3: Results for the position tracking.

It demonstrates the control efforts in following the refer-

ence angle trajectory for links 1 and 2 respectively. As can

be observed from the figure, the results show that both RS-

NGMV and PID controllers achieve the control objective

of the desired joint angle tracking for the 2-link robot

arm. RS-NGMV owing to the advantages inherited from

the NGMV as an optimal control solution, shows slightly

better performance compared to the PID with less overshoot.

The RS-NGMV controller also adapts easier to the set-

point changes thanks to the optimized feedback gains. It is

demonstrated that tuning procedure is actually familiar for

designers with background in PID control.

In Figure 4, the time varying gain deviations k̃c(t) result-

ing from the optimization process are illustrated. It is shown

that they are constantly updated for the feedback gains of the

RS-NGMV controller. For example, much calculation effort

is spent at and around time t = 0 as the link angles q1(t) and

q2(t) try to catch their reference angles. The deviations k̃c(t)

tend to slow down as the system output reaches the steady

state until the next reference angle signals are generated.

Then the same pattern is repeated.

Figure 4: Time varying gain deviations.

V. CONCLUSIONS

In this work, a multivariable RS-NGMV controller has

been designed for the qLPV model of a 2-link robotic arm.

The controller has been set to have the structure of a PID

and employs optimized time varying feedback gains that are

constantly updated. The gains help the RS-NGMV control

algorithm adapt to the changes such as reference trajectories

much easily. Performance comparison of the controller to

that of a classical PID controller has been made and the

results show that it works better.
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