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NODE AND LAYER EIGENVECTOR CENTRALITIES FOR

MULTIPLEX NETWORKS

FRANCESCO TUDISCO†, FRANCESCA ARRIGO‡AND ANTOINE GAUTIER§

Abstract. Eigenvector-based centrality measures are among the most popular centrality mea-
sures in network science. The underlying idea is intuitive and the mathematical description is
extremely simple in the framework of standard, mono-layer networks. Moreover, several efficient
computational tools are available for their computation. Moving up in dimensionality, several efforts
have been made in the past to describe an eigenvector-based centrality measure that generalizes
Bonacich index to the case of multiplex networks. In this work, we propose a new definition of
eigenvector centrality that relies on the Perron eigenvector of a multi-homogeneous map defined in
terms of the tensor describing the network. We prove that existence and uniqueness of such centrality
are guaranteed under very mild assumptions on the multiplex network. Extensive numerical studies
are proposed to test the newly introduced centrality measure and to compare it to other existing
eigenvector-based centralities.

Key words. networks, multiplex, multilayer, eigenvector, centrality, multi-homogeneous map,
Perron-Frobenius theory

AMS subject classifications. 47J10, 15B48, 68M10, 90B10, 05C82, 05C85

1. Introduction. One of the main goals of network analysts and data scientists
is to identify relevant components in a network. Networks are often represented as
matrices; hence, tools from matrix analysis prove to be useful in addressing various
problems, such as the detection of communities and anti-communities [39, 23, 45, 24,
25], the partition of the network into clusters [41, 47, 13, 37], or the identification of
central nodes, edges or paths [20, 35, 9, 29, 2]. Over the past years several authors,
focusing on this latter problem and, in particular, on the problem of identifying the
most central nodes, have worked towards the definition of different centrality measures.
A centrality measure is a real valued function of the set of nodes that is invariant
under relabelling of the nodes and can thus be used to rank them according to their
importance. Measures based on eigenvectors or singular vectors of suitable matrices,
henceforth referred to as (linear) eigenvector centralities, are among the most popular
centrality measures. Relevant examples include, for instance, the Bonacich index [8]
and the PageRank score [10]; this latter is world-widely known for being employed
by the Google search engine. The Perron-Frobenius theory for matrices is the key
mathematical tool behind the success of linear eigenvector centralities; this theory
provides some easily verified sufficient assumptions on the network that guarantee
(i) existence and uniqueness of the centrality measure, and (ii) convergence of the
method used for its computation.

Recent years have seen a growing interest towards certain higher-order data struc-
tures, usually referred to as multilayer networks, that are used to model networks
where the entities interact in different ways. A particular instance of these networks
is the one of multiplex networks. A multiplex is a collection of graphs that share a
common vertex set and have (possibly) different edge sets, each of which is modeling
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a different form of interaction. Multiplexes arise in many contexts, such as social net-
works, where individuals’ relations can be tracked through different means (phone,
Internet, in person, etc.), or transportation networks, where different transport means
can be used to move across geographical destinations (car, train, plane, etc.).

Several eigenvector-based centrality measures have been defined for muliplexes in
the last few years [3, 44, 16, 17]. A first contribution of our work is in reviewing the
corresponding literature and gathering together these centrality scores. As for the
matrix representation of a mono-layer network, the higher-order nature of multiple
layers naturally suggests the use of tensors with more than two modes to describe the
networks. However, in order to exploit the Perron-Frobenius theory for matrices for
describing eigenvector-based centrality measures in this framework, a popular idea
in the current literature is to work with suitable matrix eigenvector equations. This
approach is a form of “linearization” of the higher-order structure which, as we shall
further discuss later in the paper, might lead to a loss of information.

Our main contribution is the introduction of a novel centrality measure based
on the Perron eigenvector of a multi-homogeneous map. These maps generalize the
concept of homogenous functions and their definition is recalled at the beginning
of Section 4.1 below. The particular mapping we will use is not linear nor multi-
linear and allows us to simultaneously derive a ranking for both nodes and layers
in the multiplex. Our model follows a somewhat natural extension of the Bonacich
index for mono-layer networks to the multilayer case. By exploiting the Perron-
Frobenius Theorem for multi-homogeneous maps [27] we show that the introduced
non-linearity is needed in order to ensure existence and uniqueness of the eigenvector
and, consequently, for the well-posedness of the model. Furthermore, existence and
uniqueness are guaranteed for multiplex networks whose topology satisfies very mild
conditions. In particular, connectedness of the multiplex network (or of its individual
layers) is no longer required. This is extremely important as real-world data sets
are typically very sparse and often not connected. Thus, in most situations, other
centrality measures fail to provide a well-defined centrality score.

We subdivide the discussion as follows: in the Section 2 we briefly recall some
background terminology and results. In Section 3 we review the eigenvector-based
centrality scores that we found in the literature, highlighting their potential advan-
tages and disadvantages. Then, in Section 4, we describe our model and state and
prove our result on existence and uniqueness of the proposed centrality measure.
Moreover, we describe a power method iteration which is proved to converge to the
newly introduced centrality. We also show an explicit a priori bound for the approxi-
mation error of the corresponding iteration. Finally, in Section 5 we propose several
numerical experiments on two different multiplex networks, showing evidence of the
effectiveness of the model.

2. Background. In this section we review some definitions and notations asso-
ciated with graphs and multilayer graphs that will be used throughout the paper.

We will denote by R
n
≥ the set of non-negative vectors of length n and we will

write equivalently that x ∈ R
n
≥ or x ≥ 0. The set of vectors of length n with positive

entries x > 0 will be denoted by R
n
>. We will write x ≥ y (resp. x > y) if x− y ≥ 0

(resp. x− y > 0).
The symbol I will denote the identity matrix and 1 will denote the vector of all

ones. The size of these objects will be clear from the context. However, when needed,
we will make the dimension explicit by writing In and 1n.
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Networks and centrality measures. A graph G = (Vn, E) consists of a pair of
sets: a set Vn of n nodes and a set E ⊆ Vn×Vn of connections, or edges, between them.
Every graph can be represented by means of a non-negative matrix A = (Aij) ∈ R

n×n,
called the adjacency matrix of the graph, whose (i, j)th entry is the weight of the edge
connecting node i to node j, if present, and zero otherwise. A graph is said to be
undirected if for all (i, j) ∈ E, then (j, i) ∈ E and the two edges have the same weight.
Equivalently, G is undirected if its adjacency matrix is symmetric, directed otherwise.
A network is said to be unweighted if all its edges have the same weight, which can thus
be considered to be unitary, and weighted otherwise. In this paper, unless otherwise
specified, we will consider weighted undirected networks.

One of the main points addressed by researchers in network science is how to
identify which are the “most relevant” nodes in a network. In order to quantify
the importance of nodes, several centrality measures have been introduced over the
years [19, 21, 40]. A centrality measure is a real valued function of the set of nodes that
is invariant under graph isomorphisms. One of the simplest centrality measure one can
introduce is the degree centrality, which assigns to each node a score that corresponds
to the number of its immediate neighbors; thus, for an unweighted network, the degree
centrality of node i is the ith element of the vector A1.

Among the several centrality measures that are found in the literature, we want to
focus here on those that rely on the use of eigenvectors of certain matrices associated
with graphs. The eigenvector centrality was introduced by Bonacich in [6, 7]. The
underlying idea is that a node is more important if it is connected to nodes that are
themselves important; therefore, the eigenvector centrality of a node i is defined as

(2.1) λxi =

n∑

j=1

Aijxj ,

for some λ > 0.
This interpretation leads to the more formal definition of the eigenvector centrality

of node i as the ith component of the Perron vector of the adjacency matrix of the
graph [19, 30]. In order for this centrality vector to be well defined, i.e., for it to be
positive and unique, the matrix A has to satisfy certain properties. For example, a
sufficient condition is its irreducibility, which is equivalent to assuming the strongly
connectedness of the underlying graph.1

Multiplex networks. A multilayer network [33] is a more general system than
a graph and can be used to model situations in which different types of interactions
occur. In a multilayer graph, in addition to nodes and edges, layers are also present.
Each node now belongs to a subset of the set of layers and interactions can occur
through edges that exist within a layer or across layers. In the remainder of this
work, we will consider a particular type of multilayer networks, namely multiplex
networks [5]. Multiplex networks, sometimes referred to as color-graphs [3, 5, 4, 38, 42],
are multilayer networks that are node-aligned and have diagonal couplings. More
precisely, a multilayer is said to be node-aligned when all its layers contain the same
set of nodes, and it is said to have diagonal couplings when the nodes are identified
across the different layers and there are no connections between nodes that belong to
two different layers. Hence, a multiplex network can be represented as a collection of

1A graph is strongly connected if there exists a walk going from each node to any other node in
the network.
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graphs:
G = {G(ℓ) = (Vn, E

(ℓ))}ℓ∈VL

where Vn = {1, 2, . . . , n} is the set of nodes, VL = {1, . . . , L} is the set of layers and
E(ℓ) ⊂ Vn × Vn is the set of edges on layer ℓ. For every ℓ ∈ VL, the graph G(ℓ) is

associated with a non-negative adjacency matrix A(ℓ) = (A
(ℓ)
ij ) ∈ R

n×n. Thus, the

multiplex network can be represented by means of a 3rd-order tensor A = (Aijℓ),
called the adjacency tensor, whose entries are

Aijℓ = A
(ℓ)
ij =

{
wℓ(i, j) if (i, j) ∈ E(ℓ)

0 otherwise

where wℓ(i, j) is a positive number representing the strength of the connection between
node i and node j in layer ℓ ∈ VL. In this work, we will focus on the case of undi-
rected weighted multiplex networks, i.e., multiplexes whose layers contain undirected
networks.

Fairly often, multiplexes have been represented by means of “vectors of the ad-
jacency matrices of the L layers” (see, e.g., [3, 42]), which correspond to the mode-1
unfolding of the original 3rd-order tensors [34]

A(1) = [A(1), A(2), . . . , A(L)],

or using 4th-order tensors. This latter description can be found in [14, 33], where the
authors introduced the multilayer adjacency tensor B = (Bijℓκ) ∈ R

n×n×L×L. Its
entries Bijℓκ, for i, j ∈ Vn and ℓ, κ ∈ VL, are positive if there is an edge going from
node i in layer ℓ to node j in layer κ. It is readly verified that B::ℓℓ = A(ℓ) ∈ R

n×n is
the adjacency matrix of the graph appearing in layer ℓ ∈ VL; these matrices are usally
referred to as intra-layer adjacency tensors. Similarly, the matrices B::ℓκ = D(ℓ,κ) ∈
R

n×n for ℓ, κ ∈ VL, ℓ 6= κ, usually referred to as the inter-layer adjacency tensors,
contain information about the connections between any two nodes when one is lying
on layer ℓ and the other on layer κ. It is immediate to verify that, in the case of
multiplex networks, D(ℓ,κ) = I for all ℓ, κ ∈ VL, ℓ 6= κ.

3. Related works. In the following we briefly overview the eigenvector-based
centrality measures that we found in the literature. This list is exhaustive, to the
best of our knowledge. For the sake of precision, let us point out that in this section
we will often use the term “centrality” with a little abuse of notation; indeed, in the
following we will often assign to each node a vector of scores, rather than just one
value.

Matrix-based centrality indices. In order to retrieve eigenvector centrality
measures in the setting of multiplex networks, the authors of [3] propose to compute
the eigenvector centrality qℓ of G(ℓ) for all ℓ ∈ VL as defined in (2.1) and then to
use as a measure of centrality for a node i ∈ Vn the ith row of the matrix Q =
[q1,q2, . . . ,qL] ∈ R

n×L. Note that, for this measure to be well defined, each graph
G(ℓ) has to fulfill suitable assumptions, such as being strongly connected.

Similarly, the authors of [44] defined matrices that, in the spirit of Q, encode
in their rows the information about the importance of the corresponding node in
each layer. The local heterogeneous eigenvector-like centrality of G(ℓ), denoted by
q⋆
ℓ , is defined as the eigenvector associated to the leading eigenvalue of the matrix

A
(ℓ)
⋆ =

∑L
κ=1 wℓκA

(κ), where W = (wℓκ) ∈ R
L×L is a non-negative matrix called

the influence matrix. Each of its entries wℓκ accounts for the influence of layer κ
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over layer ℓ. Then, the local heterogeneous eigenvector-like centrality matrix of the
multiplex network is the matrix whose ℓth column is the vector q⋆

ℓ . Note that, since

A
(ℓ)
⋆ is obtained through a form of weighted average of the adjacency matrices of

the layers, positivity and uniqueness of the centrality q⋆
ℓ can be guaranteed without

necessarily requiring strongly connectedness of each G(ℓ). In fact, depending on the

influence matrix, each A
(ℓ)
⋆ can be irreducible even though none of the A(ℓ) is.

Finally, the global heterogeneours eigenvector-like centrality matrix of the multi-
plex is the reshaping into a n×L matrix of the eigenvector associated with the leading
eigenvalue of the nL×nL matrix obtained by performing the Khatri-Rao product [32]
of the influence matrix W and the mode-1 unfolding of A [44]:

(3.1) W ∗ A(1) =




w11A
(1) w12A

(2) · · · w1LA
(L)

w21A
(1) w22A

(2) · · · w2LA
(L)

...
...

. . .
...

wL1A
(1) wL2A

(2) · · · wLLA
(L)


 .

All the centrality measures listed so far are described as n × L non-negative
matrices. To retrieve a proper centrality score, i.e., a non-negative real number, one
has to aggregate the values appearing in the centrality vectors according to some
heuristics. In [3] the authors propose to use weighted sums, so that the centrality of
a node will be the corresponding entry of the vector Qω, where ω ∈ R

L
> is a vector of

weights. Different choices of ω provide different rankings. If no intuition/information
is available concerning the importance of layers, then the (possibly) most appropriate
choice is to pick ω = 1, thus deriving

(3.2) eig_cen(i) = (Q1)i =

L∑

ℓ=1

(qℓ)i, i = 1, . . . , n .

Should information concerning the importance of the layers in the network be
available, a more inferred choice of the weights may be performed: the more important
a layer, the higher the value of the corresponding weight.

The authors of [3] described yet another way to overcome the issue of having one
vector in R

L
≥ to describe the centrality of each node. Instead of aggregating the data

after having computed the importance of the nodes in each layer, they first aggregate
the layers, building the matrix Aagg(ω) =

∑L
ℓ=1 ωℓA

(ℓ) for some vector ω = (ωℓ) > 0,
and then they use the entries of the eigenvector associated with the leading eigenvalue
of this matrix as centrality scores for the nodes. As in the previous centrality measures,
the choice of the vector of weights influences the resulting ranking of nodes, as one
would expect. When ω = 1, we recover the uniform eigenvector-like centrality vector,
independently introduced in [44], which is entry-wise defined as

(3.3) agg_eig(i) = ui, i = 1, . . . , n ,

where u is the eigenvector associated to the leading eigenvalue of the aggregate adja-
cency matrix Aagg(1) =

∑
ℓ A

(ℓ).
Before moving on to the description of the last eigenvector-based centrality mea-

sure, let us briefly comment on the relationships among the indices listed so far, and
their potential drawbacks.

Firstly, the methods that require to work independently on each of the layers
are arguably not truly exploiting the multilayer structure of the multiplex: they are
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rather just considering it as a set of graphs which do not share anything except for
the size of the set of nodes. However, a multiplex is a much richer structure, since
identification between the nodes also implies, e.g., that certain connections that, say,
appear in more than one layer, or lie in a more important layer, are stronger than
others. This aspect is completely overlooked by measures like the one deduced from
Q, for example, unless one has some a priori information that cannot be deduced from
the single layers and that can thus be used to aggregate the data in a more informed
way.

Similarly, those methods that first aggregate the matrices and then compute the
eigenvector centrality of the derived matrix Aagg(ω) are disregarding some informa-
tion. Indeed, not all the layers might be equally important: some might be more
relevant than others, and merging everything together leads to the loss of this aspect.

Finally, let us point out that the local/global heterogeneous eigenvector-like cen-
trality measures require the knowledge of how each layer influences all the others. This
form of a priori knowledge is often not available in practice and, in this case, there
are two standard and somewhat natural choices that can be made for the influence
matrix: either W = I or W = 11T .

The first choice corresponds to a mutiplex in which every layer is just influencing
itself, and hence each layer exists independently from the others. This follows easily

from the fact that, if W = I, then A
(ℓ)
⋆ = A(ℓ) for all ℓ ∈ VL. Hence, with this

choice of W , the local heterogeneous eigenvector-like centrality matrix reduces to Q
and the associated node centrality boils down to (3.2); instead, when addressing the
global heterogeneous eigenvector-like centrality several issues may arise. For example,
the matrix (3.1) I ∗ A(1) = diag(A(1), A(2), . . . , A(L)) is now reducible, regardless
of the edge pattern of the multiplex. This implies that the corresponding Perron
eigenvector, if uniquely determined, may fail to be positive. More precisely, assume
that the adjacency matrices of m layers, say A(1), . . . , A(m) for simplicity, have the
same spectral radius as I ∗ A(1) with corresponding Perron eigenvectors qi for i =
1, . . . ,m. Then any linear combination of q̃1, . . . , q̃m is a Perron eigenvector of I∗A(1),
with

q̃i =
[
0 · · · 0 qT

i 0 · · · 0
]T

and where, for any i = 1, 2, . . . ,m, the nonzero entries in q̃i are in the positions
(i− 1)n+ 1, . . . , in.

On the other hand, if W = 11T , each layer equally influences all the others in

the network, itself included. In this framework, A
(ℓ)
⋆ = Aagg(1) for all ℓ and thus

the local heterogeneous eigenvector-like centrality matrix is u1T
L ∈ R

n×L, where u

is the uniform eigenvector-like centrality vector (3.3). Similarly, it is not difficult to
prove that 1L ⊗ u ∈ R

nL is the eigenvector associated to the dominant eigenvalue of
11T ∗ A(1), where ⊗ is the Kroneker product [30]. Thus, if all the layers have the
same influence on all the others, the local and global heterogeneous eigenvector-like
centralities reduce to the uniform eigenvector-like centrality (3.3).

A 4th-order tensor-based centrality index. The last eigenvector-based cen-
trality measure that we found in the literature is described in [16, 17] and relies on
the use of the multilayer adjacency tensor B. The authors use the matrix F = (Fiℓ) ∈
R

n×L defined via the equations:

(3.4)

n∑

j=1

L∑

κ=1

BijℓκFjκ = λ1Fiℓ,
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for i ∈ Vn and for ℓ ∈ VL. Then, the eigenvector versatility of a node i is defined
as the ith row of the matrix F . As before, the proposed centrality for each node is
described by means of a vector in R

L. Thus, in order to have a more compact way of
describing the centrality of the nodes, the authors proposed to use as the eigenvector
versatility of node i the quantity

eig_ver(i) = (F1)i.

Remark 3.1. As for the matrix-based centralities discussed above, one may ac-
tually want to use a more general definition for the eigenvector versatility of nodes,
where a vector of weights ω > 0 is used insted of 1 to aggregate the centralities over
the layers. This vector encodes any available information regarding the relevance of
layers that is not deducible from the structure of the network.

Remark 3.2. The eigenvector versatility of a node is again a vector, correspond-
ing to a row of an n×L matrix. Although this approach may appear to be equivalent
to those described in the previous subsection, there is one main difference. Indeed, in
this case we are no longer considering each layer independently. In fact, we are using
a representation of the multiplex as a 4th-order tensor, whose description encodes
the presence of links across layers that represent the diagonal couplings. However,
in the case of multiplexes, the inter-layer links do not exist in practice and thus this
representation forces the introduction of additional artificial data.

Following [16], in order to compute F , we build the supra-adjacency matrix asso-
ciated with the multilayer adjacency tensor B, which is nL× nL block matrix of the
form:

B =




A(1) D(1,2) · · · D(1,L)

D(2,1) A(2) . . .
...

...
. . .

. . . D(L−1,L)

D(L,1) · · · D(L,L−1) A(L)




where the A(ℓ), for ℓ = 1, 2, . . . , L, are the adjacency matrices of the graphs appearing
on each layer, and D(ℓ,κ), for ℓ, κ ∈ VL, are the inter-layer adjacency tensors. If we
now let λ be the spectral radius of B ≥ 0, then λ = λ1 and the associated eigenvector
(if uniquely determined) is vec(F ), where vec is the standard vectorization operator,
and λ1 and F are as in (3.4).

In the case of multiplexes, the matrix B reads

B =




A(1) I · · · I

I A(2) . . .
...

...
. . .

. . . I

I · · · I A(L)



,

or, equivalently

(3.5) B = diag(A(1), A(2), . . . , A(L)) + (1L1
T
L − IL)⊗ In.

Before moving on to the introduction of our new eigenvector centrality, let us
briefly comment on the connectivity assumptions required by the previous models.
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G(1) G(2) G(1) G(2) G(1) G(2)

Fig. 1. Representation of three multiplex networks with n = 4 and L = 2 and different connec-
tivity properties. The leftmost network has all connected layers (and thus the aggregate network is
connected too). The multiplex in the center is such that the aggregate network is connected whilst
the layers are not; In the rightmost network nor the layers nor the aggregate network are connected.

As already mentioned, in order for eig_cen to be well-defined, each layer of the undi-
rected multiplex G has to be connected. This is clearly a very strong assumption
on the topology of the multiplex. Concerning the local, global and uniform heteroge-
neous eigenvector-like centralities, one needs the strongly connectedness of the merged
graph Gagg = (Vn,∪ℓE

(ℓ)), whose set of edges is the union of the edges of the layers.
The same property is required by the eigenvector versatility measure. In fact it easy
to verify that the following property holds:

Proposition 3.3. The matrix B defined as in (3.5) is irreducible if and only if
Gagg is strongly connected.

The eigenvector versatility and the family of heterogeneous eigenvector-like cen-
trality measures require weaker conditions on the topology of the multiplex than those
required by eig_cen. However, as we will see in the next section, the eigenvector cen-
trality that we propose in this paper has even weaker requirements.

To help intuition, we display in Figure 1 three different multiplex networks with
four nodes and two layers. The centrality measure introduced in this paper is well-
defined for all the three multiplexes. However, since the three networks have very
different connectivity properties, this is no longer the case for the other centrality
measures discussed so far. Specifically, all the layers in the leftmost network are
connected and thus all the measures are well-defined. Concerning the multiplex in
the center, eig_cen is not well defined since the aggregate network is connected whilst
the individual layers are not. Finally, in the rightmost network nor the layers nor the
aggregate network are connected and thus eig_cen, all the eigenvector-like centrality
measures and the eigenvector versatility are not well-defined.

4. Main results. In this section we introduce a model that will lead to the
definition of a novel centrality measure based on the 3rd-order tensor representation
of multiplex networks. The new centrality measure is defined for nodes as well as for
layers; moreover, to be computed, it does not require any further knowledge of the
network apart from its topology. Therefore, the importance of the layers will now
be computed rather than just inferred from some non-topological information on the
network. The model is built on the non-negative Perron eigenvector of a nonlinear
multi-homogeneous order-preserving map f defined in terms of the 3rd-order tensor
representing the network. We will use the entries of this non-negative vector to assign
a score to each node and each layer in the multiplex, thus defining what we will call
the f -eigenvector centrality for multiplexes.

As we have already seen in Section 2, the idea behind the eigenvector centrality
of nodes in a standard, monolayer complex network is that the importance of a node
has to be proportional to the importance of its neighbours [6, 7, 8]. Here we want
to exploit the same idea and to generalize it to a measure of centrality for nodes and
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layers in multiplex networks with undirected layers.
There are three main differences between the results we are about to present and

those found in the literature and described in Section 3. First, we will work directly
on the 3rd-order adjacency tensor and we will return centrality scores without the
need of aggregating or unfolding data. Second, as already pointed out, our method
provides both a centrality vector for the nodes and a centrality vector for the layers
in the multiplex. None of the methods found in the literature addressed the problem
of computing centrality scores for layers. Third, the proposed centrality measures are
uniquely defined regardless of the irreducibly pattern of the network.

4.1. f-eigenvector centrality indices. By pursuing a somewhat natural ex-
tension of node and edge eigenvector centralities for mono-layer networks [1, 6, 7], one
may ideally want to define the eigenvector centrality xi of node i in such a way that
it is proportional to the importance of its neighbouring nodes and to the importance
tℓ of the layers on which the nodes are connected. Similarly, one could argue that the
eigenvector centrality tℓ of layer ℓ, should be proportional to the importance of the
nodes connected through a link on such layer; therefore the quantities xixj can be
considered as a measure of the relevance of the link between nodes i and j, general-
izing the definition of edge eigenvector centrality [1]. This latter measure is a global
index that accounts for the total strength of the tie between nodes i and j, without
any specification about the layers on which the interaction occurs.

Although being very natural and being the basis for some very successful centrality
scores for monolayer graphs, these linear relations are often not sufficient to describe
a model that is mathematically well-defined. For this reason we slightly modify this
intuitive definition by adding a nonlinear term. This will then lead to the definition
of xi and tℓ as the entries of the unique entry-wise non-negative eigenvector of a
multi-homogeneous map [27]. For the sake of completeness let us recall that f =
(f1, . . . , fd) : R

n1 × · · · × R
nd → R

n1 × · · · × R
nd is said to be multi-homogeneous if

there exist non-negative coefficients Θij such that

fi(x1, . . . , λxj , . . . ,xd) = λΘijfi(x1, . . . ,xd) ,

for any λ ∈ R and any i, j = 1, . . . , d. The matrix Θ = (Θij) ∈ R
d×d is the so-

called homogeneity matrix of f . It is easily verified that any square matrix is an
example of multi-homogeneous map with Θ = 1. A nonzero vector (x1, . . . ,xd) is an
eigenvector for f if there exist λ1, . . . , λd ∈ R such that fi(x1, . . . ,xd) = λixi, for any
i = 1, 2, . . . , d.

Let A = (Aijℓ) be the non-negative adjacency tensor of a possibly weighted
multiplex and let α, β > 0. The proposed model can be formalized as the solution to
the following system of nonlinear equations:

(4.1)

{ ∑n
j=1

∑L
ℓ=1 Aijℓ xj tℓ = µ (xi)

α

∑n
i=1

∑n
j=1 Aijℓ xi xj = λ (tℓ)

β

that has to be fulfilled for some positive scalars µ and λ. Before moving on to our
main result, we observe that if there exists i such that Aijℓ = 0 for all j, ℓ, then
xi = 0. Similarly, if there exists ℓ ∈ VL for which Aijℓ = 0 for all i, j, then tℓ = 0. It
is thus clear that, depending on the nonzero pattern of A, any solution (x, t) of (4.1)
is required to be zero on a certain set of entries. This has a natural interpretation in
terms of the multiplex, as for instance Aijℓ = 0 for all i, j implies that no edges lie on
layer ℓ and thus the importance tℓ of this layer is negligible. Moreover, since we aim
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at defining centrality scores, we are interested in computing non-negative vectors. Let
us thus introduce the following set of pairs of vectors (4.1):

P n×L
A =

{
(x, t) ∈ R

n
≥ × R

L
≥ :

xi ∼
∑

j,ℓ Aijℓ, ∀i = 1, . . . , n

tℓ ∼
∑

i,j Aijℓ, ∀ℓ = 1, . . . , L

}
,

where, for any two numbers x, y ≥ 0, we write x ∼ y if there exist C > 0 such that
x = Cy. The set P n×L

A contains the non-trivial solutions to (4.1) we are interested in.
To help intuition consider the example case of a mono-layer network, where A = A is
a matrix. Then P n×1

A is the set of pairs (x, t) where x is any non-negative vector with
the same nonzero pattern as the vector of degrees A1 and t is any positive number,
if A is not the zero matrix, whereas t = 0 otherwise.

Similarly to the matrix case, uniqueness of the solution to (4.1) can be ensured
only up to scalar multiples. Indeed, if (x, t) is a solution to (4.1), then for any a, b > 0,
(ax, bt) is also a solution, with possibly different positive scalars λ and µ. Therefore,
in order to ensure uniqueness, we shall further ask that (x, t) ∈ S n×L

A , where

S n×L
A = {(x, t) ∈ P n×L

A : ‖x‖1 = ‖t‖1 = 1} .

Consider the mapping f = (f1, f2) : R
n
≥ × R

L
≥ → R

n
≥ × R

L
≥, defined by

(4.2) f1(x, t)i =
( n∑

j=1

L∑

ℓ=1

Aijℓxjtℓ

)1/α

, f2(x, t)ℓ =
( n∑

i=1

n∑

j=1

Aijℓxixj

)1/β

,

and its normalized version g : S n×L
A → S n×L

A defined as

(4.3) g(x, t) =

(
f1(x, t)

‖f1(x, t)‖1
,

f2(x, t)

‖f2(x, t)‖1

)
.

The importance of this map follows from the following crucial observation: if
(x∗, t∗) is a solution to (4.1), then (x∗, t∗) is a fixed point of the mapping g, i.e.,
g(x∗, t∗) = (x∗, t∗). Conversely, as we discuss below, any fixed point of g solves (4.1).

Theorem 4.1. Let A ∈ R
n×n×L
≥ be a nonzero non-negative tensor and let α, β >

0 be such that 2/β < (α − 1). Then, the system of nonlinear equations (4.1) has a
unique non-negative solution (x∗, t∗) ∈ S n×L

A .

Proof. Let f and g be as in (4.2) and (4.3) respectively. The proof is in two steps:
we first show that g is a strict contraction on S n×L

A with respect to a metric δb, and
then we conclude by using the Banach fixed point Theorem (see, e.g., [31, Theorem
3.1]). Let us recall that, for any non-empty set of indices I, the Hilbert metric on
PI =

{
x : xi > 0 if i ∈ I and xi = 0 otherwise

}
is given by

(4.4) dI(x,u) = ln
(
max
i∈I

xi

ui
max
j∈I

uj

xj

)
∀x,u ∈ PI .

In particular, the set ({x ∈ PI : ‖x‖1 = 1}, dI) is a complete metric space (see,
e.g., [36, Proposition 2.5.4]). Consider now the index sets I ⊆ {1, . . . , n} and J ⊆
{1, . . . , L} so that P n×L

A = PI × PJ . Note that, since A is assumed to be nonzero,
we have I,J 6= ∅. Thus, for every b = (b1, b2) ∈ R

2
>, we have that (S n×L

A , δb) is a
complete metric space, with δb being the weighted product Hilbert metric defined by

δb
(
(x, t), (u,v)

)
:= b1 dI(x,u) + b2 dJ (t,v).
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Let us now discuss how to choose the weights b so that g is a contraction with
respect to δb.

First note that, for all (x, t) ∈ S n×L
A and c, c̃ > 0, it holds

(4.5) fj(cx, c̃ t) = cΘj1 c̃Θj2fj(x, t), for j = 1, 2

where the homogeneity matrix Θ ∈ R
2×2 is

Θ =

[
α−1 α−1

2β−1 0

]
.

Furthermore, note that f is order-preserving since A has non-negative entries,
i.e., for all (x, t), (u,v) ∈ S n×L

A with (x, t) ≤ (u,v) it holds

(4.6) f(x, t) ≤ f(u,v).

Now, let (x, t), (u,v) ∈ S n×L
A . Combining (4.6) and (4.5) we get

(4.7) fj(x, t) ≤
(
max
i∈I

xi

ui

)Θj1
(
max
i∈J

ti
vi

)Θj2

fj(u,v), for j = 1, 2.

By exchanging (x, t) and (u,v) in the equation above, we further obtain

(4.8) fj(u,v) ≤
(
max
i∈I

ui

xi

)Θj1
(
max
i∈J

vi
ti

)Θj2

fj(x, t), for j = 1, 2.

Equations (4.7) and (4.8) together imply that for any b ∈ R
2
>:

δb
(
f(x, t), f(u,v)

)
≤ max

{ (ΘTb)1
b1

,
(ΘTb)2

b2

}
δb
(
(x, t), (u,v)

)
.

The Collatz–Wielandt formula (see, f.i., [30, Corollary 8.1.31]) states that the
vector b = (b1, b2) > 0 that minimizes the maximum in the above formula is the

positive eigenvector of ΘT . In particular, if we let ρ =
√
8α+β+

√
β

2α
√
β

, b1 = αρ, and

b2 = 1, we have ΘTb = ρb and thus ρ is a Lipschitz constant of f with respect to δb.
The assumption β > 2/(α− 1) ensures that ρ < 1; indeed,

(4.9) 8α+ β =
2

α− 1
4α(α− 1) + β < β(4α(α− 1) + 1) = β(2α− 1)2.

Finally, note that, since dI , dJ are projective, for every (x, t), (u,v) ∈ P n×L
A it holds

(4.10) δb
(
(cx, c̃ t), (au, ãv)

)
= δb

(
(x, t), (u,v)

)
∀c, c̃, a, ã > 0.

It thus follows that

(4.11) δb
(
g(x, t), g(u,v)

)
= δb

(
f(x, t), f(u,v)

)
≤ ρ δb

(
(x, t), (u,v)

)
,

and hence g is a strict contraction on the complete metric space (S n×L
A , δb). Thus, g

has a unique fixed point (x∗, t∗) ∈ S n×L
A .

We conclude the proof by noting that every solution to (4.1) is a fixed point of g,
and thus it is unique; conversely, every fixed point (x, t) ∈ S n×L

A of g is a solution to
(4.1) with µ = ‖f1(x, t)‖1 and λ = ‖f2(x, t)‖1, thus implying existence.
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Theorem 4.1 above shows that the condition 2/β < α− 1 on the positive param-
eters α and β is needed to guarantee existence and uniqueness of a solution to (4.1)
in S n×L

A . Clearly, the natural choice α = β = 1 does not satisfy the above condition
and may give rise to an ill-posed problem, as the following simple example shows.

Example 4.2. Let n = L = 2 and consider the tensor A = B/25, where
{

B1,1,1 = 6 B1,2,1 = 199/7 B2,1,1 = 16/7 B2,2,1 = 11
B1,1,2 = 61/7 B1,2,2 = 6 B2,1,2 = 29 B2,2,2 = 16/7

.

Then both x = (2, 1)/3, t = (1, 2)/3 and x̃ = (1, 3)/4, t̃ = (3, 1)/4 solve (4.1).

The proof of Theorem 4.1 relies on techniques proposed in [27]; however, due
the special structure of (4.1), our proof is shorter and simpler. Moreover, we have
less restrictive assumptions on the entries of the tensor. The conclusion of the proof
follows from the Banach fixed point Theorem. This has two main advantages: First,
it ensures uniqueness of the solution and second, it naturally induces an iterative
method for its computation which we discuss with more detail in Theorem 4.4.

A few further comments on Theorem 4.1 are in order. Firstly, we want to stress
that we are not requiring A to be necessarily defined as in Section 2. The definition we
gave is essentially the generalization of the adjacency matrix to the case of 3rd-order
tensors; however, this theorem applies to any non-negative tensor of order 3 that one
may want to use to describe the multiplex network under study. Secondly, let us note
that if the considered tensor A is such that

(i) for all ℓ ∈ VL there exist i, j ∈ Vn such that Aijℓ > 0,
(ii) for all i ∈ Vn there exist ℓ ∈ VL and j ∈ Vn such that Aijℓ > 0,

then the unique solution to (4.1) is entry-wise positive. The above requirements
correspond to very mild conditions on the topology of the multiplex network. Indeed,
(i) requires that there are no empty layers, whereas (ii) coincides with the requirement
that all nodes must have at least one connection in at least one layer, i.e., the aggregate
degree of every node must be positive. So the existence of a unique positive solution
is ensured by our nonlinear model (4.1) under sensibly weaker conditions than the
“standard” irreducibility assumption on the adjacency matrix of mono-layer networks.

Finally, we want to stress that these non-negative vectors can indeed be used as
centrality vectors, as any solution to (4.1) does not depend on the labeling of nodes
and layers. In fact, let σ : Vn → Vn and π : VL → VL be two permutations and define
the tensor Ã with entries Ãijℓ = Aσ(i)σ(j)π(ℓ). Then the eigenvector (x̃, t̃) ∈ S n×L

Ã of

f defined in terms of Ã is such that x̃i = xσ(i) and t̃ℓ = tπ(ℓ), where (x, t) ∈ S n×L
A is

the solution to (4.1) associated with A.
We are now able to give a definition of node and layer centrality for multiplex

networks.

Definition 4.3. Let A ∈ R
n×n×L be a nonzero 3rd-order non-negative tensor

with undirected layers and let α, β > 0 be such that 2/β < (α − 1). Define f as the
multi-homogeneous function (4.2). For any i ∈ Vn and ℓ ∈ VL, we define the f -node
eigenvector centrality of node i as Cf (i) = xi and the f -layer eigenvector centrality
of layer ℓ as Lf (ℓ) = tℓ, where (x, t) is the unique non-negative eigenvector of f in
S n×L
A .

As discussed above, the proof structure of Theorem 4.1 naturally induces an iterative
method for the computation of node and layer centrality for multiplex networks.
This method is described in the following Theorem. Furthermore, partially inspired
from results in [26, 28, 46], we derive explicit convergence rates for our method. In
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particular, we describe explicit bounds on the number of iterations required in order
to obtain a desired accuracy.

Theorem 4.4. Let A, α and β be as in the hypotheses of Theorem 4.1. Further-
more, let (x∗, t∗) be the unique solution to (4.1) and let g be defined as in (4.3). Given
any (x(0), t(0)) ∈ R

n
> × R

L
> consider the sequence

(4.12) (x(k+1), t(k+1)) = g(x(k), t(k)), k = 0, 1, 2, . . .

Then,

lim
k→∞

(x(k), t(k)) = (x∗, t∗).

Furthermore, if ρ =
√
8α+β+

√
β

2α
√
β

and (x(0), t(0)) = (1n,1L), then ∀k = 1, 2, . . .

‖(x(k), t(k))− (x∗, t∗)‖∞ ≤ ρk
[
αρ

(maxi∈I x∗
i

mini′∈I x∗
i′

)
+
( maxℓ∈J t∗ℓ
minℓ′∈J t∗ℓ′

)]

with I = {i : x(1)
i > 0} and J = {ℓ : t(1)ℓ > 0}. Therefore, for every ε > 0 and for any

k such that

(4.13) k ≥ ln((1− ρ)ε)− ln(C)

ln(ρ)
,

we have ‖(x(k), t(k))− (x∗, t∗)‖∞ ≤ ε where

C = ρ ln

(
max
i,i′∈I

∑n
j=1

∑L
ℓ=1 Aijℓ

∑n
j=1

∑L
ℓ=1 Ai′jℓ

)
+

1

β
ln

(
max
ℓ,ℓ′∈J

∑n
i=1

∑n
j=1 Aijℓ∑n

i=1

∑n
j=1 Aijℓ′

)
.

Proof. Let δb be the weighted Hilbert metric defined in the proof of Theorem 4.1
with b1 = αρ and b2 = 1. Note that ρ < 1 by (4.9).

Let (x̃(0), t̃(0)) = (x(0)/‖x(0)‖1, t(0)/‖t(0)‖1) ∈ S n×L
A . Then we have g(x̃(0), t̃(0))=

g(x(0), t(0)) and, by (4.10),

δb
(
(x̃(0), t̃(0)), (x, t)

)
= δb

(
(x(0), t(0)), (x, t)

)
∀(x, t) ∈ P n×L

A .

Therefore, using (4.11) together with the Banach fixed point Theorem, we obtain

(4.14) δb
(
(x(k), t(k)), (x∗, t∗)

)
≤ ρkδb

(
(x(0), t(0)), (x∗, t∗)

)
∀k = 1, 2, . . .

and

(4.15) δb
(
(x(k), t(k)), (x∗, t∗)

)
≤ ρk

1− ρ
δb
(
(x(1), t(1)), (x(0), t(0))

)
∀k = 1, 2, . . .

We now use these inequalities to prove the convergence rates.
For a non-negative vector x ∈ R

m
≥ \ {0}, let Ix = {i : xi > 0} and define the

entries of x = (xi) ∈ R
m as xi = ln(xi) if i ∈ Ix and xi = 0 otherwise. Then, for

every x,u ∈ R
m
≥ \{0} with Ix = Iu and ‖x‖1 = ‖u‖1 = 1, we have maxi∈Ix

xi/vi ≥ 1
and maxi∈Ix

vi/xi ≥ 1 so that

dIx
(x,u) ≥ ln

(
max

{
max
i∈Ix

xi

ui
,max
i∈Ix

ui

xi

})
= ln

(
max
i∈Ix

e| ln(xi)−ln(ui)|
)

= ‖x− u‖∞
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where dIx
is defined as in (4.4). Since |ea−eb| ≤ |a− b|max{ea, eb} for every a, b > 0,

we deduce that

‖x− u‖∞ ≥ ‖x− u‖∞
(
max

i
(max{xi, ui})

)−1

≥ ‖x− u‖∞ .

Now, (x(k), t(k)) ∈ S n×L
A for every k = 1, 2, . . ., and thus, as 2/β < α− 1, we get

αρ =

√
8α+ β +

√
β

2
√
β

>

√
16
β + 8 + β

2
√
β

+
1

2
=

1

2

(
1 +

√
16
β + 8 + β

β

)
> 1.

It follows that for every k = 1, 2, . . .

‖(x(k), t(k))− (x∗, t∗)‖∞ ≤ αρ ‖x(k) − x∗‖∞ + ‖t(k) − t∗‖∞
≤ δb

(
(x(k), t(k)), (x∗, t∗)

)

This, together with the identity

δb
(
(x(0), t(0)), (x∗, t∗)

)
=

[
αρ

(maxi∈I x∗
i

mini′∈I x∗
i′

)
+
(maxℓ∈J t∗ℓ
minℓ′∈I t∗ℓ′

)]
,

proves our first convergence rate. As for equation (4.15), note that

dI(f1(1n,1L),1n) =
1

α
ln

(
max
i,i′∈I

∑n
j=1

∑L
ℓ=1 Aijℓ

∑n
j=1

∑L
ℓ=1 Ai′jℓ

)

and

dJ (f2(1n,1L),1L) =
1

β
ln

(
max
ℓ,ℓ′∈J

∑n
i=1

∑n
j=1 Aijℓ∑n

i=1

∑n
j=1 Aijℓ′

)
,

so that δb
(
(x(1), t(1)), (x(0), t(0))

)
≤ C with

C = ρ ln

(
max
i,i′∈I

∑n
j=1

∑L
ℓ=1 Aijℓ

∑n
j=1

∑L
ℓ=1 Ai′jℓ

)
+

1

β
ln

(
max
ℓ,ℓ′∈J

∑n
i=1

∑n
j=1 Aijℓ∑n

i=1

∑n
j=1 Aijℓ′

)
.

Solving ρk

1−ρC ≤ ε for k, we finally obtain

‖(x(k), t(k))− (x∗, t∗)‖∞ ≤ ε ∀k ≥ ln
(
(1− ρ)ε

)
− ln(C)

ln(ρ)
,

which concludes the proof.

Remark 4.5. The relevance of Theorem 4.4 is twofold: it provides a convergence
result for the power sequence (4.12) and an explicit bound on the number of iterations
k required to achieve a desired approximation accuracy. In particular Equation (4.13)
implies that the higher the value of α and β, the smaller k.

An explanatory example. Before concluding this section, we want to show
with a small example that there are situations where the eigenvector versatility is not
well defined, whilst the f -eigenvector centrality is. Let us consider a multiplex G with
four nodes Vn = {1, 2, 3, 4} and two layers VL = {1, 2} and let us suppose that there
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is an undirected edge connecting nodes 1 and 2 on layer ℓ = 1 and one undirected
edge between nodes 3 and 4 on layer ℓ = 2. A drawing of such network is shown on
the right of Figure 1. It is easily understood that all the nodes are equally important,
since they all play the same role in the multiplex. Let Jk ∈ R

2k×2k and Pk ∈ R
4k×4k

be the matrices

Jk =

[
Ik

Ik

]
, Pk =



Ik

Jk
Ik


 .

The adjacency matrices of this multiplex network G are thus:

A(1) =

[
J2 0
0 0

]
and A(2) =

[
0 0
0 J2

]

where 0 denotes here the 2×2 matrix of all zeros. Let us now see what happens when
we compute the eigenvector versatility of these nodes. Let B = diag(A(1), A(2)) +
(121

T
2 − I2) ⊗ I4. Since Gagg is clearly not connected, B is reducible by Proposition

3.3 and the eigenvector versatility is not unique. In more detail, we have that

P2BP2 = B′ =

[
B′

1

J4B
′
1J4

]
, where B′

1 =

[
J2 I2
I2 0

]
.

Thus the matrices B and B′ are similar through P2 and their spectrum is fully deter-
mined by the spectra of the two 4 × 4 blocks appearing on the main diagonal of B′.
Moreover, the two matrices on the diagonal of B′ are themselves similar, and thus,
clearly, the spectrum of B will contain the same elements as that of B′

1, each counted
with multiplicity two. Consequently, the spectral radius of B will be an eigenvalue
with algebraic multiplicity two. Moreover, since B′

1 is the adjacency matrix of a path
with four nodes, we know that its spectrum is

σ(B′
1) = {2 cos(πj/5)}4j=1 ≈ {±0.618,±1.618} .

Thus, the matrix B has four eigenvalues on the spectral circle. From the viewpoint
of computing eigenvalues and eigenvectors, this is clearly an issue since there are two
distinct eigenvectors associated with ρ(B) = ρ(B′

1) ≈ 1.618. Since B′ = P2BP2 =
B′

1⊕J4B
′
1J4, the eigenspace of B corresponding to its spectral radius is generated by

vec(F1) = P2

[
x1

0

]
, vec(F2) = P2

[
0

J4x1

]
,

where 0 is here the zero vector of length 4 and

x1 =

√
2

5




sin(π/5)
sin(4π/5)
sin(2jπ/5)
sin(3jπ/5)


 ≈




0.3717
0.3717
0.6015
0.6015




is the normalized Perron eigenvector of B′
1. This can lead to very different results in

terms of the eigenvector versatility of the nodes. Indeed, it is equally probable to get:

eig_ver1 = F11 = x1 or eig_ver2 = F21 = J4x1

Thus, not only the eigenvector versatility may be not well-defined, but also it
might lead to centrality scores that are not meaningful, as in this case. Indeed,
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eig_ver1 gives more importance to nodes 3 and 4, while eig_ver2 identifies as more
meaningful nodes 1 and 2, contradicting our intuition that all the nodes should have
the same importance.

On the other hand, if A is the adjacency tensor Aijℓ = A
(ℓ)
ij , an easy computation

reveals that
∑

ij Aijℓ = 2 and
∑

jℓ Aijℓ = 1, for any ℓ = 1, 2 and any i = 1, . . . , 4.

Thus, independently of the choice of α and β, the pair (1,1) ∈ R
4 × R

2 is a positive
solution to (4.1). As P 4×2

A = R
4
> ×R

2
>, Theorem 4.1 implies that (1,1) is the unique

positive solution to (4.1) when 2/β < α− 1 (up to positive multiples); therefore, the
f -node eigenvector centrality of every node is Cf (i) = 1/4, as one would intuitively
expect. Moreover, the f -layer eigenvector centrality is Lf (ℓ) = 1/2, for any layer
ℓ = 1, 2 thus confirming the intuition that all the layers are equally important, since
they are, as the nodes, interchangable.

5. Numerical experiments. In this section we will describe the results ob-
tained when the f -eigenvector centrality is used to rank the nodes in a multiplex net-
work. All experiments were performed using MATLAB Version 9.1.0.441655 (R2016b)
on an HP EliteDesk running Scientific Linux 7.3 (Nitrogen), a 3.2 GHz Intel Core i7
processor, and 4 GB of RAM. The experiments can be reproduced using the code avail-
able at https://github.com/ftudisco/node_layer_eigenvector_centrality.

We compare the results obtained when ranking the nodes according to the f -
eigenvector centrality as in Definition 4.3 with those obtained when using the eigen-
vector versatility eig_ver, the centrality measure eig_cen described in (3.2), the uni-
form eigenvector-like centrality agg_eig, and the aggregate degree centrality agg_deg.
Recall that the aggregate degree of a node i is the total number of links adjacent to
it in the multiplex, i.e., (Aagg(1)1)i. Since we do not have any information regarding
the importance of layers, nor the influence they have on each other, we are not testing
the performance of the local and global heterogeneous eigenvector-like centrality mea-
sures. Indeed, as we have seen in Section 3, if no additional information is available,
these reduce to either agg_eig, if W = 11T , or eig_cen, if W = I.

We want to stress once again that our iteration is able to return two centrality
vectors: one for the importance of nodes and one for the importance of layers, while
the other measures can only be computed for the nodes.

Our model requires the selection of two positive scalars α and β such that 2/β <
(α − 1). Concerning the parameter β, a good choice could be to select it equal to
2, since in the definition of t the importance of the layers is related to a quadratic
polynomial of the node centralities. Therefore, in all our tests, we will use β = 2.
Since there is no inferred way of selecting α > 2, we select it to be α = 2.1 and we
will study, later in this section, how the rankings change when we let its value vary.
For the sake of completeness we point out that we performed experiments in the case
where α = 2 and β varies. The results shown here are aligned with those observed in
that situation.

The sequence {(x(k), t(k))}k defined in Theorem 4.1 and used for the computa-
tion of the f -eigenvector centrality is an adaptation of the power method to handle
3rd-order tensors. The normalization step in the 1-norm is thus performed in order
to avoid overflow and underflow in the computations. The stopping criterion for our
algorithm will be the relative difference between two subsequent iterations. The algo-
rithm stops when both the f -eigenvector centrality vectors have reached the desired
level of accuracy. In more detail, our algorithm stops when

max

{‖x(k) − x(k−1)‖
‖x(k)‖ ,

‖t(k) − t(k−1)‖
‖t(k)‖

}
< tol
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Table 1

EUair: Pearson’s correlation coefficient between any two centrality measures tested in this sec-
tion. For the f-eigenvector centrality we used α = 2.1 and β = 2.

Cf eig_ver eig_cen agg_eig agg_deg

Cf - 0.89 0.81 0.86 0.88
eig_ver 0.89 - 0.97 0.99 0.97
eig_cen 0.81 0.97 - 0.98 0.94
agg_eig 0.86 0.99 0.98 - 0.97
agg_deg 0.88 0.97 0.94 0.97 -

In the tests we used tol = 10−6 and the Euclidean norm ‖x‖2 =
√∑

i x
2
i , since

numerical tests not displayed here showed that smaller values of the tolerance and
different vector norms returned the same rankings. Recall that we are not interested
in the actual value of the centrality of each node and layer, but rather in determining
the ranking position of each one of them.

We tested our technique on two multiplex networks with undirected and un-
weighted layers, which are studied separately in the following two subsections.

European airlines trasportation network. The first dataset is the EU-air
transportation multiplex [11, 18] (EUair), which consists of 37 layers, each of which
represents a different European airline. The 450 nodes in each layer represent Eu-
ropen airports and the links represent flights among them (see [18] for a complete
description of the datasets.) This multiplex does not have empty layers and there
are 33 nodes with zero aggregate degree, which are correctly assigned a zero score by
all the centrality measures. All the layers as well as the matrix Aagg(1) are discon-
nected, and hence all the centrality measures but Cf and agg_deg are not uniquely
determined.

Concerning the computation of Cf , we have that the layer centrality vector con-
verges first (21 iterations), while for the method to stop it took one more iteration.

Table 1 contains the Pearson’s correlation coefficient between any two of the cen-
trality vectors computed in the test. This coefficient is a measure of linear correlation
and varies between −1 and 1, 1 indicating perfect linear correlation. From the table,
we see that every pair of centrality vectors displays a high value of this coefficient,
with a peak at 0.99 between eig_ver and agg_eig. The lower values for this coef-
ficient of linear correlation are achieved when comparing Cf with other vectors. It
is easily understood, however, that correlation coefficients do not represent the best
way to compare ranking vectors; indeed, two vectors may display a high linear corre-
lation, but the rankings provided by them might significantly differ. To have a better
understanding of our results, we thus show in Figure 2 the scatter plot between the
different centrality vectors. It is straightforward to see that, although Cf has a high
correlation with the other measures, the derived rankings are pretty different. Indeed,
the nodes having the highest score with respect to the f -eigenvector centrality do not
correspond to those ranked at the top by the other measures. This can also be seen
from Table 2, where we have listed the top 10 ranked nodes according to the different
centrality measures. Although the first ranked node according to the f -eigenvector
centrality is ranked first by the eigenvector versatility and second by all the other
measures, when it comes to the second ranked node according to Cf , we find it to be
ranked, e.g., 34th by the eigenvector versatility and 71st by the eigenvector centrality.

Figure 3 shows the geographical locations of the top five European airports ac-
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Fig. 2. Euair: Scatter plots between the different centrality vectors. For the f-eigenvector
centrality we used α = 2.1, β = 2.

Table 2

EUair: top 10 ranked nodes according to the centrality measures tested in this section. For the
f-eigenvector centrality we used α = 2.1 and β = 2.

Cf 50 12 38 40 2 108 252 166 15 57
eig_ver 50 15 40 38 83 2 166 7 64 34
eig_cen 40 50 15 83 22 64 14 7 38 2
agg_eig 15 50 83 64 40 38 7 2 166 66
agg_deg 15 50 38 40 2 252 64 83 7 12

cording to the computed f -node eigenvector centrality and eigenvector versatility.
To provide further insight and have a better understanding of how far the f -

eigenvector centrality is from the other centrality measures, we look at the intersection
similarity [22] between the derived ranking vectors. The intersection similarity is a
measure used to compare the top K entries of two ranked lists that may not contain
the same elements. It is defined as follows: let L1 and L2 be two ranked lists, and let
us call Lj

k the list of the top k elements listed in Lj , for j = 1, 2. Then, the top K
intersection similarity between L1 and L2 is defned as

isimK(L1,L2) =
1

K

K∑

k=1

|L1
k∆L2

k|
2k

,

where |S| denotes the cardinality of the set S and L1
k∆L2

k is the symmetric difference
between L1

k and L2
k. When the ordered sequences contained in L1 and L2 are com-

pletely different, then the intersection similarity between the two is maximum and it
is equal to 1. On the other hand, the intersection similarity between two lists is equal
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Fig. 3. Red dots show the geographical locations of the top five European airports according to
Cf (left) and eig_ver (right). The larger the dot, the higher the corresponding ranking.
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Fig. 4. EUair: plot of the intersection similarity isimK(Cf , ·) between the ranking derived from
the f-eigenvector centrality and other ranking vectors, for K = 1, 2, . . . , n. For the computation of
Cf we used α = 2.1 and β = 2. Here Cf , eig_ver, eig_cen, agg_eig, and agg_deg denote the
associated ranking vectors.

to 0 if and only if the two ordered sequences coincide.
In Figure 4 we display the evolution of the intersection similarity, as a function of

K, between the ranking derived from Cf and those obtained using the scores provided
by the other four centrality measures. Figure 4 shows that, especially for small values
of K, the intersection similarity between the ranking derived from Cf and all the other
centralities is high. The only exception is represented by the eigenvector versatility;
however, its intersection similaritity with Cf grows quickly and reaches high values
(around 0.4) already for small values of K (say, K = 5). This tells us that the list
of the top ranked nodes obtained with the new centrality measure differs significantly
from the other measures, as the results in Table 2 already showed for K = 10.

Before moving on to the second dataset, we want to understand how different
choices of the parameters influence the derived rankings. In Figure 5 we display the
results obtained when β = 2 is kept fixed and α = [2.1, 2.5, 2.7, 3, 4, 5, 10]: the top
plots are spaghetti plots representing the changes in the rankings, while the bottom
plots display the time (in seconds) and the number of iterations required for the
computation of the f -eigenvector centrality for the different choices of α. It is clear
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Fig. 5. Euair: Top - evolution of the rankings obtained using the f-eigenvector centrality for
nodes and layers when α = [2.1, 2.5, 2.7, 3, 4, 5, 10] and β = 2. Bottom - timing in seconds and
overall number of iterations required to compute Cf when α varies, with the solid line representing
the curve c1/ ln(α) + c2 for suitable values of c1 and c2.

from the top plots that the rankings do not depend heavily on the choice of α, since
the lines in the spaghetti plot (each representing the ranking of a certain node) are
almost all completly horizontal. Concerning the bottom plots, both iterations count
and execution time decrease as α increases, confirming that the convergence rate

follows the powers of ρ =
√
8α+β+

√
β

2α
√
β

, as discussed in Theorem 4.4. In fact, since

β = 2, we have ρ ≈ 1/
√
α and from (4.13) the number of iterations k∗ required to

achieve convergence decays as the inverse of the logarithm of α, i.e. there exist c1
and c2 such that k∗ ≈ φ(α) = c1/ ln(α) + c2. The solid line in the bottom-right plot
of Figure 5 shows φ(α) for suitable values of c1 and c2 and confirms this expected
behavior. In particular, this has computational relevance: It is not difficult to observe
that, when G has sparse layers, all the measures can be computed with O(Ln) flops per
iterative step. However, Figure 5 shows that tuning α allows us to reduce the overall
timing and number of iterations required, while returning a meaningful ranking.

London city trasportation network. We now move on to the dataset Lon-

don, which represent the London city transportation network [18, 15]. The 369 nodes
correspond to train stations and the existing routes between them are the edges in
each of the three layers this multilayer consists of. The stations of the Underground,
Overground, and DLR are considered. We used the unweighted version of this undi-
rected multiplex network. The matrix Aagg(1) is irreducible and hence both eig_ver

and agg_eig are well-defined for this dataset. All layers are non-empty and discon-
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Fig. 6. London: Scatter plots between the different centrality vectors. α = 2.1, β = 2.

Table 3

London: Pearson correlation coefficient between any two centrality measures tested in this sec-
tion. For the f-eigenvector centrality we used α = 2.1 and β = 2.

Cf eig_ver eig_cen agg_eig agg_deg

Cf - 0.55 0.20 0.10 0.60
eig_ver 0.55 - 0.53 -0.06 0.44
eig_cen 0.20 0.53 - 0.44 0.48
agg_eig 0.10 -0.06 0.44 - 0.31
agg_deg 0.60 0.44 0.48 0.31 -

nected, and the nodes have all positive aggregate degree. Therefore the f -eigenvector
centrality vectors will be positive. As before, we pick α = 2.1 and β = 2.

The layer centrality vector converges first (23 iterations), while the other vector
converges at iteration 24, thus making the method stop. The Pearson’s correlation
coefficients between any two centrality vectors are displayed in Table 3. For this
example, no pair of vectors displays linear correlation. This can be seen also by
looking at the scatter plots in Figure 6.

In Figure 7 we display the intersection similarity between the ranking obtained
from Cf and the other ranking vectors as a function of K, i.e., the number of top
ranked elements considered. As for the previous dataset, the value of the intersection
similarity between the top K entries of the ranking vector derived from Cf and all
the others methods is large; this shows that, especially for small K, the top ranked
nodes according to the f -eigenvector centrality differ from those identified as most
important from the other networks. To show this, in Table 4 we list the top 10 ranked
nodes according to the different centrality measures.
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Fig. 7. London: plot of the intersection similarity isimK(Cf , ·) between the ranking derived from
the f-eigenvector centrality and other ranking vectors, for K = 1, 2, . . . , n. For the computation of
Cf we used α = 2.1 and β = 2. Here Cf , eig_ver, eig_cen, agg_eig, and agg_deg denote the
associated ranking vectors.

Table 4

London: top 10 ranked nodes according to the centrality measures tested in this section. For
the f-eigenvector centrality we used α = 2.1 and β = 2.

Cf 69 68 28 181 182 35 46 29 214 9
eig_ver 69 68 214 29 215 207 28 282 121 181
eig_cen 4 13 291 325 69 68 214 339 261 225
agg_eig 4 225 226 259 306 305 260 264 339 3
agg_deg 4 28 182 220 2 35 46 50 68 69

6. Conclusions and future work. In this paper we have introduced the f -
eigenvector centrality, a new multi-dimensional eigenvector-based centrality measure
for nodes and layers in multiplex networks with undirected layers. We have shown
that in order to guarantee well-posedness of the definition, non-linearity has to be
introduced in the model extending the classical Bonacich index to the multidimen-
sional setting of multiplexes. We have further proved that existence and unique-
ness of the f -eigenvector centrality can be guaranteed for any non-negative 3rd-order
tensor that satisfies very mild conditions. In particular the f -eigenvector centrality
can be computed efficiently without any a priori analysis of the irreducibility of the
multi-layer network. We compared the newly introduced centrality measures with the
eigenvector-based centrality measures found in the literature, and we showed that it
provides different rankings on the two real world data sets we tested.

Future work will focus on the extension of these results to the case of multiplex
networks with directed layers. We also plan to investigate how to introduce in our
model any available information on the importance of layers that is not deducible
from the network topology.

7. Acknowledgements. This work uses pre-existing data that is publicly avail-
able from http://deim.urv.cat/∼manlio.dedomenico/data.php.

The work of F. T. has been supported by the Marie Skłodowska-Curie individual
fellowship “MAGNET” no. 744014, the work of F. A. has been supported by by the
EPSRC grant EP/M00158X/1, the work of A. G. has been supported by the ERC
grant 307793 “NOLEPRO”.



Centrality measures for multiplex networks 23

REFERENCES

[1] F. Arrigo and M. Benzi, Updating and downdating techniques for optimizing network com-
municability, SIAM J. Sci. Comput., 38 (2016), pp. B25–B49.

[2] F. Arrigo, P. Grindrod, D. J. Higham, and V. Noferini, Non-backtracking walk central-
ity for directed networks, to appear on J. of Complex Networks, (2017).

[3] F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks,
Phys. Rev. E, 89 (2014), p. 032804.

[4] G. Bianconi, Statistical mechanics of multiplex networks: Entropy and overlap, Phys. Rev.E,
87 (2013), p. 062806.

[5] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardeñes, M. Ro-

mance, I. Sendina-Nadal, Z. Wang, and M. Zanin, The structure and dynamics of
multilayer networks, Phys. Rep., 544 (2014), pp. 1–122.

[6] P. Bonacich, Factoring and weighting approaches to status scores and clique identification,
J. Math. Sociol., 2 (1972), pp. 113–120.

[7] P. Bonacich, Technique for analyzing overlapping memberships, Sociol. Methodol., 4 (1972),
pp. 176–185.

[8] P. Bonacich, Power and centrality: A family of measures, Am. J. Sociol., 92 (1987), pp. 1170–
1182.

[9] S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Soc. Net-
works, 28 (2006), pp. 466–484.

[10] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Com-
put. Netw., 30 (1998), pp. 107–117.

[11] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, and

S. Boccaletti, Emergence of network features from multiplexity, Sci. Rep., 3 (2013).
[12] K.-C. Chang, K. Pearson, and T. Zhang, Perron–Frobenius theorem for nonnegative

tensors, Commun. Math. Sci, 6 (2008), pp. 507–520.
[13] K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. S. Dhillon, and A. Tewari, Prediction

and clustering in signed networks: a local to global perspective., J. Mach. Learn. Res., 15
(2014), pp. 1177–1213.

[14] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A.

Porter, S. Gómez, and A. Arenas, Mathematical formulation of multilayer networks,
Phys. Rev. X, 3 (2013), p. 041022.

[15] M. De Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas, Navigability of intercon-
nected networks under random failures, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 8351–
8356.

[16] M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and A. Arenas, Centrality
in interconnected multilayer networks, arXiv:1311.2906v1, (2013).

[17] M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and A. Arenas, Ranking in
interconnected multilayer networks reveals versatile nodes, Nat. Commun., 6 (2015).

[18] M. De Domenico, Multilayer network dataset.
http://deim.urv.cat/∼manlio.dedomenico/data.php.

[19] E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University
Press, 2011.

[20] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM
Rev., 52 (2010), pp. 696–714.

[21] E. Estrada and P. Knight, A first course in network theory, Oxford University Press, USA,
2015.

[22] R. Fagin, R. Kumar, and D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math.,
17 (2003), pp. 134–160.

[23] D. Fasino and F. Tudisco, An algebraic analysis of the graph modularity, SIAM J. Matrix
Anal. Appl., 35 (2014), pp. 997–1018.

[24] D. Fasino and F. Tudisco, Generalized modularity matrices, Linear Algebra Appl., 502
(2016), pp. 327–345.

[25] D. Fasino and F. Tudisco, A modularity based spectral-method for simultaneous community
and anti-community detection, to appear on Linear Algebra Appl., (2017).

[26] A. Gautier, Q. N. Nguyen, and M. Hein, Globally optimal training of generalized polyno-
mial neural networks with nonlinear spectral methods, NIPS, (2016), pp. 1687–1695.

[27] A. Gautier, F. Tudisco, and M. Hein, The Perron-Frobenius theorem for multi-
homogeneous maps, arXiv:1702.03230, (2017).

[28] A. Gautier, F. Tudisco, and M. Hein, A unifying Perron-Frobenius theorem for nonnega-
tive tensors via multi-homogeneous maps, in preparation, (2017).



24 F. Tudisco, F. Arrigo, and A. Gautier

[29] P. Grindrod, D. J. Higham, and V. Noferini, The deformed graph Laplacian and its
applications to network centrality analysis, University of Essex Research Repository EPrint:
18919, University of Essex, (2017).

[30] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Second ed.,
2012.

[31] M. Khamsi and A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Wiley-
lnterscience, 2001.

[32] C. Khatri and C. R. Rao, Solutions to some functional equations and their applications to
characterization of probability distributions, Sankhyā, Series A, (1968), pp. 167–180.
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