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Covariance Symmetries Detection in PolInSAR Data

Sofiane Tahraoui , Carmine Clemente , Member, IEEE, Luca Pallotta , Member, IEEE,

John J. Soraghan, Senior Member, IEEE, and Mounira Ouarzeddine

Abstract— In the last two decades, the use of synthetic aper-
ture radar (SAR) for remote sensing purposes has significantly
developed due to improvements in the quality and the avail-
ability of the images. Two powerful SAR techniques, namely,
polarimetry and interferometry, have further increased the range
of applications of the sensed data. Using polarimetry, geometrical
properties and geophysical parameters, such as shape, roughness,
texture, and moisture content, can be retrieved with considerable
accuracy, while interferometric information may be used to
extract vertical information with accuracy less than 1 cm. In this
paper, the potential of using joint polarimetry and interferometry
techniques in SAR data (PolInSAR) for the purpose of SAR image
classification is investigated. To achieve this goal, we extend a
covariance symmetry detection framework to the PolInSAR sce-
nario. The proposed approach will be shown to be able to exploit
the peculiar structures of the covariance matrices of PolInSAR
images to discriminate structures within the image. Results using
real-SAR data are presented to validate the effectiveness of the
proposed approach.

Index Terms— Azimuth symmetry, cross covariance, detec-
tion, polarimetric interferometry, PolInSAR, reflection symmetry,
rotation symmetry, symmetries.

I. INTRODUCTION

P
OLARIMETRIC interferometry is a recent technique, [1]

which uses two spatially shifted polarimetric antennas

allowing the measurement of the coherence associated with

the various polarimetric channels as well as the height of the

polarimetric phase centers. The potential of this technique for

the extraction of physical parameters from vegetation, ice, and

urban areas has been validated on various data sets and is still

being evaluated on other types of data acquired at high resolu-

tion by airborne systems [2]–[4]. The polarimetric scattering

phenomenon of a medium can be described completely using a

(3 × 3) matrix formulation, namely, the covariance matrix [5].

In general, the medium encountered exhibits symmetric prop-

erties, for example, the forest canopy layer, which consists of

randomly oriented leaves twigs and branches, exhibits usually
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azimuthal symmetry [6], while an agricultural field ploughed

in the direction parallel to the flight path has a reflection

symmetry [7]; finally, an elliptical scatterer is a general

example of rotation symmetry [7]. The form of the covariance

matrices is related to the medium symmetries, which makes

it detectable. However, the backscattered signal from natural

sources, such as forests and high-altitude vegetation, is always

a mixture of responses from the vegetation volume and the

underlying ground [8], particularly in forest areas, where

target scattering space expands in height. This means that

the scattering is a combination of all vertical elementary

scatterers. This phenomenon does not allow differentiation

between symmetry sources, for example, it is not possible

to state if a detected azimuth symmetry originates at the

ground level due to the vegetation or is due to the canopy

contribution. Thus, a technique is required that is able to

discriminate between the different contributions. The use of

polarimetric synthetic aperture radar interferometry instead

of just polarimetric SAR (Pol-SAR) represents a potential

solution to this challenge, since it enables the estimation of

elevation in each resolution cell.

The purpose of this paper is to extend the framework

developed in [9] for the detection of covariance symmetries

in polarimetry and interferometry techniques in SAR data

(PolInSAR). Precisely, both the radar returns of the PolIn-

SAR scenario and the strategy for symmetries detection are

modeled. Compared with the work presented in [9], this

framework enhances the capability of detecting covariances

not only in 2-D but also in a 3-D space. The proposed

analytical framework differs from that of [9], as it accounts for

peculiar characteristics of the PolInSAR covariance matrices

as well as thanks to its capabilities to provide a novel tool

for advanced remote sensing applications. An example of

the latter consists in integrating the proposed approach in an

enhanced H-A-α [10], [11] PolInSAR decomposition in order

to extract different classes containing both the symmetry and

elevation information. The proposed framework is validated

on real-SAR data, demonstrating that more information can

be extracted from the PolInSAR data compared with the

polarimetric data only.

The remainder of this paper is organized as follows.

Section II introduces the basic concept of Pol-SAR inter-

ferometry and describes its symmetric target properties.

The proposed framework for detecting covariance symmetries

in PolInSAR is developed in Section III. The performance of

the proposed technique applied both on simulated and real

L-band SAR data is presented and discussed in Section IV.

Finally, some remarks are given before we conclude this paper.
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II. SYMMETRIC TARGET PROPERTIES

In monostatic PolInSAR systems, the imaging area is

scanned at least twice from slightly different angles. As a

result, the system produces one master image and a relative

scattering matrix, and several slave images and related scat-

tering matrices [12], [13]. The simpler scenario is represented

when only one slave image is generated and is called bis-

canning system yielding to two scattering matrices [14], [15],

namely, Sm and Ss , where the subscript m stands for master

and s stands for slave

Sm =
[

Shhm Shvm

Svhm Svvm

]
Ss =

[
Shhs Shvs

Svhs Svvs

]
. (1)

The subscripts hh, vv, hv, and vh identify the transmit-

ter/receiver Pol-SAR channels.

The complete scattering phenomenon representing one reso-

lution cell can be described using a (6 × 6) covariance matrix

C6 formed using the superposition of the scattering vectors−→
k m and

−→
k s obtained in turn by vectorization of (1) under

the conventional linear basis as

−→
k m = 1√

2

⎛

⎝
Shhm√
2Shvm

Svvm

⎞

⎠ −→
k s = 1√

2

⎛

⎝
Shhs√
2Shvs

Svvs

⎞

⎠ . (2)

Thus, the covariance matrix C6 formed using the superpo-

sition of those scattering vectors can be written as

C6 =
〈[−→

k m−→
k s

]
[−→

k
H

m

−→
k

H

s

]
〉

the extended version of C6 is reported in (3), as shown at

the bottom of this page, where C11 and C22 are the 3 × 3

conventional Hermitian polarimetric covariance matrices that

describe the polarimetric properties of each image separately

and C12 and/or C21 is the 3 × 3 cross-covariance matrix that

contains not only polarimetric information but also information

related to the interferometric phases of different polarization

channels.

When the medium exhibits symmetric properties, these

polarimetric matrices (i.e., C11 or C22), and PolInSAR matri-

ces (i.e., C12 and C21), show a particular structure [7], [16].

These matrices contain a rich amount of information allowing

us to analyze targets symmetry types. Moreover, the use of the

cross-covariance matrix enables us to localize in the vertical

direction the detected symmetries. Hence, the starting point is

the definition of the cross-correlation matrix in the presence

of a reciprocal medium [5], [17] (4).

(4)

It is important to note that while C6 is Hermitian semidefinite

positive by definition, Cint is not. Among the vast number

of forms that this matrix can exhibit, it is desirable to detect

canonical structures related to known properties of symmetry.

The phase difference between the master and the slave is

caused by the difference in the path [1], [18], [19] of the wave

as well as to the temporal change between the two acquisitions

(i.e., the master and the slave phases) [20]. In our case,

we ignore the effect of the latter and suppose null temporal

baseline.

In the following, we will describe how different phase

contributions operate in PolInSAR.

Let us denote by S the polarimetric scattering coefficient,

with p and q representing one of the possible transmitter and

receiver polarizations (H or V), respectively.

(3)
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1) Identical Polarization in Transmission/Reception: When

using identical polarization in transmission and recep-

tion, the only phase component is a combination

between the master and the slave phases ϕint as shown

in (8) and (9)

Sppm
= |Sppm

|e jϕppm Spps
= |Sppm

|e jϕpps (5)

where

ϕppm
= −4π Rm

λ
+ ϕscr (6)

and

ϕpps
= −4π Rs

λ
+ ϕscr = −4π(Rm + δR)

λ
+ ϕscr (7)

Rm and Rs are the geometric distances and ϕscr is the

proper phase of the scatterer in the same resolution cell

(i.e., same scatterer). So, the interferometric phase can

be written as

ϕint = ϕppm
− ϕpps

= −4πδR

λ
(8)

and

hSppm
Spps

i = |Sppm
||Sppm

|e jϕint

hSppm
Sqqs i = |Sppm

||Sqqm |e jϕint . (9)

2) Different Polarizations in Transmission/Reception Only

in Master or Only in Slave: In case of using differ-

ent polarizations between transmission and reception,

an additional phase component τpq linked to a polar-

ization phase shift between p and q is added as shown

in (10), and this component appears in (11)

Spqm = |Sppm
|e− j

4π Rm +τpq
λ +ϕscr

Spqs = |Sppm
|e− j

4π Rm +δR+τpq
λ +ϕscr (10)

hSppm
Spqs i = |Sppm

||Spqm |e jϕint+ϕpq

hSpqm Spps
i = |Sppm

||Spqm |e jϕint−ϕpq . (11)

3) Different Polarizations in Transmission/Reception

in Master and Slave Acquisitions: In this case,

the additional phase component τpq will be compensated

and vanishes as in

hSpqm Spqs i = |Spqm ||Spqm |e jϕint

hSqpm Spqs i = |Sqpm ||Spqm |e jϕint . (12)

Hereafter, we review the general cross-covariance matrix

(i.e., C12 and C21) when symmetry properties are predominant

on the target in view. Note that the phase center of the

volume scattering will be assumed to be the same for all

polarizations [8]. And for analytic purposes, we will assume

that

|Shhm | = |Shhs | |Svvm | = |Svvs |. (13)

In the following, each case of symmetry will be represented

by its cross-covariance matrix, taking into account the inherent

interferometric information.

A. Reflection Symmetry

Let us consider an agricultural field ploughed in the direc-

tion parallel to the flight line. Such a medium exhibits a

reflection symmetry along the propagation direction plane and

the h polarization direction. In such a situation, the correlation

between the copolarized and the cross-polarized elements

is forced to be null, leading to the following form of the

covariance and cross-covariance matrices C
r f

int [7] [see (14)].

(14)

This result is valid for volume scattering, surface scattering,

or volume–surface interactions for all scattering orders no

matter how dense the medium or how rough the surface.

In particular, it is valid as long as the scattering configuration

has the reflection symmetry [5], [7], [9]. Let us consider a

permutation matrix U, i.e.,

U =

⎡
⎣

0 1 0

1 0 0

0 0 1.

⎤
⎦ (15)

This matrix permits us to transform C
r f

int as

C
r f
Sm = UC

re f
int UH

=

⎡

⎣
2
〈

Shvm S∗
hvs

〉
0 0

0
〈

Shhm S∗
hhs

〉 〈
Shhm S∗

vvs

〉

0
〈

Svvm S∗
hhs

〉 〈
Svvm S∗

vvs

〉

⎤

⎦

=
[
a 0

0 C1
int

]
(16)

where

C1
int =

[
|Shhm ||Shhm |e jϕint |Shhm ||Svvm |e jϕint

|Shhm ||Svvm |e jϕint |Svvm ||Svvm |e jϕint

]
(17)

and

a = 2|Shvm ||Shvm |e jϕint . (18)

Under the assumption (13), C1
int is a symmetric matrix and a is

a complex number containing the vertical position information.

B. Rotation Symmetry

The rotation symmetry is characterized by a covariance

matrix invariance under the rotation around an axis by any

considered angle [5]. Denoting by

T =

⎡
⎢⎢⎢⎣

1√
2

0
1√
2

1√
2

0 − 1√
2

0 1 0

⎤
⎥⎥⎥⎦ (20)
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a transition matrix from covariance to coherence (note that

the two representations are equivalent and contain the same

information) and by

V =

⎡

⎣
0 1 0

0 0 j

1 0 0

⎤

⎦ (21)

a complex permutation matrix, allowing us to model Crot
int as

T
rot

Sm
= VTC

rot

intT
H

V
H =

[
T

2

int
0

0 b

]
(22)

where

Tint = 2e jϕint

[
E11 E22

E22 E11

]
(23)

where

E11 = |Shvm ||Shvs |
E22 = |Shhm ||Shvs |e j (ϕhv−π/2).

Thus, Tint is a centrosymmetric matrix and b = |Shhm |(|Shhs |+
|Svvs |)e jϕint is a complex number.1

C. Azimuth Symmetry

The azimuth symmetry arises as the combination of a rota-

tion with reflection symmetries in any plane that contains the

rotation symmetry axis. Thus, the PolInSAR cross-covariance

matrix in this case can be written as in (24), as shown at the

bottom of this page.

In addition, its corresponding coherence matrix is

T
Az

Sm
= TC

Az

intT
H =

⎡

⎣
c 0 0

0 d 0

0 0 d

⎤

⎦ (25)

where c = |Shhm |(|Shhs | + |Svvs |)e jϕint and d =
2|Shvm ||Shvs |e jϕint are both complex numbers containing the

vertical position information.

1A centrosymmetric matrix is a matrix which is symmetric about its center.
In particular, it means that the entries of the matrix satisfy the condition
Tint = JTint J . Where J is an n × n permutation matrix with ones on the
secondary diagonal and zeros elsewhere.

III. TARGET SYMMETRY DETECTION

At this point, we have to define multiple hypotheses asso-

ciated with each of the previously discussed symmetries. Let

us consider the following hypotheses.

H1: No symmetry.

H2: Reflection symmetry.

H3: Rotation symmetry.

H4: Azimuth symmetry.

As proposed in [17] and [21], we consider a complex

multivariate normal distribution with zero mean for N-looks

3-D observable random complex vectors
−→
Z obs i.e.,

−→
Z obs = (Shh

√
2Shv Svv)

T (26)

as

f(
−→
Z obs|C) = 1

π3N |C|N
exp{−tr(C−1S0)} (27)

where | · | denotes the determinant, tr(·) denotes the trace of

the matrix, and S0 = [−→Z m
−→
Z H

s ]. Each one of the four classes

(i.e., H1, H2, H3, and H4) has its specific characteristics.

We shall call it the symmetry class and will be denoted as

Csym. The maximum likelihood (ML) estimate of Csym can be

obtained as the optimal solution to the optimization problem,

i.e., (19) shown at the bottom of this page

max
C

(log(f(
−→
Z obs |C))) = −N min

C
[log |C|

+ tr(C−1S)] − 3N log π (28)

where S = S0/N .

The third term on the right-hand side of (28) and the

factor N can be ignored, because they do not affect the pixel

classification. Thus, the optimal value is obtained by using

min
C

[log |C| + tr(C−1S)] (29)

and the optimal solution Ĉsym for the previous classes are,

respectively, given by the following.

H1: log |S| + 3 where Ĉsym = S.

(19)

(24)
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H2: log S̄1,1 + log |S̄3,3| + 3, where

Ĉsym = U
H

[
S̄1,1 0

0 S̄3,3

]
U and S̄ = U

[
S̄1,1 S̄1,3

S̄3,1 S̄3,3

]
U

H

.

H3: log |((1/2)(S̃1,1 + J S̃
T

1,1 J ))|+ log S̃2,2 +3+ log 2, where

Ĉsym = T
H

V
H

⎡
⎣

1

2
(S̃1,1 + J S̃1,1 J) 0

0 S̃2,2

⎤
⎦VT

and

S̃ = VTST
H

V
H =

[
S̃1,1 S̃1,2

S̃2,1 S̃2,2

]
.

H4: log(S̆1,1) + 2 log((S̆2,2 + S̆3,3)/2) + 3 + log 2, Ĉsym =
T

H

diag(S̆1,1, ((S̆2,2 + S̆3,3)/2), ((S̆2,2 + S̆3,3)/2))T,

where S̆ = TST
H

, and S̆1,1, S̆2,2, and S̆3,3 are its

diagonals entries.

In order to overcome the multiple hypothesis testing prob-

lems, [9] considers a model order selector [i.e., Akaike’

information criterion, Bayesian information criterion (BIC),

generalized information criterion (GIC), and exponentially

embedded family (EEF)] [22], and shows that BIC, GIC, and

EEF are more reliable and provides a superior performance.

For this reason, we consider herein the two last approaches

for our tests, namely, the GIC approach [22] and the EEF

approach [23], we believe that this guarantees sufficient accu-

racy. Their general theoretical formulations are described next.

1) Generalized Information Criterion:

−2 log( f (R|Ĉ(n)
)) + nη(n, N) (30)

where Ĉ
(n)

is the ML estimate of C for n parameters

and η represents the penalty term [22], [24].

Thus, for each of the four aforementioned hypotheses,

the decision statistic becomes as follows [9].

H1:

2N log |S| + 6N + 6N log π + 9η.

H2:

2N log |S̄1,1| + 2N log(S̄3,3) + 6N

+6N log π + 5η.

H3:

2N log

∣∣∣∣
(

(̃S2,2+J̃S
T

2,2J)

2

)∣∣∣∣+ 2N log S̄1,1

+ 6N + 2N log 2 + 6N log π + 3η.

H4:

2N log(Ŝ1,1) + 4N log
(

Ŝ2,2+Ŝ3,3

2

)
+ 6N

+ 2N log(2) + 6N log π + 2η.

2) Exponentially Embedded Families:

EEF(i) =
{

lG i (
−→
Z obs)−n(i)

[
log

(
lGi

(
−→
Z obs)

n(i)

)
+1

]}

×u
(

lGi
(
−→
Z obs)

n(i) + 1

)
(31)

where

lG i (
−→
Z obs) = 2 log

[
f
(−→

Z obs;�̂(n(i))
m

)

f
(−→

Z obs;�̂(0)
m

)
]
, i = 1, 2, 3, 4

with u(·) the Heaviside step function, and for each of

the four aforementioned hypotheses, n(i) represents the

associated number of unknown parameters and under the

hypothesis that �̂
(0)
m is defined as n-dimensional identity

matrix, i.e., �̂
(0)
m = In , lG i (

−→
Z obs) becomes [9]

H1:

lG1(
−→
Z obs) = −2N log |S| − 6N + 2tr(S0).

H2:

lG2(
−→
Z obs) = −2N log(S̄1,1)−2N log |S̄3,3|

− 6N + 2tr(S0).

H3:

lG3(
−→
Z obs) = −2N log(S̄2,2)

− 2N log

∣∣∣∣
(

1

2

(
S̃1,1 + J S̃

T

1,1 J
))∣∣∣∣

− 6N − 2N log(2) + 2tr(S0).

H4:

lG4(
−→
Z obs) = −2N log(Ŝ1,1) − 2N log

(
Ŝ2,2+Ŝ

∗
3,3

2

)

− 2N log
(

Ŝ
∗
2,2+Ŝ3,3

2

)
− 6N

− 2N log(2) + 2tr(S0).

Here, we should mention that we can combine both approaches

and make a joint decision which give more reliable decision.

In the following, we use them separately.

A. Proposed Framework

Fig. 1 summarizes the overall pipeline of the proposed

framework as four main steps. The input consists of a PolIn-

SAR cross-covariance matrix data set (i.e., C12 or C21). As the

matrix exhibits a special form for each of symmetries, we use a

particular transformation for each of the symmetries detection,

and after performing matrices’ transformations, we apply the

model order selection using EEF/GIC for detecting the perti-

nent symmetry. Then, we use the interferometric information

to retrieve the associated phase center for the i th resolution

cell. The phase is estimated by isolating one polarization

channel that scatters from the top of the canopy and, hence,

generates a height estimate directly by

hv = arg(γwv ) − φ̂g

kz

(32)

where wv is often taken to be HV, as this channel is dominated

by volume scattering. However, the phase center of HV can

be located anywhere between the top of the canopy and

its foot. These depend on two parameters related to the

vegetation, namely, the mean wave extinction and vertical

canopy structure variation, as is the radar frequency which

controls the penetration depth.
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Fig. 1. Overall pipeline of PolInSAR covariance symmetries detection.

The estimated volume height corresponds to the phase cen-

ter of the volume scattering mechanism and not the top of the

trees. Consequently, the estimated height is greater than half

of the actual tree height, but it is less than the full height [16].

Then, the inverse transformation is applied by assuming an

ideal form of the matrix for each symmetry case, and there-

after, the H-A-α extraction is applied to the ideal form of the

covariance matrix.

IV. PERFORMANCE ANALYSIS

In this section, the performance analysis and its validation

are achieved first using simulated data through Monte Carlo

simulations. The performance is also assessed using two

real-L-band data sets. The height estimation of the detected

symmetries is also assessed on real data.

A. Analysis Using Simulated Data

In spite that the cross-covariance matrix has different form

comparing with the covariance matrix due to the interfero-

metric information and temporal baseline bias, however, it still

depicts the same form when encountering a symmetry case [7].

The best way to test the detection of symmetries within the

cross-covariance matrix is through a series of Monte Carlo

simulations [17]. For this aim, we generate some data samples

that fit the form of the theoretical cross covariance (i.e., C12

and C21) in case of each of the four scenarios as follows.

1) No Symmetry: A random cross-covariance matrix is

generated using Monte Carlo simulations.

2) Reflection Symmetry:

⎡

⎣
1 0 0.4 − 0.25 j

0 0.25 0

0.4 + j0.25 0 0.4

⎤

⎦× e jϕint . (33)

3) Rotation Symmetry:

⎡

⎣
1 j0.25e jϕhv 0.2

− j0.25 e jϕhv 0.3 j0.25e jϕhv

0.2 − j0.25 e jϕhv 1

⎤

⎦× e jϕint

(34)

4) Azimuth Symmetry:

⎡
⎣

1 0 0.6

0 0.2 0

0.6 0 1

⎤
⎦× e jϕint (35)

where ϕint represents the interferometric phase and is

selected randomly within [0, 2π], and ϕhv represents

the phase shift between polarizations and is selected

randomly within [0, π].
Fig. 2 shows the proportion of a correct classification for

N = 25 data vectors, relative to each of the four analyzed

models. The subplots refer, respectively, to the four consid-

ered covariance scenarios, and the performance measures are

related to three-order selectors (i.e., GIC with ρ = 2, GIC

with ρ = 3, and EEF).

Results show that the EEF and GIC approaches provide a

good performance except for the cases where symmetries lead

to similar structures in the covariance matrix (i.e., azimuth

and rotation symmetries), in which the probability of cor-

rect classification reaches about 95%, which is more than

acceptable.

B. Analysis on Real Data

The performance analysis and its validation are assessed

using two real data sets. First, we have used the fully polari-

metric L-band (1.3 GHz) Oberpfaffenhofen E-SAR repeat pass

data set, with an incidence angle ranging between 27° and 55°.

The site contains different regions with various properties

(Fig. 3), namely, urban areas, such as that surrounded by a red

rectangle, forested area surrounded by a green rectangle, and

bare areas that contain an aircraft runway referred to in the

figure by a yellow arrow. Moreover, for reasons of acquisi-

tion parameters availability and flexibility, such as frequency,

wavenumber, baseline, and flat earth, necessary elements for

height retrieval, we have also used the BiosSAR-II fully polari-

metric L-band data set, wherein we can associate symmetries

to its vertical position. Precisely, an area of 600 ×3000 pixels

has been selected for the test. Almost all the parts of the

zone are forested and situated in the province of Västerbotten

in northern Sweden [see Fig. 6(a)].
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Fig. 2. Probability of correct classification for N = 25 data vectors. (a) Random cross-covariance matrix. (b) Reflection cross-covariance matrix form.
(c) Rotation cross-covariance matrix form. (d) Azimuth cross-covariance matrix form. H1: no symmetry detected with black. H2: reflection symmetry
detected with blue. H3: rotation symmetry detected with red. H4: azimuth symmetry detected with green.

1) General Test Using GIC and EEF: As mentioned earlier,

scatterers with specific geometric properties exhibit a specific

symmetry. For instance, in red rectangle in Fig. 3(b), one

can clearly notice the urban area manifests reflection (blue)

and no symmetry (black). This is due to the fact that the

urban areas contain, in general, a large amount of anisotropic

scattering provided from man-made structures, which mean

a nonnull degree of correlation between copolarization and

cross-polarization channels [25]. This fact is manifested in the

absence of both the reflection and azimuth symmetries. This is

noticed clearly on the fencing of the neighboring agricultural

land, indicated by the red arrow in Fig. 3(b), Notice that

for the same fencing but oriented differently exhibits rotation

symmetry (indicated by a white arrow).

On the other hand, the reflection symmetry implies a

null correlation between copolarization and cross-polarization

channels [25], which can be produced for soil surfaces without

row structures [blue rectangle in Fig. 3(a)]. It is also the case

for volume scattering from random layer media containing

spherical particles [26] at standard frequencies (C- or L-band),

this property is usually used for polarimetric calibration [27].

A randomly perturbed periodic rough surface obeys the con-

straints imposed by reflection symmetry [5]. This supports

the distribution of blue in Fig. 3(b), which is in general

an agriculture field. The azimuthal symmetry possesses the

characteristics of both the reflection and rotation symmetries,

which means that the reflection symmetry is guaranteed in any

vertical plane passing the axis of rotation [25], the azimuth

symmetry is shown by a uniformly random medium with

spherical scatterers [7], usually, the forest canopy is an exam-

ple for such case (even at penetrating frequencies), and can

also be exhibited by slightly rough surfaces at low inci-

dences [28], [29]. In Fig. 3(b), we notice that the green that

represents the azimuth reflection appears mostly in the forested

areas (yellow rectangle). However, the azimuth symmetry must

be interspersed with underlying ground reflection symmetry,

more or less pursuant to the in situ pattern. It can be clearly

observed the important difference between classes distinction

by comparing Fig. 3(b) (PolInSAR detection) and Fig. 4

(PolSAR detection). In particular, comparing the reflection and
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Fig. 3. (a) Optical image of the test site in Oberpfaffenhofen (Google Earth). (b) GIC index associated with the four hypotheses performed using a cross
covariance matrix. H1: no symmetry with black. H2: reflection symmetry with blue. H3: rotation symmetry with red. H4: azimuth symmetry with green.

Fig. 4. GIC index associated with the four hypotheses performed using
polarimetric covariance matrix. H1: no symmetry with black. H2: reflection
symmetry with blue. H3: rotation symmetry with red. H4: azimuth symmetry
with green.

azimuth symmetries in forested areas, polarimetric detection

seems to confuse trees canopy with gaps between trees, which

is reflected by the lack of reflection symmetry in those areas.

It can also be noticed that some patterns are missed as

well as lot of symmetries in comparison with the PolInSAR

detection [see yellow arrows in Figs. 3(b) and 4]; for example,

the aircraft runway has disappeared completely and confused

with the nearby field, as well as the rotation symmetry which

has greatly decreased particularly in the forested area.

Algorithm 1 H-A-α Decomposition Using Symmetry

initialization ;

while not at end of the dataset do
Data:

1) read current pixel ;

Cint =⎛
⎜⎜⎜⎝

〈
Shhm S∗

hhs

〉 √
2
〈

Shhm S∗
hvs

〉 〈
Shhm S∗

vvs

〉
√

2
〈

Shvm S∗
hhs

〉
2
〈

Shvm S∗
hvs

〉 √
2
〈

Shvm S∗
vvs

〉
〈

Svvm S∗
hhs

〉 √
2
〈

Svvm S∗
hvs

〉 〈
Svvm S∗

vvs

〉

⎞
⎟⎟⎟⎠

;

2) Perform transformations and compute the matrices

S, S̄, S̃, and S̆ ;

3) Estimate dominant symmetry using GIC/EEF of the

pixel, as described in Section III ;

4) Perform the inverse transformation of the pixel

matrix, and get the canonic form of the

cross-covariance matrix by eliminating noise ;

5) Extract H-A-α decomposition starting from the new

matrix form ;

end

Result: 2D H-A-α decomposition map.

2) H-A-α Decomposition Using Symmetries: The knowl-

edge of the symmetry is very important of many PolSAR/

PolInSAR applications. In order to give an additional evi-

dence of the effectiveness of the approach, we have used

H-A-α decomposition with and without using the symmetry

information in order to highlight its contribution. Algorithm 1

shows all the basic steps for the H-A-α decomposition using

a symmetry for each pixel of the image. And for more details

about the procedure, see [9].
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Fig. 5. Comparison between, alpha “α,” entropy “H,” and RGB of H-A-α using symmetry properties and without (Left column contains the H-A-α performed
without using symmetries, and right column performed using symmetries).

In Fig. 5, α and H matrices are plotted with/without using

the symmetries information. We have used GIC (with ρ = 3,

and 3 × 3 sliding window). From Fig. 5, we can notice that

some areas appear clearer on the right side image than that of

the left side one (red arrows), such as the aircraft landing

runway, which appears well delineate. This is manifested

clearly in the RGB image in the bottom of Fig. 5. As is

known [10], the parameter α is associated with the nature of
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Fig. 6. (a) Pauli-RGB coded image of the selected region (red: HH-VV, green: 2HV, and blue: HH+VV) from the BiosSAR-II data set; the region is located
at 64°1402.7200 N latitude and 19°47052.4700 E longitude (location indicated by green map marker). (b) 3-D phase difference map of the selected region of
test with the surface phases contour plot on the plane. The red line indicates the row chosen as an example for phase profile with symmetries.

the scattering mechanism. If α is zero, then the mechanism

is that of a canonical surface scattering. This translated the

appearance of the airplane track. In the other extreme case,

i.e., α = 90°, the backscattering mechanism is that of a

dihedral or helices. It is known [10] that the entropy of the

target is defined as the randomness indicator of the global

scattering phenomenon. A zero entropy indicates that the

observed target is pure and the scattering is deterministic [10],

while the completely random character of the observed target

is defined by an entropy equal to one. The test site consists

mainly of forest or agricultural areas, and the vegetation

is characterized by randomness. Consequently, most regions

reach a one H ∼= 1, andthis appears more readable on the

entropy made using the symmetry (right images). To give

an additional evidence of the effectiveness of the approach,

we have represented the H-A-α decomposition in RGB colors,

and the results do not need scrupulous attention to see the

difference. For example, the aircraft track (yellow arrow in the

bottom right of Fig. 5) appears as a different class compared

with the neighboring flat area in contrast to the left RGB image

[Fig. 5 (bottom left)]. In addition, we notice the emergence of

new areas in the forested region indicated by the red arrows

[Fig. 5 (top right) and Fig. 5 (bottom) by green arrows], which

are in fact a bare soil. In addition, we notice that some regions

with medium-length vegetation (indicated by black arrows) are

assigned to the same class as forested.

3) Vertical Position of Symmetries: Based on the fact that

each of the symmetries is related to one or other form of

scattering geometry [5], [7], symmetries’ map can be used

as the preland/postland classifier. It has also the potential to

provide number of benefits To PolInSAR applications. Thus,

producing a 3-D symmetries map instead of a 2-D map can be

very convenient and promising. In this section, we attempted

to validate the processing algorithm by associating vertical

position. To this aim, we have used BioSAR II campaign data

set, which offers users the capability to choose between a

variety of baseline with kz values between 0.01 and 0.3 rad/m
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Fig. 7. (Top) Phase difference images of the test site performed using the formula (32). The four graphs correspond to the estimated horizontal phase profile
associated with detected symmetries according to GIC and EEF (black: no symmetries, blue: reflection symmetries, red: rotation symmetries, and green:
azimuth symmetries) carried out along the red line in Fig. 6. The two graphs on bottom correspond to an 18-m baseline, and the two other correspond to a
12-m baseline.

over a vast forested area with a variety of trees species.

The BioSAR II data set is acquired at L-band over Krycklan

forest site and came with a related ground truth, such as

trees species and height, digital elevation model (DEM), and

stand density helpful for cross validation. The mean forest

height in Krycklan is of 18 m and the mean biomass level
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is of 90 t/ha. The measured maximum forest height is about

30 m. The topography in the site is characterized by moderate

slopes and a height variation. The objective is to use the cross-

covariance matrix to detect symmetries and its related height

by using DEM differencing. Fig. 6 shows the Pauli-RGB coded

(i.e., red: HH−VV, green: 2HV, and blue: HH+VV) image of

the selected region, where the horizontal red line denotes the

phase profile transaction, which passes through homogeneous

forest, groove, and an agriculture region.

For a better visual comparison, Fig. 7 shows all detected

symmetries by different estimators according to GIC and

EEF (black: no symmetries, blue: reflection symmetries, red:

rotation symmetries, and green: azimuth symmetries), as well

as their vertical positions performed using formula (32) from

two different baselines, namely, 12 m (graphs on top) and

18 m (graphs on bottom) carried out along the red line. Only

the PolInSAR phase difference map, scaled from 0 to 120 m,

from 12-m baseline is superimposed on the top (Fig. 7).

The maximum phase difference obtained with the two con-

sidered baselines is 138 m for 12-m baseline and 133 m for

18-m baseline.

As shown in Fig. 7, the detected symmetries are approxi-

mately the same for the two baselines more resemblance for

the same detectors. Moreover, it can be observed that the

difference appears mainly between the reflection and azimuth

symmetries. This is caused by two main reasons: 1) the

similarity between the two covariance matrices (azimuth and

rotational symmetries) which disturbs the decision and 2) the

difference in the angle of view between the two baselines

which causes a change in the reflection geometry.

V. CONCLUSION

In this paper, we have extended a recent framework for

detecting covariance symmetries to the PolInSAR data; the

formulation of detecting covariance symmetries within the

PolSAR data has been adapted to PolInSAR in order to detect

not only the symmetry but also its associated interferometric

information, by using the cross-covariance matrix instead of

the cocovariance (namely, master or slave). The validation of

the algorithm has been achieved using the E-SAR repeat pass

PolInSAR data acquired at L-band over the Oberpfaffenhofen

area in Germany. The procedure considers the GIC approach

in order to deal with the multiple hypothesis testing problem

(i.e., no symmetry, reflection symmetry, rotation symmetry,

and azimuth symmetry), since that GIC provides good results.

The fact that makes this approach more reliable is the coherent

distribution of the index of symmetry, which corresponds to

the theory and conforms to the ground reality, for example,

the azimuth symmetry in the forested area and the reflection

in surfaces.

The results were very encouraging and satisfactory and

have opened a promising field of future applications, for

example, it might be exploited to separate some elements

over the forested areas in order to increase the accuracy

of inversion methods. Moreover, it must pay attention to

the promising benefits that could be drawn from PolInSAR

symmetry detection, and the added value in the PolInSAR data

retrieval applications, where it can be used as a criterion to

confirm the validity of the vegetation height retrieval process.

For example, in the RVoG model [29], the inversion method

is based on least squares line fit to find the best fit straight

line inside the unit circle. And the far intersection with a

unit circle to HV coherence represents the ground topography,

while the height is assumed to be represented by the HV

polarization. The use of symmetry, in this case, would increase

the reliability of the inversion by taking it as an additional

assumption, as the reflection symmetry is related mostly to

the vegetation, and the azimuth symmetry can reveal about

ground surfaces. Future works will be devoted to the use of

this procedure for pure PolInSAR applications.
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