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ARTICLE

Spontaneous light-mediated magnetism in cold
atoms
I. Krešić1,2, G. Labeyrie3, G.R.M. Robb1, G.-L. Oppo1, P.M. Gomes 1, P. Griffin1, R. Kaiser3 & T. Ackemann 1

Cold atom setups are now commonly employed in simulations of condensed matter phe-

nomena. We present an approach to induce strong magnetic interactions between atoms on

a self-organized lattice using diffraction of light. Diffractive propagation of structured light

fields leads to an exchange between phase and amplitude modulated planes which can be

used to couple atomic degrees of freedom via optical pumping nonlinearities. In the

experiment a cold cloud of Rb atoms placed near a retro-reflecting mirror is driven by a

detuned pump laser. We demonstrate spontaneous magnetic ordering in the Zeeman sub-

levels of the atomic ground state: anti-ferromagnetic structures on a square lattice and

ferrimagnetic structures on a hexagonal lattice in zero and a weak longitudinal magnetic field,

respectively. The ordered state is destroyed by a transverse magnetic field via coherent

dynamics. A connection to the transverse (quantum) Ising model is drawn.
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I
mproving the understanding of magnetic interactions is of
paramount importance due to the challenges associated with
exotic magnetic phenomena, the potential connections to

high-Tc superconductivity, and the widespread use of magnetic
materials in current technology. A popular approach is to develop
relatively simple, controllable “quantum simulators” of magnetic
interactions using ultracold atoms loaded in optical lattices1.
These simulators have been used to investigate classical2 and
quantum3–7 magnetism, including the role played by the range of
the spin-interaction8–11. Without externally applied optical lat-
tices, spontaneous magnetization of spinor condensates12–14 has
been observed. Magnetic coupling between atoms is obtained via
artificial gauge fields15,16 or via dipole-dipole interaction of polar
molecules17, highly magnetic atoms18, and Rydberg atoms5,9,10.
Here we provide an alternative approach where spin-spin inter-
actions in a cold atomic gas are mediated through light over
length scales determined by diffractive dephasing. We demon-
strate antiferromagnetic and ferrimagnetic phases. Transitions
between magnetic phases are induced by external magnetic fields
in close connection to the transverse (quantum) Ising model19–26.

Results
Diffractive coupling scheme and experimental setup. The
matter density in ensembles of laser-cooled thermal atoms is
typically too low to observe direct magnetic interactions between
atoms in different Zeeman states. In our experiment, however,
strong interactions and magnetic ordering are mediated through
state-selective optical nonlinearities combined with diffractive
light propagation in a feedback scheme as sketched in Fig. 1a27. A
100–200 μK cold atomic cloud is illuminated by a pump laser
beam propagating along z and linearly-polarized along x. The
transmitted beam is retro-reflected by a semi-transparent mirror
(R > 95%) located at a distance d behind the cloud. The beam is
detuned from the atomic transition by several linewidths such
that single-pass absorption is moderate and the nonlinear effects
described here are mainly dispersive in character. Under these
conditions a spatial modulation of a state variable in the atomic
system at a transverse wavenumber q will impart a phase mod-
ulation on the transmitted light. Diffractive dephasing in the
feedback loop results in conversion of phase to amplitude mod-
ulations. This conversion is related to the Talbot effect28, a self-
imaging effect for periodic light structures. The phase between the

generated sidebands at q and the pump varies as exp(iq2z/(2k)) (k
wavenumber of light) under the paraxial approximation. Hence
for a wavenumber with exp(iq2(2d)/(2k))= i the initial phase
modulation is converted to an amplitude modulation for the
reentrant field, which can provide positive feedback to the ori-
ginal fluctuation for a self-focusing situation in which the phase
(or refractive index) increases with intensity. This provides the
light-mediated coupling in our experiment. The spatial period for
the ordered magnetization state is given by Λ ¼

ffiffiffiffiffiffiffiffi

4λd
p

27. The
emerging spatial structure spontaneously breaks the translational
and rotational symmetry in the x− y-plane transverse to the
pump axis. This is similar to the symmetry breaking in multi-
mode cavities29,30, but different from transversely pumped single-
mode cavities31–34 in which the symmetry and orientation of the
spatial structures is determined by the pump and cavity axis. For
cold quasi-2-level atoms in non-cavity schemes, the spontaneous
emergence of ordered structures was demonstrated previously in
experiments using either opto-mechanical nonlinearities due to
the dipole force35 or Sisyphus cooling-assisted bunching36,37 or
inversion patterns due to the saturation of the atomic
transition38.

In order to produce magnetic ordering, the magnetic
substructure of the atomic states can be exploited. The
experiment is performed on the F= 2→ F′= 3 transition of
the D2 line of 87Rb, but the simpler F= 1→ F′= 2 transition
(Fig. 1b) is sufficient to explain the observed features. Choosing
the quantization axis along z, the pump beam axis, the interaction
is described in terms of circularly polarized light components, σ+

and σ−. When a low saturation parameter is employed, the
optical properties of the gas are determined by the magnetization
in the ground state. This contains magnetic dipole and
quadrupole contributions which can be written in terms of the
density matrix elements ρij. Here we focus on the magnetic spin
w= ρ11− ρ

−1−1, which corresponds to a magnetic dipole in the
z-direction. It is produced by pumping with an optical beam
possessing a net spin, i.e. a non-zero circular polarization
component. The σ+ (resp. σ−) component induces population
transfer toward the stretched state mF=+1 (resp. mF=−1)
known as Zeeman pumping (Fig. 1b). In zero magnetic field, this
process is described by

_w ¼ �Γwwþ 5
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Fig. 1 Principle of experiment. a Schematic setup and scheme of pattern detection providing near field images projected on circular polarization states. M -

plane mirror with R≈ 0.95, λ/4 quarter-wave plate, PBS polarizing beam splitter cube, CCD charge-coupled device camera. The clockwise/counter-

clockwise arrows indicate the helicity monitored in the respective detection arms, the beams are linearly polarized after the PBS. b Level scheme of F= 1→

F′= 2 transition illustrating Zeeman pumping with circularly polarized light between Zeeman sub-levels with magnetic quantum numbers mF. A

longitudinal magnetic field with Larmor frequency Ωz removes the degeneracy between Zeeman states, a transverse field with Larmor frequency Ωx,y

couples them coherently. The population difference between the mF= 1 and mF=−1 levels represents an orientation or magnetic dipole oriented in z-

direction
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where D= P+− P
−
is the difference pump rate between the σ±-

components (each being characterized by a pump rate
P± � E±j j2) and Γw= r+ S/6 describes relaxation, r being an
effective relaxation rate due to atomic motion and S= P++ P

−

the sum of the pump rates. The latter saturation term ensures that
the spin orientation remains bounded.

As indicated, we concentrate on the interaction of the optical
spin with the atomic dipole moment (tensor rank 1 of irreducible
tensor components39). The F= 2 ground state used in the
experiment and the F= 1 ground state used in the modeling
allow for higher moments, in principle. A linearly polarized pump
field will not induce an orientation but will induce alignment
components (magnetic quadrupoles) X= ρ11+ ρ

−1−1− 2ρ00 and
Δm= 2 coherences Φ= 2ρ1−1= u+ iv. Effects of these are under
current investigation. For the full equations, we refer to Eqs. (8a)–
(8l) of the Supplementary Note 1. It is important to stress that the
magnetic fields induce coherent coupling within the dipole and
quadrupole components but not between dipole and quadrupole
components40, enabling us to treat the ordering of the dipole
magnetization separately from the more complex atomic states to
a large extent. The homogeneous quadrupole components are
important on a quantitative level and responsible for symmetry
breaking (see below) but they are not driving the magnetic
ordering discussed here.

The action of the atomic orientation (spin) pattern on the
optical spin structure, i.e. the circularly-polarized optical fields E±,
is described by

∂

∂z
E± ¼ �i

kχ ±

2
1 ±

3

4
w

� �

E± þ higher order multipoles

� �

:

ð2Þ

Here, χ±=�b0=ðkLÞ ´ 2Γ δ �Ωzð Þ½ �/ Γ2 þ 4 δ �Ωzð Þ2
� �

is the
linear susceptibility, where δ denotes the detuning, Γ the radiative
decay rate of the transition, b0 the optical density at line center, L
the medium length, and Ωz the Larmor frequency of the B-field in
z-direction. In zero magnetic field, the linearly polarized pump
field alone will not induce an orientation. As long as the spin
system w(x, y) in the atomic cloud is disordered, the difference
pump rate D of the fed back E±-fields is disordered, too. A
localized (Fig. 2a) or periodic modulation (Fig. 2b, c lowest
subpanel) will instead generate opposite modulations of phase
shifts for the σ± components (see the ±w in Eq. (2), Fig. 2c central
two subpanels) and, due to the diffractive phase-shifts in the
feedback loop, a spatial separation of the σ± components arises
(Fig. 2c uppermost subpanel). A self-organized optical spin
pattern is then generated in the backward field reentering the
cloud. The resulting non-zero difference pump rate, D, will drive
the atomic spin ordering via Eq. (1). As the propagation time of
the light field is much shorter than the time scales of the atomic
dynamics, the ordering can be interpreted as to arise from an
interaction of atoms in separate Zeeman states via light-mediated
coupling. For F= 1/2→ F′= 1/2 -transitions, a related instability
is known in hot atomic vapors41–46, but these studies focused on
the nonlinear optics aspects of the self-organization.

Polarization aspects were also investigated in the transverse
instability occurring in counterpropagating beams in a nonlinear
optical medium, although these studies focused on optical wave-
mixing47–53. The counterpropagating beam instability is linked to
the single-mirror feedback instability but requires a simultaneous
treatment of diffraction and nonlinearity. If in a single-mirror
setup the mirror position is in the medium, the threshold
increases and the length scale does not decrease any more like
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Fig. 2 Light-mediated coupling. a A localized perturbation of the z-magnetization w (solid black line) will lead to a difference pump rate D (dashed red line)

which enhances the original perturbation around x≈ 0, pumps into the anti-parallel direction providing antiferromagnetic coupling about half a lattice

period away (x≈ ±0.5, the transverse space coordinate is scaled to the lattice period Λ) and pumps into the parallel direction providing ferromagnetic

coupling about one lattice period away (x≈ ±1). The result is an Ising-like antiferromagnetic coupling of super-spins (see text) centered on the lattice sites.

(The input pump rate is adjusted for display purposes such that the magnetization and difference pump rate have equal peak amplitude.) b Above

threshold, the asymptotic ordered magnetic state is sustained via an optical spin pattern induced, in turn, via diffraction of the transmitted light. c Detailed

explanation of mechanism of spin ordering: A spatial modulation in the orientation w changes the refractive index for the σ+, σ−-components in an opposite

direction and hence after the atomic cloud the circular components of the pump acquire an opposite modulation of phase shifts (see Eq. (2)). After

propagation in the feedback loop, the resulting amplitude modulations are also opposite. The resulting optical spin structure can then sustain the atomic

orientation. Red arrows: Spin-up super-spins, blue arrows: spin-down super-spins, solid arrows: atomic super-spins, dashed arrows: corresponding super-

spin of photon helicity
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ffiffiffiffiffi

λd
p

but is limited to slightly larger than
ffiffiffiffiffi

λL
p

, where L is the
medium length, as a new significant diffractive length54. In our
experiment, the mirror is typically placed just outside the cloud to
reduce these effects, but close enough to the cloud to maximize
the number of lattice sites within the pump beam by being close
to the minimum lattice period. The resulting scale for the pattern
period is about Λ ≈ 100 μm for the Nice experiment and Λ ≈ 50
μm for the Strathclyde experiment. The control of the position of
the mirror is achieved via an imaging system (see ‘Experimental
Details’ in the Methods Section) and hence can be both positive
and negative.

Ising-like interaction. Figure 2a illustrates that the spatial
structure of the difference pump rate fed back supports an Ising-
like interaction mechanism for the atomic spins on the lattice
created by the instability which is much bigger than typical
atomic separations. A perturbation of w ranging over half of the
self-organized lattice period creates an optical spin structure that
enhances the magnetization at the point of perturbation and at
locations one period away (the nearest neighbors) but will also
lead to negative, i.e. antiferromagnetic, coupling at half the per-
iod. This ferromagnetic, respectively antiferromagnetic, coupling
increases with optical density and input intensity. For a harmonic
perturbation w= δw cos(qx) a simple relation for the amplitude
of the difference pump rate δD can be derived by a linear

expansion of Eqs. (1) and (2),

δD ¼ �3P0ϕ0δw; ð3Þ

where ϕ0= b0δ/Γ/[1+ 4(δ/Γ)2] is the linear phase shift. For a
localized perturbation like in Fig. 2a or general distributions there
is no simple closed expression but the scalings hold, i.e. the
interaction strength is given by the dispersive optical density (i.e.
the linear phase shift) and the pump rate. The question whether it
is possible to derive an effective Hamiltionian for the super-spins
describing the dynamics of an open quantum system is open at
this stage of investigations.

Observation of antiferromagnetic ordering. For an observation
of magnetic ordering, we typically set the laser detuning at a value
of δ between −7Γ and −9Γ. The laser intensity used is as low as 1
mW/cm2, typically two orders of magnitude below non-magnetic
instability thresholds35,38. Under these conditions, square lattices
of large domains of spin-oriented atoms are observed in the near-
field (NF) as can be seen in Figs. 1 and 3a,b. The two square
lattices detected in the σ+ and σ− channels are interlaced, as
illustrated in Fig. 3c, where the NF intensity difference I(σ+)− I(σ−)
is plotted. This difference is an indicator of the orientation dis-
tribution, w(x, y). The plot in Fig. 3e corresponds to a cut of the
experimental intensity difference image along the dashed line,
and emphasizes the periodic, symmetrical arrangement in zones
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Fig. 3 Observed magnetic structures. Spontaneous antiferromagnetic (a–e) and ferrimagnetic (f–j) phases for Bx= By= 0. We show examples from both

experiments. a, b NF intensity of the σ+ and σ
− components for Bz= 0. Nice experiment: b0= 80, δ=−8Γ, I= 10mW/cm2, d=−20mm. f, g NF intensity

of the σ
+ and σ

− components for Bz≠ 0. Strathclyde experiment: b0= 27, δ=−7Γ, I= 10 mW/cm2, Bz= 120mG, d=−2.9mm. c, h NF intensity

difference of the σ+ and σ
− components for Bz= 0 and Bz≠ 0, respectively. d, i Spatial structure of the orientation w obtained from numerical integration of

Eqs. (8a)–(8d) of the Supplementary Note 1 for Bz= 0 and Bz≠ 0, respectively. e, j 1D cut of the NF intensity difference of the σ+ and σ
− components along

the dotted lines of c, h for Bz= 0 and Bz≠ 0, respectively. The structures in a and b are scaled in the same way, as are the ones in f, g. In c, h the maximum

absolute value of the minimum and maximum of each difference image is taken to normalize the difference to a value between−1 and 1. This is indicative of

the orientation structure w. In this normalization, the scale bars for the numerical w distribution are also indicative for the interpretation of the experimental

difference image, i.e. indicate where zero magnetization is and the relative size of the positive/negative excursions. The normalized plot is chosen as it is

not very reliable to connect the absolute amplitude to an absolute magnetization. Typical values of magnetic field in which hexagonally coordinated

ferrimagnetic structures are obtained are Bz≈ 50 … 150mG, details depending on values of detuning, optical density and in particular input intensity (see

Methods ‘Symmetry breaking in a longitudinal magnetic field’)
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of opposite light helicity. This structure corresponds to an anti-
ferromagnetic phase. Indeed, for Bz= 0, there is no Zeeman
splitting and the system is fully symmetric for the σ+ and σ− light
components. Spontaneous symmetry breaking leads to an anti-
ferromagnetic state with zero net magnetization and an arbitrary
spatial phase. This analysis is confirmed by numerical simulations
which solve the coupled equations for the light field and atomic
variables in the presence of mirror feedback, Eqs. (8a)–(8d) of the
Supplementary Note 1. The computed transverse spatial dis-
tribution of w is shown in Fig. 3d. The corresponding I(σ+)− I(σ−)
image (not shown) closely matches the experimental data.

The spin-oriented domains have similar size and contain a
large number of atomic spins. A macroscopic orientation (super-
spin) can be obtained by averaging over the atomic spins in each
domain and by assigning positive or negative magnetization to
the corresponding lattice points at the period of the w lattice. The
macroscopic super-spins at each lattice point will then interact
with their neighboring lattice spins via diffracted light (Fig. 2a),
sustaining the antiferromagnetic ordering. Consequently this
corresponds to a simulator of interacting semiclassical spins made
of domains of spin-oriented cold atoms. We observe shot-to-shot
fluctuations of both orientation and position of the structures
between different realizations, as expected from the continuous
symmetries that are spontaneously broken (translation and
rotation in the transverse plane). Patterns can also include
defects, deformations or irregularities of amplitudes.

Observation of ferrimagnetic ordering. When a longitudinal
magnetic field Bz is applied, a further symmetry breaking occurs,
leading to a preferred sign of the orientation. However, for a small
field Bz the antiferromagnetic square pattern survives, in accor-
dance with the antiferromagnetic Ising model in a longitudinal
field23. Increasing the Bz field to about 0.1 G we observe a tran-
sition from square (antiferromagnetic) to hexagonal (ferrimag-
netic) lattices, as shown in Fig. 3f–h, j. The ferrimagnetic state
exhibits striking differences between the two polarization chan-
nels, with hexagonally coordinated peaks in one component and
honeycombs in the other (Fig. 3f, g). These are still interleaved
with each other but the amplitudes of the components are very
different as shown in Fig. 3h, j through the Iσþ � Iσ� image. The
1D cut of this experimental image shows that the spins on the
hexagonal lattice are mostly oriented along one direction, with
only ≈10% of them in the opposite direction. This is a ferri-
magnetic phase. The simulations show the corresponding spatial
modulation of w in Fig. 3i. By flipping the sign of Bz, the roles of
σ+ and σ− are exchanged and the sign of the dominant magne-
tization inverted in response to the inversion symmetry breaking
by the external field.

The transition from square to hexagonal structures can be
understood using a symmetry argument55–57. In the absence of
an inversion symmetry (e.g. when Bz ≠ 0) pattern selection is
governed by quadratic interactions allowing three-wave mixing.
This favors hexagonal patterns as the sum of two lattice
wavevectors will yield a vector with the lattice wavenumber only
for an angle of 120°. Other kinds of lattices (including squares)
can emerge if inversion symmetry is respected (Bz= 0). Note also
that an antiferromagnetic state cannot exist on a triangular (and
thus hexagonal) lattice as this would lead to frustration2,58.
Increasing the Bz-field it is observed that the clear hexagonal
symmetry is destroyed and disordered spin patterns prevail. This
transition is currently investigated in more detail. Symmetry
breaking due to a longitudinal field occurs in standard
antiferromagnetic Ising models but to an unstructured, para-
magnetic state22. This paramagnetic phase is outside the
capability of our current apparatus, but is expected for larger B-

fields (several Gauss) such that Ωz≳ δ. Transitions to a
ferrimagnetic phase occur in models and materials consisting of
two layers or two sublattices of magnetic sites59–61. This two layer
structure resembles the situation here in which the hexagonally
coordinated, dominant super-spins are surrounded by a weaker,
opposite magnetization on the ridges of an interleaved honey-
comb structure.

Threshold behavior. Figure 4 shows an analysis of the diffracted
power at the lattice wavevectors vs. pump. For zero magnetic field
(red dots), it evidences a continuous, i.e. second order, transition
at a threshold of 4.1 mW/cm2 to the antiferromagnetic state and a
linear increase of diffracted power vs. pump intensity beyond
threshold. As the diffracted power is proportional to the square of
the modulation amplitude of w in linear expansion of Eq. (2), this
indicates a square-root scaling of the magnetic order parameter
vs. pump above threshold, as expected for the Ising model in
mean field limit26 (staggered magnetization for the anti-
ferromagnetic case). The transition to the ferrimagnetic hex-
agonal state at small longitudinal magnetic fields is abrupt, i.e.
first order (Fig. 4, blue dots), which is related to the cooperative
dynamics due to the breaking of the inversion symmetry as dis-
cussed before. For Bz= 0 and r= 2.29 × 10−4Γ2, R= 0.95 the
theory, Eq. (9), indicates a threshold of 0.69 mW/cm2 neglecting
contributions of all other multipoles (i.e. assuming a value of the
homogeneous component of the alignment X0= 0), lower than
the experimentally one of 4.1 mW/cm2. For a more realistic
component of X0= 0.29 obtained from solving for the homo-
geneous solution of Eqs. (8a)–(8d) of the Supplementary Note 1
for these parameters, the threshold is 3.5 mW/cm2. The
remaining differences can be easily explained by the inhomoge-
neous profile of the Gaussian input beam, transverse stray fields
and corrections from the fact that the medium is not really dif-
fractively thin as assumed in this treatment54.

Dynamics in transverse fields and transverse Ising model. We
now consider the antiferromagnetic ordered state when a purely
transverse magnetic field is applied. The transverse field stimu-
lates coherent coupling (tunneling) between spin states thus
suppressing ordering as described by the transverse (also referred
to as the quantum) Ising model24–26. This model shows a
quantum phase transition between the ordered antiferromagnetic

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

Iin (mW/cm2)

P
d
if
f 
/ 

I in
 (
n
o
rm

)

Fig. 4 Threshold behavior. Total diffracted power divided by pump intensity

(indicative of the square of the magnetization order parameter) normalized

afterwards to its maximum observed value for each of the structures vs.

pump intensity. Red dots: anti-ferromagnetic state at Bz= 0, blue dots:

ferri-magnetic state at Bz= 130mG. The dashed black line indicates a linear

fit to the linear range of the curve from 4.2 to 21.24mW cm−2. The

threshold extrapolated from the intercept with the x-axis is 4.1 mW cm−2.

Other parameters: b0= 27, δ=−7Γ, d=−2.9 mm and Bx≈ By≈ 0
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state and a paramagnetic state in which all spins are aligned to the
transverse field, even at zero temperature. In our experiment the
magnetic coupling induces a phenomenologically similar transi-
tion from the antiferromagnet to a state without structure. Fig-
ure 5a shows the diffracted power versus the transverse B-field for
three different pump values. The diffracted power has an
approximately parabolic dependence on the transverse B-field.
The maximum diffracted power increases with pump power as
does the critical transverse B-field, i.e. the B-field at which the
ordered states vanishes, as expected (see Eqs. (11) and (12)).
Normalizing the amplitude of the diffracted power to one and the
magnetic field to the critical B-field, all the experimental curves
fall on an universal parabola (Fig. 5b). As the diffracted power is
proportional to the square of the orientation modulation ampli-
tude, the parabola of Fig. 5b corresponds to the magnetization

decaying as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B=Bcritð Þ2
q

in agreement with the transverse

Ising model26.

Figure 5c compares the experimentally obtained threshold
curve (Ith vs. By, black squares) with the prediction from Eq. (1)
(blue line) incorporating the quantum coupling induced by the
transverse field into the relaxation rate Γw (see Eq. (7)). The
agreement is excellent, except at low magnetic fields. If one allows
for a residual stray field of Bx= 35 mG (see Methods), the
threshold at By ≈ 0 is also reproduced well.

It is important to note that the transverse magnetic field enters
the equations as a coherent coupling as in the transverse Ising
model24–26 as the operator describing the action of a transverse
magnetic field does not commute with the z-component of the
spin, the orientation w. This provides a coherent decay
mechanism of the magnetization, often referred to as quantum
tunneling24,25. As the incoherent decay rate is relatively small
(r < 104 s−1), the decay dynamics can be easily dominated by
coherent spin tunneling via stray and applied transverse fields
(Fig. 5c) corresponding to the phase transition in the quantum
critical regime at zero and low temperature in the transverse Ising
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Fig. 5 Suppression of antiferromagnetic magnetic order by transverse magnetic field. a Diffracted power in single σ channel at lattice wavenumber detected

in far field (Methods) vs. transverse magnetic field strength (solid symbols obtained varying Bx at By= Bz= 0, open symbols varying By at Bx= Bz= 0). b0

= 27, δ=−7Γ, d=−4.2 mm. Black squares for Iin= 7mW/cm2. Red circles for Iin= 10 mW/cm2. Blue rhombs for Iin= 12 mW/cm2. b Normalized

diffracted power vs. magnetic field scaled by critical magnetic field (Methods). The red line illustrates the expectation from the transverse Ising model, m2
z

= 1� B=Bcritð Þ2. c Threshold vs. By-field for b0= 80, δ=−8.6Γ, d=−20mm. Black squares: experiment, blue line prediction from Eq. (7) for r= 2.8 × 103 s
−1 and Bx= 0, red line considers a stray field of Bx= 35 mG. The error bars in a derive from the statistics over 10 measurements, the ones in b from the

uncertainties in scaling and in c from an estimation of uncertainty
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model. Differently from the transverse Ising model, there is no
magnetization without the instability (for Bz= 0), so if the spin-
flips destroy the z-magnetization, the remaining state is
magnetically disordered and not a quantum paramagnet aligned
to the transverse field.

Discussion
In conclusion, we demonstrated spontaneous magnetic ordering
in a cloud of cold atoms due to light-mediated interactions. The
behavior of the system in a longitudinal field is more complex
than in the antiferromagnetic Ising model on a single layer as a
ferrimagnetic state is obtained after a symmetry breaking tran-
sition. The decay of antiferromagnetic order due to quantum
tunneling in a transverse magnetic field is also observed in
agreement with the transverse Ising model. The role of internal
spin temperature is played by the atomic kinetic temperature, but
the threshold can be dominated by the quantum tunneling.
Hence, this system constitutes a novel, unconventional open
system for the study of magnetic ordering on large spatial scales
and in a relatively simple cold atom setup. Future investigations
consider fluctuations and correlations beyond the semiclassical
treatment presented here, e.g. quenching dynamics4,62 and fluc-
tuations at the classical-quantum boundary63,64. Of further
interest are the influence of frustration in the transition between
ferri- and antiferromagnetic order, the existence of magnons and
the possibility of optically controllable localized magnetic
nucleation domains65–67.

Methods
Experimental details. The results presented in this paper were obtained using two
different experimental setups, one in Nice and the other in Strathclyde. Both
experiments used a magneto-optical trap (MOT) to prepare a cold cloud (at
temperature T ≈ 200 μK at Nice, T ≈ 120 μK at Strathclyde) of 87Rb atoms. The
main difference between the two setups is the number of trapped atoms (1011 at
Nice and 109 at Strathclyde). As a result, both the size L and the optical density
(OD) b0 of the cloud are larger at Nice (L ≈ 14 mm, b0 ≈ 80, peak density about
5 × 1010 cm−3) than at Strathclyde (L ≈ 2.6 mm, b0 ≈ 27, peak density about
7 × 1010 cm−3).

The threshold for ordering is not given by the spin temperature that is ill-
defined since the spins are well isolated from the environment in the vacuum
chamber at the low densities employed. The main source of disorder to be
overcome is the residual thermal motion of the atoms leading to a wash-out of the
spin pattern and thus serving as a kind of effective spin temperature counteracting
the magnetic ordering. Typical lattice periods are Λ≳ 100 μm (Nice) and Λ ≳ 50
μm (Strathclyde) giving an estimation of the relaxation rate r of the spin structures
due to atomic motion of r ≈ 2.8 × 103 s−1 and r ≈ 4.4 × 103 s−1, respectively (see
Eqs. (19) and (20) of the Supplementary Note 1).

After the atomic sample is prepared in the MOT, the MOT is shut down by
switching off both trapping lasers and magnetic field gradient. After a delay, the
cloud is submitted to a pulsed retro-reflected laser beam using the configuration
depicted in Fig. 1a. The duration of the pulse is typically 400 μs. The input laser
beam, with a linear polarization, is detuned below the F= 2→ F′= 3 transition of
the D2 line of 87Rb, chosen as the transition is closed. The typical detuning is δ=
−(7…9)Γ, where Γ= 2π × 6.06MHz is the atomic linewidth. Since the optical
pumping process tends to increase the population in the stretched states with the
strongest dipole matrix element, the optical density increases due to the pumping
process and the optical nonlinearity is self-focusing in spite of negative detuning.
The beam diameters (FWHM) of the pump beams are 2.2 mm (Nice) and 0.8 mm
(Strathclyde). Depending on the laser power, a superimposed weak repumping
beam tuned to the F= 1→ F′= 2 transition is added to prevent hyperfine
pumping. Because the spin instability is highly magnetic field-dependent, the
residual B has to be carefully controlled. This is achieved by a sufficiently long delay
of 3 to 10 ms between MOT shutdown and the pattern-forming laser pulse and a
set of three pairs of Helmholtz coils to control the bias fields. The residual magnetic
field is compensated to best effort in all three dimensions. We cannot exclude
uncontrolled magnetic fields on the order of some tens of mG.

The feedback mirror is located outside the vaccum chamber and imaged with a
telescope closer to the atomic sample. Hence one can achieve also negative
feedback distances54,68.

In Fig. 5b, the critical magnetic field used for scaling is expected to be
proportional to the input intensity, Bcrit= ζIin, see Eq. (12). The scaling factor is
obtained by first dividing the critical magnetic field values by the pump intensity
and averaging the obtained numbers giving ζ= (8.7 ± 0.1) × 10−3 for the Bx-fields
and ζ= (1.1 ± 0.1) × 10−2 for the By-fields.

Pattern detection and analysis. The pattern detection relies on the imaging of the
transverse intensity distribution of the weak beam transmitted by the semi-
transparent feedback mirror. The small amount of light transmitted by the mirror
is used to image the transverse intensity distribution of the beam either in near-
field (NF, at a plane located at a distance 2d behind the cloud corresponding to the
intensity distribution fed back to the atoms) or in far-field (FF, in the focal plane of
a suitably positioned lens). This imaging can be performed simultaneously in two
orthogonal polarization channels (either circular (σ+/σ−) or linear). The NF images
are employed to identify the nature of the magnetic phase. From Eq. (2) and the
propagation phase shift of π/2, the difference between the transmitted intensities of
the two σ−components is proportional to the magnetization w in linear order,
justifying the visualization used in Fig. 3c, e, h, j. In the far field, the Fourier
spectrum of the magnetic structure is available. The diffracted power used in Fig. 5a
is obtained by integrating the intensity in FF images within the transverse wave
number range of the structure. From Eq. (2), in linear order the field is propor-
tional to the modulation amplitude of w at that wavenumber, whereas the recorded
intensity is proportional to the square of the modulation amplitude of the mag-
netization. As the latter is proportional to the staggered order parameter of the
antiferromagnetic state, the diffracted power is expected to indicate the square of
the order parameter of the Ising model. The normalization constants for the dif-
fracted power in Fig. 5b are obtained by fitting parabolas to the data in Fig. 5a.

Theoretical model. Equations of motion for the atomic magnetization states in the
electronic ground state are derived from the Liouville equation for the density
matrix. The procedure is outlined in the Supplementary Note 1. The numerical
simulations are performed in the representation outlined in the Supplementary
Note 1, but it is useful to note that these equations can be rewritten in terms of
irreducible tensor components of rank 1 describing orientation or magnetic dipoles
and components of rank 2 describing alignment components or magnetic quad-
rupoles, respectively, and that the magnetic field provides only a coupling within
the dipole, respectively quadrupole, components, but not between tensors of dif-
ferent rank. The coherent dynamics of the magnetic dipole vectorm in the external
magnetic field Ω is described by

_m ¼ Ω ´m; ð4Þ

where the z-component of the magnetization represents the orientation introduced
before, mz= w. As we concentrate on the dipole dynamics in this article and the mz

component is the only one directly coupling to the optical field, we proceed by
neglecting the contributions from the rank 2 components and solving for the mx,
my components in steady state. This results in an effective equation for the
orientation given by
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which illustrates nicely the destruction of longitudinal magnetization by the
transverse B-fields in addition to the decay rate Γw evaluated at Ωx=Ωy= 0. The
dash in Ω′

z illustrates that one might need to take into account light-shift con-
tributions for a fully quantitative description, but the spatial average of light-shift is
zero as long as Ωz= 0. For Ω′

z = 0, Eq. (6) reduces then to
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which is used to analyze the destruction of magnetic order by the transverse field in
Fig. 5.

Symmetry breaking in a longitudinal magnetic field. For zero difference pump
rate D, the homogeneous state of the z-magnetization is w= 0 from Eq. (6). A non-
zero longitudinal field provides a symmetry breaking. However, the main effect
does not arise directly via the dipole energy but via the chiral optical properties of
the atom as light-mediated coupling is responsible for the z-magnetization. First,
the difference pump rate D is different from zero even with linearly polarized input
light, if the longitudinal magnetic field is nonzero, as the pump rates depend on
detuning and hence on the Larmor frequency Ωz (nonlinear Faraday effect, see Eq.
(3) of Supplementary Note 1). However, the effect is small as it is linear in Ωz/δ,
D ≈ 4P0Ωz/δ (P0 input pump rate for one circular polarization at Ωz= 0), and the
experiments operates at Bz ≈ 0.1 G and |δ| ≈ 7.5Γ giving |4Ωz/δ| ≈ 0.006. For the
same reason, the symmetry breaking provided by the linear Faraday effect, the
difference in linear optical phase shift between the two σ-components (Eq. (24) of
Supplementary Note 1), is small. However, for sufficiently large Bz fields one can
obtain a sizable homogeneous magnetization, which corresponds to the anticipated
paramagnetic state mentioned in the article. The dominant symmetry breaking for
small longitudinal magnetic fields is provided by the precession term between the
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coherences u and v in Eqs. (8a) and (8b) of the Supplementary Note 1. From this, a
homogeneous component u0 created directly by the linearly polarized pump beam
induces a homogeneous component v0, which in turn couples to the z-magneti-
zation w via a term proportional v (see Eq. (8c) of the Supplementary Note 1). As
the sign of v0 generated depends on the sign of Bz, this provides a symmetry
breaking for w destabilizing the antiferromagnetic state. However, if the Bz-field is
increased further, it leads to a destruction of the coherences by the precession
around the Bz-field and thus to a reduction of symmetry breaking. This transition
seems to be related to the transition between nicely ordered ferrimagnetic states
and the disordered states mentioned. As at higher pump rate the coherence sur-
vives to larger Bz-fields, the range with nice, ordered hexagons changes being the
main reason for a range of Bz mentioned in the caption of Fig. 3.

Linear stability analysis. For the linear stability analysis of the homogeneous state
we confine to perturbations in the orientation w as the numerical simulations
suggest that the orientation is the driver for the magnetic ordering under con-
sideration. Hence we solve Eq. (8) of Supplementary Note 1 for the homogeneous
stationary state u0, v0, X0, w0 without a transverse magnetic field and set w=w0+

δw cos(qx) with a small perturbation δw at a wavenumber q. The resulting equation
for the growth rate of δw in linear approximation for the wavenumber with the
lowest threshold (i.e. the one of the emerging ordered state, qc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πk=ð2dÞ
p

) is for
Ωz= 0

η ¼ �r � 1

6
S0ð1þ RÞ þ R

X0

6
� 5

12

� �

S0ϕ0; ð8Þ

where P0 is the input pump rate for one circular component of the linearly
polarized light and S0= 2P0 and ϕ0= ϕ+ (Ωz= 0)= ϕ+ (Ωz= 0). The first term
describes the destruction of ordering due to the residual atomic motion while the
second term accounts for the fact that the orientation is bounded. The third term is
the driving term. It is positive as ϕ0 < 0 for δ < 0. It is reduced by the development
of a homogeneous alignment X0. Except for this X0 term, Eq. (8) has the same
structure as the expression derived for a J= 1/2-system44,45 but with coefficients
and signs adapted to the different term scheme. The threshold pump rate is
obtained as

S0 ¼
r

� 1
6 ð1þ RÞ þ X0
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Rϕ0

; ð9Þ

giving a minimal linear phase shift to obtain ordering of
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For r= 0 (zero effective temperature, i.e. no classical fluctuations are counteracting
the ordering) the pump threshold is zero (without a transverse field), but a finite
optical density (phase shift) is still needed to obtain magnetic ordering. Hence, ϕ0 is
the cooperativity parameter characterizing the interaction strength. For X0= 0, i.e.
considering only the dipole components, Eq. (10) indicates the requirement of a
minimum phase shift of 0.82.

Turning our attention to the consequences of the presence of the higher order
magnetic multipoles, numerical simulations show that X0 varies roughly between
0.25 and 0.5. Hence, the corrections to the minimum required phase are quite small
(0.91–1.03) and not very important except when the optical density is so low that
the linear phase shift is close to the minimally required one. This is the case for the
Strathclyde experiment which operates at ϕ0







 � 0:96. The consequences for the
threshold are discussed in the final paragraph of Section ‘Threshold behavior’. For
the higher density involved in the Nice experiment, ϕ0







 � 2:32 (b0= 80, δ=
−8.6Γ), the correction by X0 is not very important. For r= 4.4 × 103 s−1 and R=

0.95 one obtains Ith= 0.062 mW/cm2 for X0= 0 and Ith= 0.076 mW/cm2 for X0=

0.29.
As these differences are small, we have neglected higher order magnetic

multipoles in the discussion of Fig. 5c and calculated the critical transverse field just
from the tensor 1 components from Eq. (7),

Ω2
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indicating a linear relationship between critical field and pump power for S0 � r

Ωc;trans ¼ S0
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The critical magnetic field also increases with increasing dispersive optical density
ϕ0, i.e. increasing interaction strength.

Data availability. Data used to plot the figures are available under https://doi.org/
10.15129/386278bf-dd5f-4dd6-8808-2a2728beed93. Further relevant data are
available on reasonable request from the authors.
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