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Abstract: This overview paper motivates the description of broadband sensor array problems by polynomial matrices,

directly extending notation that is familiar from the characterisation of narrowband problems. To admit opti-

mal solutions, the approach relies on extending the utility of the eigen- and singular value decompositions, by

finding decompositions of such polynomial matrices. Particularly the factorisation of parahermitian polyno-

mial matrices — including space-time covariance matrices that model the second order statistics of broadband

sensor array data — is important. The paper summarises recent findings on the existence and uniqueness of

the eigenvalue decomposition of such parahermitian polynomial matrices, demonstrates some algorithms that

implement such factorisations, and highlights key applications where such techniques can provide advantages

over state-of-the-art solutions.

1 INTRODUCTION

When processing signals obtained from an M-element

sensor array in a data vector x[n], where n is the dis-

crete time index, information on e.g. the angle of ar-

rival of sources is contained in the delay with which

different signals arrive at sensors. In the narrowband

case, this delay is sufficiently expressed by a phase

shift, information on which can be found in e.g. the

instantaneous covariance matrix R = E
{

x[n]xH[n]
}

of the sensor signals, where E{·} is the expecta-

tion operator and {·}H the Hermitian transpose op-

erator. Many narrowband array problems therefore

are based on this covariance matrix R, and optimum

beamforming and direction finding methods are often

subsequently based on factorisations — typically the

eigenvalue decomposition (EVD) — of R (Schmidt,

1986) or equivalently the singular value decomposi-

tion (SVD) of the data matrix (Moonen and de Moor,

1995).

In the broadband case, explicit delays must be

considered instead of phase shifts. These lags can be

capture by the second order statistics via the space-

time covariance matrix R[τ] = E
{

x[n]xH[n− τ]
}

,

which includes a discrete lag parameter τ. Since R[τ]
contains auto- and cross-correlation terms of x[n], it

inherits the symmetry R[τ] = RH[−τ]. When taking

the z-transform, the resulting cross spectral density

(CSD) matrix R(z) = ∑τ R[τ]z−τ satisfies the para-

hermitian property R(z) = RP(z), where the para-

hermitian operation RP(z) =RH(1/z∗) involves Her-

mitian transposition and time reversal(Vaidyanathan,

1993).A matrix R(z) that satisfies the parahermitian

property is called a parahermitian matrix.

While the polynomial matrix notation R(z) per-

mits the formulation of broadband problems, the util-

ity of the EVD does not naturally extend from the nar-

rowband to the broadband case. If a constant similar-

ity transform is applied to R(z) or R[τ], the CSD or

space-time covariance matrices can generally only be

diagonalised for one single coefficient or lag. There-

fore an extension of the EVD to polynomial matrices

is required in order to provide solutions for broadband

problem formulations. For this purpose, (McWhirter

et al., 2007; McWhirter and Baxter, 2004) have de-

fined a polynomial EVD that can approximately di-

agonalise R(z) for all its coefficients, with recently

analysis providing the underpinning theory on the ex-

istence of polynomial eigenvalues and -vectors, and

the ambiguity of the latter.

Over the past decade, a number of algo-

rithms have emerged that implement a polynomial

EVD (McWhirter et al., 2007; Redif et al., 2011; To-

hidian et al., 2013; Corr et al., 2014c; Redif et al.,

2015; Wang et al., 2015a), and also triggered a range

of applications in the area of filter banks (Redif et al.,



2011; Weiss et al., 2006), beamforming (Redif et al.,

2006; Koh et al., 2009; Alrmah et al., 2011; Weiss

et al., 2013; Vouras and Tran, 2014; Weiss et al.,

2015; Alzin et al., 2016), communications (Weiss

et al., 2006; Davies et al., 2007; Ta and Weiss,

2007a; Sandmann et al., 2015; Ahrens et al., 2017),

or generic theoretical problems such as blind source

separation (Redif et al., 2017) or spectral factorisa-

tion (Wang et al., 2015b).

The aim of this paper is to provide an overview

over efforts in the area of polynomial matrix decom-

positions, and to offer some insight into the advan-

tages that this may bring for two exemplified applica-

tions, Therefore, this paper is organised as followed.

Sec. 2 defined the space-time covariance matrix and

its parahermitian matrix factorisation and its polyno-

mial approximation. Sec. 3 provides an overview over

polynomial matrix EVD algorithms, which are then

applied to two problems: Sec. 4 demonstrates the use

of polynomial matrix techniques for angle of arrival

estimation, while Sec. 5 discussed the applications in

broadband beamforming. A conclusion and outlook

over related fields is provided in Sec. 6.

2 PARAHERMITIAN MATRIX

EVD

Based on a short discourse on space-time covariance

and its properties in Sec. 2.1, we define a parahermi-

tian matrix EVD in Sec. 2.2. Its polynomial approxi-

mation is discussed in Sec. 2.3.

2.1 Space-Time Covariance and

Cross-Spectral Density Matrices

A scenario where L independent sources with non-

negative, real-valued power spectral densities (PSD)

Sℓ(z), ℓ = 1 . . .L, contribute to M sensor measure-

ments xm[n], m = 1 . . .M, the space-time covariance

matrix of the vector x[n] = [x1[n] . . .xM[n]]T is

R[τ] = E
{

x[n]xH[n− τ]
}

. (1)

If the PSD of the ℓth source is generated by a sta-

ble and causal innovation filter Fℓ(z) (Papoulis, 1991),

and Hmℓ(z) describes the transfer function of the

causal and stable system between the ℓth source and

the mth sensor, then

R(z) =H(z)







S1(z)
. . .

SL(z)






HP(z) (2)

with the element in the mth row and ℓth column of

H(z) : C → C
M×L given by Hmℓ(z), and Sℓ(z) =

Fℓ(z)F
P
ℓ (z) the ℓth element of the diagonal matrix of

source PSDs.

The factorisation (2) can include the source model

matrix F (z) = diag{F1(z), . . . ,FL(z)} : C → C
L×L,

such that

R(z) =H(z)F (z)F P(z)HP(z) . (3)

The components of H(z) and the source model F (z)
are assumed to be causal and stable, and their entries

can be either polynomials or rational functions in z. In

the most general latter case, the CSD matrix R(z) in

(3) can be represented as a Laurent series that is ab-

solutely convergent and therefore analytic within an

annulus containing the unit circle (Girod et al., 2001).

Further, since the PSDs satisfy Sℓ(z) = SP
ℓ(z), it is ev-

ident from both (2) and (3) that R(z) =RP(z) and so

is parahermitian.

2.2 Parahermitian Matrix EVD

For an analytic R(z), the factorisation

R(z) =Q(z)Λ(z)QP(z) (4)

is called the parahermitian matrix EVD (Weiss

et al., 2018). If evaluated on the unit cir-

cle, the EVD at every frequency Ω, R(ejΩ) =
Q(ejΩ)Λ(ejΩ)QH(ejΩ) can exist with analytic factors

Q(ejΩ) and Λ(ejΩ) (Rellich, 1937). The reparameter-

isation z = ejΩ can lead to analytic factors Q(z) and

Λ(z) provided that the eigenvalues are selected ap-

propriately. This selection will be motivated by an

example.

Example for eigenvalues. Inspected on the unit circle,

consider the eigenvalues λ1(e
jΩ) = 1 and λ2(e

jΩ) =
1 + cosΩ. Potentially, both functions can be per-

muted at any frequency, and still form valid eigen-

values as long as they retain a 2π-periodicity. Besides

the analytic selection λ1(e
jΩ) and λ2(e

jΩ) shown in

Fig. 1(a), an important alternative are spectrally ma-

jorised eigenvalues λ′
1(e

jΩ) and λ′
2(e

jΩ) in Fig. 1(b),

where spectral majorisation implies that λ′
1(e

jΩ) ≥
λ′

2(e
jΩ) ∀Ω (Vaidyanathan, 1998).

If on the unit circle eigenvalues have algebraic

multiplicities greater than one, as in Fig. 1 for Ω = π
2

and Ω = 3π
2

, then only the analytic selection can lead

to analytic eigenvalues in Λ(z). In the case of spec-

tral majorisation, the region for absolute convergence

is restricted to the unit circle itself.

For the eigenvectors, the representation on the unit

circle can have an arbitrary phase response. Only if

both the eigenvalues in Λ(z) and the arbitrary phase

responses are selected as analytic, it is be guaranteed
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Figure 1: (a) Analytic vs (b) spectrally majorised selection
of eigenvalues.

that Q(z) is analytic as well. If enforcing spectral ma-

jorisation violates the analyticity of the eigenvalues,

then no analytic solution exists for the eigenvectors in

Q(z).

2.3 Polynomial Approximation

Analyticity is important when trying to design real-

isable filters. Specifically, while the factors in (4)

are analytic and therefore absolutely convergent, they

generally form algebraic or even transcendental func-

tions, i.e. are infinite in length and do not have a ratio-

nal representation (Weiss et al., 2018). Due to the ab-

solute convergence of these analytic functions, an ar-

bitrarily close approximation can be achieved by trun-

cating the Laurent series to sufficiently long Laurent

polynomials, whereby the term ‘polynomial’ implies

finite length.

The truncation of (4) leads to the polynomial EVD

or McWhirter decomposition

R(z)≈ Q̂(z)Λ̂(z)Q̂P(z) , (5)

which was postulated in (McWhirter et al., 2007),

based on a paraunitary factor Q̂(z), and a diagonal

parahermitian Λ̂(z). All matrices — R(z), Q̂(z), and

Λ̂(z) — are Laurent polynomials, ambiguity in the

ordering of the eigenvalues had been suppressed by

demanding spectral majorisation for Λ̂(z).

3 ALGORITHMS FOR

POLYNOMIAL MATRIX EVD

Even though eigenvalues and particularly eigenvec-

tors are not guaranteed to exist as analytic functions

in case of spectral majorisation, a number of algo-

rithms targetting the McWhirter decomposition (5)

have been created over the past decade (McWhirter

and Baxter, 2004; McWhirter et al., 2007; Tkacenko

and Vaidyanathan, 2006; Tkacenko, 2010; Redif

et al., 2011; Tohidian et al., 2013; Corr et al., 2014c;

Redif et al., 2015; Wang et al., 2015a). These all

share the restriction of considering the EVD of a para-

hermitian matrix R(z) whose elements are Laurent

polynomials, which may be enforced by estimating

or approximating R[τ] over a finite lag windwo (Redif

et al., 2011).

The approximation sign in the McWhirter decom-

position (5), highlighting the approximation by poly-

nomials, has been included in all subsequent algo-

rithm designs over the past decade. Even though

many algorithms can be proven to converge, in the

sense that they reduce off-diagonal energy of Γ (z) at

each iteration, see e.g. (McWhirter et al., 2007; Redif

et al., 2011; Corr et al., 2014c; Redif et al., 2015;

Wang et al., 2015a), there is no practical experience

yet where these algorithms could not find a practica-

ble factorisation.

Enforcing spectral majorisation in the case of an

algebraic multiplicity greater than one as shown in

Fig. 1 leads to eigenvalues that are not infinitely

differentiable and to eigenvectors with discontinu-

ities (Weiss et al., 2018). Since current PEVD al-

gorithms can be shown to either favour or can even

be proven to yield spectral majorisation (McWhirter

and Wang, 2016), they result in matrix factors with

high polynomial order to approximate the factors in

(5). Therefore, some mechanisms to curb the order

of these polynomial (Foster et al., 2006) and specif-

ically the paraunitary factors (Ta and Weiss, 2007b;

McWhirter et al., 2007; Corr et al., 2015c; Corr

et al., 2015d) have been suggested, which are gen-

erally based on a truncation with limited error im-

pact, and in some cases judiciously exploit the arbi-

trary phase response of the eigenvectors.

Current efforts in terms of algorithmic research

have targetted numerical efficiencies to enhance

the convergence speed of PEVD algorithms; these

e.g have exploited search space reductions (Corr et al.,

2014b; Corr et al., 2015b; Coutts et al., 2016c; Coutts

et al., 2017a), approximate EVD algorithms (Corr

et al., 2014a; Corr et al., 2015b; Corr et al., 2015a;

Coutts et al., 2016b), and matrix partitioning (Coutts

et al., 2016c; Coutts et al., 2017a). Also, (Tohidian

et al., 2013) have presented a frequency domain algo-

rithm which can favour analytic over spectrally ma-

jorised solutions (Coutts et al., 2017b; Coutts et al.,

2018). A further route of investigation is the impact

which estimation errors in the space-time covariance

matrix have on the accuracy of the factorisation (De-

laosa et al., 2018).



4 APPLICATION I: ANGLE OF

ARRIVAL ESTIMATION

As a first application example, this section visits an-

gle of arrival estimation. Sec. 4.1 first defines steer-

ing vectors, which together with the instantaneous co-

variance matrix are exploited in the multiple signal

classification (MUSIC) algorithm (Schmidt, 1986) in

Sec. 4.2. Broadband angle of arrival estimation tech-

niques are briefly touched in on Sec. 4.3, with the

polynomial broadband generalisation of narrowband

MUSIC outlined in Sec. 4.2.

4.1 Steering Vector

If a source illuminates an M-element array from an

elevation ϑ and azimuth angle ϕ, we assume that dif-

ferent delays τm, m = 1 . . .M, are experienced as the

wavefront travels across the array. To describe these

sensor signals, a vector

sϑ,ϕ[n] =
1√
M









f [n− τ1]
f [n− τ2]

...

f [n− τM]









, (6)

contains an ideal fractional delay filter f [n−τ], creat-

ing a delay of τ ∈ R samples (Laakso et al., 1996),

with n ∈ Z the discrete time index. Thus, given a

source signal u[n] and neglecting attenuation, its con-

tribution to the sensor signal vector x[n] is

x[n] = sϑ,ϕ[n]∗u[n] . (7)

The lag values τm on the r.h.s. of (6) depend on the

elevation ϑ and azimuth ϕ of the source via taum =
kT

ϑ,ϕrm, where kϑ,ϕ is the source’s slowness vector

pointing in the direction of propagation, and rm is the

position vector of the mth sensor.

The z-transform of sϑ,ϕ[n],

sϑ,ϕ(z) =
∞

∑
n=−∞

sϑ,ϕ[n]z
−n , (8)

is here called a broadband steering vector. By evalu-

ating the broadband steering vector sϑ,ϕ(z) : C→C
M

on the unit circle, z = ejΩ, and for a particular fre-

quency Ω0 we can also derive a narrowband steering

vector sϑ,ϕ,Ω0
= sϑ,ϕ(z)|z=ejΩ0 .

4.2 Narrowband MUSIC

A classic angle of arrival estimation techniques is the

multiple signal classification (MUSIC) algorithm. It

builds on the instantaneous covariance matrix R =

E
{

x[n]xH[n]
}

, provided that x[n] contains narrow-

band data. By means of an EVD, R is separated

into a signal plus noise subspace, characterised by

large eigenvalues in Λs ∈R
R×R, and a noise only sub-

space, characterised by small remaining eigenvalues

in Λn ∈ R
(M−R)×(M−R):

R =
[

Qs Q⊥
s

]

[

Λs 0

0 Λn

][

QH
s

Q
⊥,H
s .

]

(9)

The matrix Qs spans the signal plus noise subspace,

which is an orthogonalisation of R contributing, lin-

early independent sources. The columns of its com-

plement, Q⊥
s , span the noise only subspace.

The fact that the steering vector of any of the R

linearly independent sources must be orthogonal to

the noise subspace spanned by Q⊥
s is exploited in the

MUSIC algorithm by probing the noise subspace with

steering vectors, such that

ρ(ϑ,ϕ) = ‖Q⊥,H
s sϑ,ϕ,Ωs

‖−1
2 (10)

= sH
ϑ,ϕ,Ωs

Q⊥
s Q⊥,H

s sϑ,ϕ,Ωs
, (11)

where Ωs is the narrowband frequency. The product

under the norm in (11) take on very small values if the

steering vector sϑ,ϕ,Ωs
belongs to a valid source and

therefore is orthogonal to Q⊥
s . The MUSIC spectrum

ρ is the reciprocal of this value, i.e. returns large val-

ues if sϑ,ϕ,Ωs
matches the steering vector of a source.

4.3 Broadband Approaches

Angle of arrival estimation techniques have been gen-

eralised to broadband signals. Recent works such

as (Souden et al., 2010) are restricted to single-source

scenarios. Early successful approaches have used the

coherent signal subspace approach (Wang and Kaveh,

1985; Wang and Kaveh, 1987; Hung and Kaveh,

1988), where effectively an array is pre-steered such

that the source appears at broadside, and can be

treated as a narrowband signal as all contributions are

aligned. This however requires approximate knowl-

edge from which direction a source illuminates an

array before the precise angle of arrival can be esti-

mated.

4.4 Polynomial MUSIC

Using the polynomial broadband approach, the sub-

space decomposition in (9) can be applied to the poly-

nomial EVD, and leads to a partitioning of the poly-

nomial modal matrix,

Q(z) =
[

Qs(z) Q⊥
s (z)

]

, (12)
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Figure 2: Polynomial MUSIC result for an 8 element lin-
ear array illuminated by 3 broadband sources (Weiss et al.,
2013).

where the R ≤ M columns of Qs(z) contain the eigen-

vectors spanning the signal plus noise subspace, and

Q⊥
s (z) its complement.

Based on this subspace decomposition of R(z),
the polynomial MUSIC algorithm in (Alrmah et al.,

2011; Alrmah et al., 2012; Weiss et al., 2013; Alrmah

et al., 2014) provide a simple generalisation of (11) to

polynomial matrices, such that

ρ(ϑ,ϕ,z) = sP
ϑ,ϕ(z)Q

⊥
s (z)Q

⊥,P
s (z)sϑ,ϕ(z) . (13)

The implementation of broadband steering vectors

can be achieved with filters of reasonable order if win-

dowing (Selva, 2008) or other schemes such as in (Al-

rmah and Weiss, 2013; Alrmah et al., 2013) are em-

ployed. The result of the polynomial MUSIC algo-

rithm in (13) is a power spectral density-type term,

which can either be evaluated in terms of its total en-

ergy, thus depending on the angle of arrival only, or

additionally resolve frequency.

Example. An example for an M = 8 element lin-

ear array illuminated by a mixture of three mutually

uncorrelated Gaussian sources of equal power,

• ϑ1 =−30◦, active over range Ω ∈ [ 3π
8

; π],

• ϑ2 = 40◦, active over range Ω ∈ [π
2

; π], and

• ϑ3 = 20◦, active over range Ω ∈ [ 2π
8

; 7π
8
],

is shown in Fig. 2. When using PEVD algorithms,

the accuracy of the result depends on the accuracy

of the PEVD decomposition, with enhanced diago-

nalisation leading to improved results (Alrmah et al.,

2012; Coutts et al., 2017c).

5 APPLICATION II: BROADBAND

BEAMFORMING

As an example for beamforming, we review the nar-

rowband definition of the minimum variance distor-

tionless response (MVDR) beamformer in Sec. 5.1

and standard broadband extensions in Sec. 5.2, with

its generalised polynomial formulation for the broad-

band case in Sec. 5.3. The polynomial approach

is then demonstrated to generalise the Capon beam-

former as well as a generalised sidelobe canceller

(GSC) in Secs. 5.4 and 5.5.

5.1 Narrowband MVDR

In beamforming, the aim is to isolate signals emit-

ted by spatially separated sources by spatial filter-

ing. This is achieved by creating constructive and

destructive interference based on measurements ob-

tained from M sensors, gathered in a data vector

x[n] ∈ C
M . In the narrowband case, recalling the

steering vector definition from Sec. 4.1, the alignment

can be achieved by complex multipliers, since only

the phase requires to be adjusted. The output of a nar-

rowband beamformer therefore consists of a weighted

sum of the sensor contributions, e[n] = wHx[n], where

w ∈ C
M contains the weights of the beamformer.

In the presence of interference, the aim of a min-

imum variance beamformer is to minimise the output

power σ2
e = E{y[n]y∗[n]}= wHRw,

min
w

wHRw (14)

s.t. sH
ϑs,ϕs,Ωs

w = f , (15)

where R = E
{

x[n]xH[n]
}

is the instantaneous covari-

ance matrix and the trivial solution is discouraged by

imposing a gain constraint f in look direction (ϑs,ϕs)
at the narrowband operating frequency Ωs.

Direct constrained optimisation of the MVDR

problem via Lagrange multipliers leads to the Capon

beamformer, see e.g. (Stoica et al., 2003; Lorenz

and Boyd, 2005). Alternatively, the generalised side-

lobe canceller projects that data onto an unconstrained

subspace, where standard unconstrained optimisation

techniques such the least mean squares or recursive

least squares algorithms can then solve the MVDR

problem (Widrow and Stearns, 1985; Haykin, 2002).

5.2 Broadband MVDR

In order to spatially filter broadband signals, explicit

delays must be resolved, such that each sensor has to

be followed by a tap delay line or finite impulse re-

sponse filter in order to be able to constructively or

destructively align signals. If a filter with temporal

length L is employed, then the data vector needs to

be extended to dimension ML, and include both spa-

tial and temporal samples (Buckley, 1987; Van Veen

and Buckley, 1988; Liu and Weiss, 2010). Subse-

quently, with a space-time covariance matrix of di-

mension ML×ML, the output power of the MVDR

problem can be defined.



The constraint equation can be straightforwardly

extended to the broadband case if the look direc-

tion is towards broadside for a linear array. If the

look direction is off-broadside, or the array elements

are not arranged in a line, then either correction by

pre-steering is required to create a virtual linear ar-

ray with broadside look direction, or more compli-

cated constraint formulations are required (Godara

and Sayyah Jahromi, 2007; Somasundaram, 2013).

5.3 Polynomial MVDR Formulation

If the M-element vector w[n] contains the M fil-

ters following each sensor, then its z-transform

w(z) •—◦ w[n] enables to formulate the broadband

MVDR problem as (Weiss et al., 2015)

min
w(z)

∮
|z|=1

wP(z)R(z)w(z)
dz

z
(16)

s.t. sP(ϑs,ϕs,z)w(z) = F(z) , (17)

where s(ϑs,ϕs,z) is the broadband steering vector

discussed in Sec. 4.1 that defines the beamformer’s

look direction. In the following sections, both the

Capon and GSC polynomial formulations will be de-

fined.

5.4 Polynomial Capon Beamformer

If we extend the constraint equation in (17) to include

N known interferers at angles of arrival (ϑi,n,ϕi,n, n =
1 . . .N, then

C(z)w(z) = f(z) , (18)

with

C(z) =











sP(ϑs,ϕs,z)
sP(ϑi,1,ϕi,1,z)

...

sP(ϑi,N ,ϕi,N ,z)











(19)

f(z) =









F(z)
0
...

0









, (20)

then in a first step a polynomial Capon beamformer

requires a pseudo-inverse of the polynomial con-

straint matrix C(z) to yield v(z) = C†(z)f(z). The

inversion of such a polynomial pseudo-inverse is

e.g. addressed in (Nagy and Weiss, 2017; Nagy and

Weiss, 2018).

With this extended constraint equation, the Capon

beamformer is given by (Alzin et al., 2016)

wopt(z) =
R−1(z)v(z)

ṽ(z)R−1(z)v(z)
. (21)

w
P
q (z)

B(z) w
P
a (z) +

−

d[n]

e[n]y[n]

x[n]

u[n]

Figure 3: Polynomial generalised sidelobe canceller with
quiescent beamformer wq(z), blocking matrix B(z), and
adaptive multichannel filter wa(z).

This formulation is a direct polynomial extension of

the narrowband formulation. The inversion of the

cross spectral density matrix R(z) can be accom-

plished via a polynomial EVD and the inversion of the

polynomial eigenvalues as discussed in (Weiss et al.,

2010).

5.5 Polynomial Generalised Sidelobe

Canceller

The GSC addresses the MVDR problem by form-

ing a beam in look direction irrespective of any un-

known structured interference. This quiescent beam-

former wq(z) is the solution to the constraint equa-

tion — either (17), or, in the case of known inter-

ferers, (18). In order to remove the remaining in-

terference, a blocking matrix B(z) passes all sig-

nal components orthogonal to wq(z), and therefore

contains the remaining interference only in its out-

put u[n] in Fig. 3. Thereafter, an adaptive noise can-

celler (Widrow and Stearns, 1985; Haykin, 2002) can

remove the remaining interference from the quiescent

beamformer output d[n], thereby minimising the out-

put power E{e[n]e∗[n]}.

The construction of wq(z) is such that its order

(and therefore computational complexity) is deter-

mined by the accuracy that is required of the frac-

tional delay filters (Laakso et al., 1996; Selva, 2008).

The blocking matrix can then be determined by poly-

nomial matrix completion from a polynomial EVD

of wq(z)w
P
q(z) (Weiss et al., 2015). Its computa-

tional complexity is determined by the accuracy of the

PEVD and the desired suppression of leakage of the

signal of interest. In general, this order is significantly

lower (by at least a factor of L) compared to tap-

delay-line implementation (Buckley, 1987; Van Veen

and Buckley, 1988; Liu and Weiss, 2010) with off-

broadside constraints (Godara and Sayyah Jahromi,

2007).

The computational advantage of the polynomial

GSC is based on the fact that the complexities for

wq(z), B(z) and wa(z) are decoupled, while in the

case of a standard time domain broadband beam-
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Figure 4: Gain response of polynomial GSC for M = sen-
sors in a linear array and look direction ϑs = 30◦, in depen-
dency of the angle of arrival and normalised angular fre-
quency.

former (Buckley, 1987; Van Veen and Buckley, 1988;

Liu and Weiss, 2010), all quantities are linked to

the tap delay line length L. Additionally, for off-

broadside look directions without pre-steering, con-

straints generally have to be defined in the frequency

domain. As a result, the gain response is only tied

down at isolated frequencies, while the broadband

constraint in (17) preserved coherence across the

spectrum.

Example. Fig. 4 shows the gain response of an

adapted beamformer for a linear array with M = 8

sensors with look direction ϑs = 30◦, with interfer-

ence by three broadband jammers. The gain in look

direction is preserved, while spatial nulls are placed

in the directions of the interfering sources over the

frequency ranges of these jammers.

6 CONCLUSIONS

This paper has summarised some of the develop-

ments in the area of polynomial matrix factorisations

and their application in particular to broadband array

problems. Many of these problems can be straight-

forwardly formulated as a simple extension from the

classical narrowband case to a broadband scenario

when utilising polynomial matrix notation. The solu-

tion, in the narrowband case often reliant on decom-

positions such as the EVD or SVD, has its broadband

equivalent in the parahermitian — or if approximated

— the polynomial EVD, for which several mature al-

gorithms exist (see e.g. pevd-toolbox.eee.strath.ac.uk

for Matlab implementations and examples). Even

though the focus of this paper has been on para-

hermitian or polynomial EVD, the polynomial ap-

proach can also be extended to other linear alge-

braic factorisations such as the SVD (Foster et al.,

2010; McWhirter, 2010), the QR decomposition (Fos-

ter et al., 2010; Coutts et al., 2016a) or the generalised

EVD (Corr et al., 2016).

Generally, the advantage of polynomial matrix

methods as opposed to DFT-based approaches is

generally that they preserve coherence between fre-

quency bins. This has lead to the exploration of a

number of applications besides the angle of arrival

and beamforming examples summarised on this pa-

per. Successful applications have, for example, tar-

getted for example in denoising-type (Redif et al.,

2006) or decorrelating array pre-processors (Koh

et al., 2009), transmit and receive beamforming across

broadband MIMO channels (Davies et al., 2007; Ta

and Weiss, 2007a; Sandmann et al., 2015; Ahrens

et al., 2017), broadband angle of arrival estima-

tion (Alrmah et al., 2011; Weiss et al., 2013), opti-

mum subband partitioning of beamformers (Vouras

and Tran, 2014), filter bank-based channel cod-

ing (Weiss et al., 2006) or broadband blind source

separation (Redif et al., 2017). In some cases the

polynomial approach can enable solutions that other-

wise have been unobtainable: e.g. the design of opti-

mal compaction filter banks beyond the two channel

case (Redif et al., 2011).

It is hoped that this overview paper can inspire the

use of these methods to a wider range of applications.
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