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A B S T R A C T

Due to the stricter government regulations on end-of-life product treatment and the increasing public awareness
towards environmental issues, remanufacturing has been a significantly growing industry over the last decades,
offering many potential business opportunities. In this paper, we investigate a crucial problem apparent in this
industry, the remanufacturing lot-sizing problem with separate setups. We first discuss two reformulations of this
problem, and remark an important property with regards to their equivalence. Then, we present a theoretical
investigation of a related subproblem, where our analysis indicates that a number of flow cover inequalities are
strong for this subproblem under some general conditions. We then investigate the computational effectiveness
of the alternative methods discussed for the original problem. Detailed numerical results are insightful for the
practitioner, indicating that in particular when the return variability increases or when the remanufacturing
setup costs decrease relevant to manufacturing setup costs, the flow covers can be very effective.

1. Introduction

The increasing scarcity of earth's natural resources and disposal
capacities present significant global environmental problems. The
worryingly increasing amount of waste in many sectors is driven by
technological development of new products that lead to the excessive
consumption of raw materials as well as energy. Therefore, Original
Equipment Manufacturers (OEMs) in various industries are increasingly
in a transition towards applying circular economy principles. As a
crucial component of circular economy, remanufacturing is an in-
dustrial process that brings used products to “at least an OEM func-
tioning order with a warranty to match” (Ijomah, 2009), that is, re-
building of a product using a combination of reused, repaired and new
parts so that the remanufactured product is at least at the same quality
level as the original manufactured product. Remanufacturing is the
most advanced product recovery option that offers value-added re-
covery, extends product life cycle, reduces landfills and energy con-
sumption (Shi et al., 2011), and takes place in industries ranging from
aviation equipment and medical instruments to copiers, computers and
automotive parts (Matsumoto and Umeda, 2011).

Remanufacturing also offers a big potential for employment and

profitable business opportunities. As reported by the Centre for
Remanufacturing and Reuse, UK remanufacturing industry approxi-
mately contributes £5 billion per year to the economy, creates jobs for
more than 500,000 people, and saves 270,000 tonnes of materials
(mostly metals) from recycling or scrapping (Chapman et al., 2009).
Parker et al. (2015) also note similar benefits in the European context,
where an annual contribution of €30 billion is estimated to the EU
economies from nine key remanufacturing sectors.

Remanufacturing can be operated either under a dedicated model
(i.e., remanufacturing only) or a hybrid model (remanufacturing com-
bined with its forward production). As noted by Li et al. (2009), re-
manufacturing in North America generally adopts a dedicated model, in
contrast to most remanufacturing operations in European countries
employing a hybrid model. OEMs who opt out their operations to third-
party remanufacturers are owing to the fact that remanufacturing is
much more reactive and less visible compared to manufacturing. Re-
manufacturing involves inherently complex manufacturing process that
requires specific tools, high technology machinery and multi-skilled
labours. Furthermore, the three main sub-processes of disassembly,
reprocessing and reassembly incorporate higher degree of uncertainty
associated with end-of-life products, which further complicate
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production planning and control (Guide, 2000).
Complications become even more crucial in hybrid systems.

Therefore, in this paper, we investigate production planning of the
hybrid systems, where the remanufacturing and manufacturing have
separate setups and the demands can be fulfilled by both re-
manufactured and new products, as illustrated in Fig. 1. Since our aim
is to gain a better analytical understanding of the inherent structure of
these problems, we study in this paper a single-item uncapacitated
version of the problem. In order to remain consistent with the notation
used in the literature, we denote this problem as ELSRs (Economic Lot
Sizing Problem with Remanufacturing and Separate Setups). Next, we
present a brief literature review.

1.1. Literature review

Studying basic problems that have obvious limitations compared to
a real-world problem has a number of benefits. First of all, as often is
the case, only simplified problems allow a fully analytical approach,
such as polyhedral analysis, and any extra levels of complexity can
easily hinder such analysis. Moreover, a good understanding of a basic
problem can often be extended to more complicated problems in terms
of solution methods, so that the effectiveness of such methods can be
substantially improved. Therefore, a number of researchers presented
such analysis in the lot-sizing literature. Milestone contributions that
are also effectively extended to more complicated problem include the

S(ℓ, ) inequalities of Barany et al. (1984) providing the full description
for single-item uncapacitated problems, and the facility location
(Krarup and Bilde, 1977) and shortest path (Eppen and Martin, 1987)
reformulations that are compact for single-item uncapacitated pro-
blems. More recent noteworthy theoretical achievements include
Akbalik and Pochet (2009) and Küçükyavuz and Pochet (2009), and a
thorough review of single-item problems is presented by Brahimi et al.
(2017). We also refer the interested reader to Akartunalı et al. (2016)
and Doostmohammadi and Akartunalı (2018) for recent overviews on
complex lot-sizing problems.

Lot-sizing in remanufacturing has been an increasingly more active
research area over the last decade. The earlier works of Richter and
Weber (2001) and Golany et al. (2001) investigated theoretical prop-
erties under special conditions such as linear or time-invariant costs,
and proposed polynomial or heuristic algorithms for such cases. The
study of van den Heuvel (2004) presented the first complexity analysis
of the problem, which was recently extended by Akartunalı and
Arulselvan (2016), and Yang et al. (2005) established complexity re-
sults for the case of concave costs. Teunter et al. (2006) proposed a
polynomial dynamic programming algorithm for the case with joint
setups and time-invariant costs, and Pineyro and Viera (2010, 2014)
provided complexity analysis in case of a disposal option. Pan et al.
(2009) showed some important properties for capacitated variants such
as constant capacities and proposed a pseudo-polynomial algorithm,
and Baki et al. (2014) proposed a constructive heuristic following an
alternative reformulation. As proven by Retel Helmrich et al. (2014),
the problem with separate setups is −NP hard if even all costs are time
invariant, which provides further motivation for the problem we study.
The recent papers of Cunha et al. (2017); Sifaleras and Konstantaras

(2017) propose innovative solution methods for remanufacturing pro-
blems with multiple items, and the study of Sahling (2013) proposes a
column generation approach for the case with capacities. Finally, it is
noteworthy to remark the recent studies of Agra et al. (2016) and Attila
et al. (2017) proposing robust optimization approaches in order to
address some inherent uncertainties in these problems.

1.2. Contributions and outline of the paper

The main contributions of our paper are as follows: i) Following the
recent work of Retel Helmrich et al. (2014) presenting a shortest path
(SP) reformulation and of Cunha and Melo (2016) presenting a facility
location (FL) reformulation for ELSRs, we note an important theoretical
property with regards to the equivalence of the LP relaxations of these
two reformulations; ii) We study a related subproblem defined as a
mixed integer set, and theoretically prove the strength for some crucial
flow cover inequalities for this set; and iii) We present a detailed
computational analysis for both theoretical contributions, and in par-
ticular highlight the strengths and weaknesses of the inequalities, in
order to provide valuable insights to the practitioners.

In the next section, we present a simple formulation for ELSRs.
Then, in Section 3, we discuss shortest path and facility location re-
formulations, and remark their theoretical equivalence. Section 4 is a
thorough theoretical analysis for a related subproblem, indicating that
most of the flow cover inequalities are strong under reasonable general
conditions. We present the results of thorough computational experi-
ments in Section 5, which is in particular focused on the effectiveness of
flow cover cuts. Finally, we conclude with some key remarks and po-
tential future directions in Section 6.

2. Problem definition and formulation

Following the nomenclature of Teunter et al. (2006), we briefly
describe ELSRs, and present a mathematical formulation in this section.
The problem considers remanufacturing and manufacturing operations
on separate production lines, each with its own setup and production
costs, where the quality of remanufactured products is assumed to be as
good as manufactured products. Given returns and customer demands
over a finite planning horizon with n periods, the problem seeks to find
a feasible production plan such that the total costs (production, in-
ventory and setup costs) are minimized while demands are satisfied on
time (and hence no backlogging allowed). A network representation of
ELSRs is illustrated in Fig. 2, where the higher level shows the flow of
returns and the lower level shows the flow of serviceable products (i.e.,
those remanufactured/manufactured). Next, we define the notation
used in the remainder of the paper.

Decision Variables:
xt
r : number of remanufactured products produced in period t;

xt
m: number of manufactured products produced in period t;
yt
r : = 1 if remanufacturing takes place in period t, = 0 otherwise;
yt
m: = 1 if manufacturing takes place in period t, = 0 otherwise;
It
r : inventory of returns held at the end of period t;
It
s: inventory of serviceable products held at the end of period t.

Fig. 1. Material flow in a hybrid remanufacturing environment.
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Parameters
pt
r : unit production cost of remanufacturing in period t;
pt
m: unit production cost of manufacturing in period t;

ht
r : unit holding cost for inventory of returns in period t;

ht
s: unit holding cost for inventory of serviceable products in

period t;
Kt
r : setup cost for remanufacturing in period t;

Kt
m: setup cost for manufacturing in period t;

dt : amount of demand in period t, where = ∑′ =
′

d dt t i t

t
i, ;

rt : amount of returns in period t, where = ∑′ =
′

r rt t i t

t
i, .

Let = …N n{1, , }. The mathematical formulation of ELSRs is as fol-
lows:

∑= + + + + +
=

Z K y K y p x p x h I h Imin ( )
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r
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= + + − ∀ ∈−I I x x d t Nt
s

t
s

t
r

t
m

t1 (3)

≤ ∀ ∈x r d y t Nmin{ , }t
r

t t n t
r

1, , (4)

≤ ∀ ∈x d y t Nt
m

t n t
m

, (5)

∈ ∀ ∈y y t N, {0,1}t
r

t
m n (6)

≥ ∀ ∈x x I I t N, , , 0t
r

t
m

t
r

t
s (7)

= =I I 0r s
0 0 (8)

The objective function (1) minimizes the sum of setup and pro-
duction costs for remanufacturing and manufacturing, and holding
costs for returns and serviceable products. The constraints (2) and (3)
represent flow conversation for returns and serviceable products, re-
spectively, so that demands are satisfied on time. The constraints (4)
and (5) ensure setups take place when remanufacturing and manu-
facturing is strictly positive, respectively. Finally, (6) and (7) state the
integrality and nonnegativity conditions. Without loss of generality and
in line with previous work such as Retel Helmrich et al. (2014), we
assume no initial inventory for returns and serviceable products, as
stated in (8). Then, the feasible region X of the basic formulation for
ELSRs is defined as = −X x x y y I I{( , , , , , ) (2) (8)},r m r m r s and the
problem ELSRs as = ∈Z x x y y I I Xmin{(1) ( , , , , , ) }r m r m r s .

3. Extended reformulations for ELSRs

As proven by Retel Helmrich et al. (2014), the ELSRs problem is
NP -hard for time-invariant cost parameters, and therefore, any ana-
lytical insights are essential for developing effective solution methods
for problems in practice. In this section, similar to the analysis pre-
sented in Akartunalı and Miller (2012) for multi-item lot-sizing pro-
blems, we aim to establish theoretical strengths of extended re-
formulations, which have proven to be very insightful for many integer
programming problems in the past. We consider two extended re-
formulations for ELSRs, which we also evaluate computationally later
in the paper.

First of all, we consider the shortest path (SP) reformulation, as
originally proposed by Eppen and Martin (1987) for the uncapacitated
single-item lot-sizing problem, for which it is proven to obtain integer
solutions. We note that the study of Retel Helmrich et al. (2014) has
already presented an SP reformulation for ELSRs, where they also de-
veloped a partial SP reformulation for the sake of computational effi-
ciency, and Syed Ali (2016) has also investigated this reformulation
further. Therefore, we omit to present a full formulation of this re-
formulation in this paper, and refer the interested reader to these re-
ferences. In the remainder of the paper, we denote the optimization
problem using the SP reformulation by ZSP, and use the superscript LP
to indicate the LP relaxation value of a problem, e.g., ZSP

LP indicating the
LP relaxation value of the SP reformulation.

The second reformulation we consider is a facility location (FL)
reformulation (Krarup and Bilde, 1977). We note that to the best of our
knowledge, Cunha and Melo (2016) is the first study presenting a FL
reformulation for ELSRs problem. This reformulation disaggregates the
production variables xt

r and xt
m by defining new decision variables with

respect to the destinations of products, as follows:

′wt t
sr
, : amount of remanufactured products in period t to satisfy the

demand in period ′ ≥t t ;

′wt t
sm
, : amount of manufactured products in period t to satisfy the

demand in period ′ ≥t t .

In addition, we introduce new decision variables to identify the
origin of returns, which can be also linked to the variables ′wt t

sr
, :

′wt t
r
, : amount of returns in period t, which are remanufactured in

period ′ ≥t t .

Fig. 2. Network representation of ELSRs problem with period, =n 4 (adapted from Retel Helmrich et al. (2014)).
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Then, the following constraints are added into the original for-
mulation.

≤ ∀ ∈ ∀ ′ ∈′ ′w d y t n t t n[1, ], [ , ]t t
sr

t t
r

, (9)

≤ ∀ ∈ ∀ ′ ∈′ ′w d y t n t t n[1, ], [ , ]t t
sm

t t
m

, (10)

∑′ + = ∀ ′ ∈
=

′ ′ ′( )
t

w w d t n[1, ]
t

t t
sr

t t
sm

t

1

, ,
(11)

≤ ∀ ′ ∈ ∀ ∈ ′′ ′w r y t n t t[1, ], [1, ]t t
r

t t
r

, (12)

∑ ≤ ∀ ∈
′=

′
n
w r t n[1, ]

t t

t t
r

t,
(13)

∑ ∑= = ∀ ∈
′=

′
′=

′x
t
w

n
w t n[1, ]t

r

t

t t
r

t t

t t
sr

1

, ,
(14)

∑= ∀ ∈
′=

′x
n
w t n[1, ]t

m

t t

t t
sm
,

(15)

≥w w w, , 0sr sm r (16)

Constraints (9), (10) and (12) enforce setup variables to take correct
values. Constraint (11) ensures the satisfaction of demand, and con-
straint (13) limits the production of remanufactured products by the
number of returns. Constraints (14) and (15) details relationships be-
tween the old and new variables, and (16) denotes the nonnegativity
requirements. We note that this reformulation has only very minor
differences (such as equations for demand satisfaction and upper
bounds on ′wt t

sr
, variables) from the multicommodity formulation of

Cunha and Melo (2016). The feasible region and objective function
associated with this reformulation can be defined as

= − −X x x y y I I w w w{( , , , , , , , ) (2) (8), (9) (16)},FL
r m r m r s r sr sm and

= ∈Z x x y y I I w w w Xmin{(1) ( , , , , , , , ) }FL
r m r m r s r sr sm

FL , respectively.
Moreover, following the previously introduced notation, ZFL

LP denotes
the LP relaxation value of the FL reformulation. We conclude this
section with the following important result.

Proposition 1. ≤ =Z Z ZLP
FL
LP

SP
LP.

In words, the lower bounds provided by SP and FL reformulations are

equal to each other, and they do provide at least as strong a lower bound as

the basic formulation of the problem. This equivalence is very important in

practice, as it allows us two options to choose from when computationally

evaluating a problem. The proof is similar to a result presented in Akartunalı
and Miller (2012), and it is also presented in detail in Syed Ali (2016),
hence we omit it. We also note that this equivalence is remarked in the

computational results of Cunha and Melo (2016).

4. Polyhedral analysis for ELSRs

Polyhedral analysis is an analytical tool set, allowing us to evaluate
the strength of linear inequalities by checking whether they define the
“facets” of a feasible region or not, and hence it is valuable to under-
stand the complications inherent in challenging integer programming
problems. Therefore, in this section, we investigate the polyhedral
structure of a mixed integer set arising from the feasible set of ELSRs,
which considers two knapsack sets simultaneously based on the well-
known single node fixed-charge network (SNFCN). Before explaining
this further, we first define this mixed integer set formally:

∑
∑

= ⎧
⎨⎩

∈ × × ×

≤ + ≥ ≤ ≤ ∀ ∈ ⎫
⎬⎭

+ +
∈

∈

X x x y y x

R x x D x m y x m y t N

( , , , ) B B

, ( ) , , , .

s r m r m n n n n

t N
t
r

t N
t
r

t
m

t
r

t
r
t
r

t
m

t
m

t
m

� �

Here, = ∑ =R r
t

n
t1

denotes the total amount of returns, and

= ∑ =D d
t

n
t1
is the total amount of demands. Note that the big-M con-

straints can be structured based on the initial formulation, using
=m r dmin{ , }t

r
t t n1, , and =m dt

m
t n, for any ∈t N . In order to investigate

the polyhedral set conv X( )s , we first refer to Padberg et al. (1985) and
the SNFCN set defined as follows:

∑= ⎧
⎨⎩

∈ × ∇ ≤ ∀ ∈ ⎫
⎬⎭

∇ +
∈

X x y x d x m y t N( , ) B , , ,n n

t N

t t t t�

where ∇ ∈ ≤ = ≥{ , , } and ∇conv X( ) is denoted by ∇P . Using “surrogate
knapsack” problem and the associated knapsack polytope
= ∈ ∑ ≥ ∈ ∀ ∈∈K y m y d y t Nconv{ , {0,1}, }n

t N t t t� , which is a relaxa-
tion of ≥P and =P , the authors show that almost all facets of K are facets
for ≥P . Moreover, a class of “flow cover” facets for =P can be described
from a large class of valid inequalities for ≤P . These insights will be
beneficial to our polyhedral study of conv X( )s . Next, we state our as-
sumptions:

(i) > >D R 0,
(ii) ∑ ≥∈ m D

t N k t
m

\ { }
for each ∈k N ,

(iii) = > > ⋯ > >D m m m 0m m
n
m

1 2 ,
(iv) ∑ >∈ m R

t N t
r .

Note that the second assumption allows manufacturing to satisfy all
demands even when it is set to zero in any chosen period, the third
assumption simply uses the structure of ELSRs used to define big-M
parameters, and the last assumption ensures that all returned products
can indeed be remanufactured.

Proposition 2. =dim conv X n( ( )) 4s .
We note that we provide the proofs of this and any following propositions

in the Online Supplement, in order not to disrupt the flow of the paper while

ensuring that the technically interested reader can find these details. We also

note that the proofs of Corollaries are straightforward by following the re-

sults presented in Padberg et al. (1985).

Proposition 3. The trivial facet-defining inequalities for conv X( )s (and
their facet-defining conditions if applicable) are:

(i) ≥x 0i
r , ∀ ∈i N .

(ii) ≤x m yi
r

i
r
i
r , ∀ ∈i N .

(iii) ≤x m yi
m

i
m

i
m, ∀ ∈i N .

(iv) ≤y 1i
m , ∀ ∈i N .

(v) ≤y 1i
r , ∀ ∈i N .

(vi) ∑ ≤∈ x R
t N t

r , when∑ >∈ m R
t N k t

r
\ { }

for each ∈k N holds.

(vii) ∑ + ∑ ≥∈ ∈x x D
t N t

r
t N t

m .
(viii) ≥x 0i

m , ∀ ∈i N , when ∀ ∈ ∖k N i{ },∑ ∈ ∖t N i k{ , } + ∑ ≥∈m m Dt
m

i N t
r

holds.

The following definitions will be used throughout the paper.

Definition 1. A cover set can be defined as follows:

• A set ⊆S Nr is a cover for R if = ∑ − >∈λ m R 0
t S t

r
1 r .

• A set ⊆S Nm is a cover for −D R if = ∑ − − >∈λ m D R( ) 0
t S t

m
2 m .

• For ⊆S S N,r m such that ∩ = ∅S Sr m , pair S S( , )r m is a cover for D if
= ∑ + ∑ − >∈ ∈λ m m D 0

t S t
r

t S t
m

3 r m .

We also define =+x x( ) max{ , 0}.

It can be readily seen that set ≤X is a relaxation of set X s. Thus, any
valid inequality for ≤X is also valid for X s. Next, we present the well-
known valid inequalities for ≤X , and refer the interested reader to
(Padberg et al., 1985) for validity proofs of these inequalities. Our
theoretical contribution comes from the fact that, under certain and
general conditions, these inequalities are facet-defining for conv X( )s .

Corollary 1. Let ⊆S Nr be a cover for R, with = ∈m mmax .r

t S
t
r

r
Then, the

following inequality (called returns cover inequality) is valid for X s.
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Proposition 4. Let = ∈ − >+S t S m λ{ 0}r r
t
r

1 . If ≥+S 2r , then (17)
defines a facet of conv X( )s .

It is natural to extend inequality (17) as follows.

Corollary 2. Let ⊆S Nr be a cover for R with = ∈m mmaxr

t S
t
r

r
and

⊆ ∖L N Sr r . Assume =m m mmax( , )t
r r

t
r for all ∈t Lr . Then the following

inequality (called returns-extended cover inequality) is valid for Xs.
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Proposition 5. The inequality (18) is facet-defining for conv X( )s if both

< − < ≤m λ m m0 r
t
r r

1 for any ∈t Lr and the condition of Proposition 4
hold.

Next, we investigate some well-known inequalities originally pro-
posed for ≥X , which is again an obvious relaxation of set X s.

Corollary 3. Let ⊆S Nm be a cover for −D R. Then, the following

inequality (called demands cover inequality) is valid for X s.

∑ ∑≥ − −
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t
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We note that the validity of these inequalities follows simply the fact
that ∑ ≥ − ≤ ≤∈x y x D R x m y{( , ) , 0 }m m

t N t
m

t
m

t
m

t
m is a relaxation of X s.
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t S
t
m
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r
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t
r , then the

inequality (19) defines a facet for conv X( )s .

Corollary 4. Let ⊆S Nm be a cover for −D R, and ⊆ ∖L N Sm m such that
= >∈m m λmaxm
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m

2
m
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m

t
m m , ∀ ∈t Lm. Then, the

following inequality (called demands-extended cover inequality)
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is valid for X .s

Proposition 7. Let = ∈ − >+S t S m λ{ 0}m m
t
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(20) defines a facet for conv X( )s .

Corollary 5. For ⊆S S N,r m , let S S( , )r m be a pair cover for D. Then, the

inequality (called returns-and-demands cover inequality)
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is valid for X s.

Proposition 8. Let = ∈ − >+S t S m λ{ 0}r r
t
r

3 and

= ∈ − >+S t S m λ{ 0}m m
t
m

3 . If >λ 03 , ∑ <∈ ∖ m R
t N S t

r
r , ∃ ∈ +i Sr1 such

that − ≤m λ mi
r

t
r

31
holds ∀ ∈ ∖t N Sr and − ≤m λ mi

r
t
m

31
holds

∀ ∈ ∖t N Sm, + ≥+ +S S 2r m and ∖ ≠ ∅ ≠ ∖N S N Sr m, then the

inequality (21) is facet-defining for conv X( )s .

We note that we omit a detailed discussion of exact separation al-
gorithms for these inequalities, as they are straightforward extensions
of the minimization problem proposed by Padberg et al. (1985) (or
alternatively the maximization problem proposed by Agra and
Doostmohammadi (2014)) for flow cover inequalities. To conclude this
section, we note that the feasible region of the basic formulation for
ELSRs is now updated with the additional flow cover inequalities and
hence can be written as

= − −X x x y y I I{( , , , , , ) (2), (3), (5) (8), (17) (21)},ext r m r m r s

with the objective function = ∈Z x x y y I I Xmin{(1) ( , , , , , ) }s r m r m r s ext .

5. Numerical results

In this section, we investigate two aspects of the theory presented
from a computational perspective. First of all, we provide a brief eva-
luation of the two different reformulations presented in Section 3 and
compare it to a method presented in the literature. Then, in line with
the primary theoretical contribution of our paper, we provide a thor-
ough discussion with detailed numerical results concerning the facet-
defining inequalities of Section 4 and their strength for a range of
problems. All computations are run on a PC with Intel Core® i7-4500U
CPU 2.40 GHz processor and 8 GB RAM, and all formulations and se-
paration algorithms are implemented in FICO® Xpress-MP Optimization
Suite (Mosel version 7.7) without any solver cuts.

5.1. Brief analysis of extended reformulations

For the first set of tests, we experiment with 360 test instances
presented in Retel Helmrich et al. (2014). These problems have plan-
ning horizons of 25, 50 and 75 periods, and demand is generated using
a normal distribution with mean =µ 100 and standard deviation
=σ 50. On the other hand, the returns parameters are generated using a

normal distribution with three different parameter settings: i) low re-
turn = =µ σ( 10, 5), ii) medium return = =µ σ( 50, 25), and iii) high
return = =µ σ( 90, 45). The setup cost for both remanufacturing and
manufacturing is set to 125, 250, 500 and 1000, and holding costs for
both product returns and manufactured products are set to 1 for all test
instances. We note that equal holding costs are used primarily for the
sake of simplicity, as varying these values make only negligible dif-
ference based on our preliminary experimentation, but also holding
costs in these settings may depend on other factors than the pure cost of
products, e.g., manufactured items may be neatly packaged and stacked
up while returned items need specific shelf space, and hence we did not
want to put specific cost emphasis on either one. Following the model
presented in Teunter et al. (2006) and the argument that involving
variable production costs may distort the balance between setups and
inventory holding significantly, we set the variable costs of manu-
facturing and remanufacturing to zero for the sake of computational
simplicity. The default time is set to 600 s for each test instance.

As noted theoretically before, facility location (FL) reformulation
and shortest path (SP) reformulation provide identical lower bounds at
the root node. From our computational experience, we found out that
FL reformulation performs better in the given limited run time, and
therefore, we present here only the duality gaps achieved by this re-
formulation. As a benchmark from the recent literature, we report
duality gaps achieved by S WW(ℓ, , ) inequalities of Retel Helmrich
et al. (2014) using the same time limit. Here, we note that our aim is not
to evaluate different methods from the perspective of computational
times but rather understand the strengths of different approaches.
These results are presented in Table 1, where the FL reformulation often
provides a much stronger gap compared to S WW(ℓ, , ) inequalities,
where each entry shows the average of 10 instances.

The results in Table 1 indicate that the advantage of using FL re-
formulation varies significantly between different settings of the pro-
blem. We first observe that the performance of FL increases when the
setup costs increase, which indicates that FL is more capable of dealing
with fixed costs. On the other hand, a more obvious performance
strength for FL can be seen when low levels of returns are present in the
system. This makes intuitive sense, since at low return, the manu-
facturing will dominate the production more than remanufacturing,
and therefore, a valid inequality involving returns naturally becomes
less effective. We also note that in case of low returns, and in particular
when number of periods is limited to 25, many of the instances could be
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solved to optimality with FL reformulation, which can be observed from
particularly low average percentage gaps.

5.2. Computational strength of flow cover inequalities

The primary aim of this section is to gain an empirical under-
standing with respect to the strength of the flow covers that are theo-
retically proven to be facet-defining under general conditions for the
mixed integer set related to the actual problem. This necessitates us to
computationally evaluate lower bounds generated by these inequalities,
rather than aiming to design sophisticated frameworks for computa-
tional efficiency. Therefore, we implemented exact separation algo-
rithms as noted in Section 4, which are embedded within a Branch-and-
Cut framework. In order to facilitate this separation procedure to be
computationally more effective, we added a version of S(ℓ, ) inequal-
ities (Barany et al., 1984) a priori into the original formulation pre-
sented in Section 2 before separating flow covers. The reason of using
the original formulation with S(ℓ, ) inequalities include: i) the problem
size is kept small and in the original space of the problem, ii) S(ℓ, )

inequalities have been computationally effective in many lot-sizing
problem settings, and iii) although the lower bound obtained by adding

S(ℓ, ) is theoretically weaker than the reformulations presented in the
paper, our preliminary experiments indicated that in practice, it can
often achieve a lower bound close to the bound obtained by these re-
formulations. Next, we briefly discuss our experimental design.

Since the exact separation algorithms are excessively time-con-
suming when the problem size gets bigger, we generated for this nu-
merical experimentation problems with small planning horizons con-
taining =n 2, 4, 6, 8 and 12 periods, which allows us to use the
previous time limit of 600 s per problem with the guarantee of suc-
cessful completion of the exact separation process. We set the setup
costs for remanufacturing not higher than manufacturing, in order to
motivate remanufacturing taking place. Therefore, we vary setup costs
for remanufacturing between 10, 30, 50, 90, 200 and 500, whereas the
setup costs for manufacturing are kept fixed at 500. Then, similar to
previous section, we consider low, medium and high return vari-
abilities, where return parameters, rt , are generated randomly from
uniform distributions with intervals [5,15], [5,35] and [5,50], respectively.

Table 1

Comparisons of average duality gaps after 600 s.

Low Return Medium Return High Return

Setup Cost = 125 250 500 1000 125 250 500 1000 125 250 500 1000
n=25, lsWW 21.77 19.54 18.57 17.36 19.59 17.77 16.72 16.03 12.73 12.83 12.88 13.34
n= 25, FL 0.99 0.88 0.84 0.14 5.92 5.48 4.2 3.63 9.58 9.03 7.71 6.12
n= 50, lsWW 22.37 20 19.41 17.53 21.3 19.19 16.7 15.35 11.35 11.66 12.19 11.34
n= 50, FL 1.67 1.02 1.06 0.67 6.98 6.31 4.7 3.79 7.35 7.86 7.84 6.25
n= 75, lsWW 22.55 20.64 19.99 19.83 22.76 20.02 19 17.63 12.65 12.33 13.31 11.53
n= 75, FL 1.34 1.19 0.97 0.74 7.93 6.72 5.35 4.41 8.53 8.46 8.72 6.89

Table 2

[Low] Numerical results for facet-defining inequalities of the ELSRs problem.

n Kt
r Root % root gap closed # cuts added (FC) +S FC(ℓ, )

Gap (%) FL +S FC(ℓ, ) R RE D DE RD vs. FL

2 10 28.8541 31.4328 99.8529 0 0 2 0 1 68.5072
30 26.5228 40.6872 100 0 0 2 0 1 59.3128
50 22.7890 50.0475 100 0 0 2 0 2 49.9525
90 14.1078 66.7907 100 0 0 2 0 2 33.2093
200 0.9273 100 100 0 0 0 0 0 0

4 10 23.9931 39.0948 89.6031 0 0 3 0 1 56.5679
30 23.5822 59.2905 98.6087 0 0 3 0 1 39.7904
50 21.8994 75.8580 99.5070 0 0 3 0 1 23.8318
90 19.3709 94.4144 99.8686 0 0 2 0 0 5.4741
200 12.2554 100 100 0 0 0 0 0 0
500 6.3232 100 100 0 0 0 0 0 0

6 10 35.0957 70.9881 76.6853 0 0 3 4 0 7.5911
30 34.9737 79.5150 83.9535 0 1 3 4 0 5.4238
50 34.7577 85.1482 88.3908 1 1 2 2 0 3.7090
90 33.7086 90.1658 93.2182 2 3 0 2 0 3.3214
200 28.8887 98.8462 99.1722 0 1 0 0 0 0.3401
500 21.5066 100 100 0 0 0 0 0 0

8 10 39.8131 70.8516 72.5591 0 0 3 6 0 2.8802
30 38.6172 77.0986 78.2567 0 0 3 6 0 1.7400
50 37.0794 82.2884 83.0450 1 2 5 5 0 1.0082
90 35.3551 86.9766 87.5638 2 3 1 4 0 0.7226
200 32.8643 90.4093 90.9856 1 6 1 4 0 0.6035
500 24.7705 97.0644 97.0519 0 0 0 0 0 −0.0131

12 10 53.6100 69.2926 69.4444 0 0 1 2 0 0.2653
30 52.3521 75.3886 75.1378 0 0 0 2 0 −0.3476
50 50.9684 79.5795 78.9228 0 0 0 2 0 −0.9031
90 48.4052 84.4135 83.1792 0 0 0 0 0 −1.6194
200 42.8525 90.6798 89.1232 0 1 0 0 0 −1.8462
500 34.2976 94.4163 93.2686 0 0 0 0 0 −1.2693
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Moreover, the demand parameters, dt , are generated from the interval
[10,60], the holding costs for both product returns, ht

r , and manu-
factured products, ht

s, are generated randomly from [0.5, 2], and similar
to previous setting, production costs for both remanufacturing and
manufacturing are set to zero for the sake of simplicity. The variation
between periods, remanufacturing setup costs, and return variabilities
provide us a set of 90 combinations, and for each combination, we
generate 5 test problems, therefore resulting in a total of 450 test in-
stances.

We present detailed computational results in Tables 2–4 for low,
medium and high return variabilities, respectively. The first column in
these tables, n, indicates the number of periods, and the second column,
Kt
r , lists remanufacturing setup costs. Next column presents the root

gaps (in %) using the original formulation itself, followed by two col-
umns indicating what percentage of this root gap was closed by using
simply the facility location (FL) reformulation and by our separation
algorithms that add flow cover cuts on top of S(ℓ, ) inequalities
( +S FC(ℓ, ) ). In the following five columns, we provide details for
number of cuts generated on average for each set of 5 instances, where
we followed the same order of the inequalities as presented earlier:
Returns cover (17), Returns-Extended cover (18), Demands cover (19),
Demands-Extended cover (20), and Returns-and-Demands cover (21).
The last column denotes the pairwise comparison of the average per-
centage of gap closed between (FL) and ( +S FC(ℓ, ) ), where a higher
value indicates the superiority of flow covers and a negative value in-
dicates the superiority of FL. We calculate this quantity using the
equation

+ −
+ ×S

S

((ℓ, ) FC)gap closed FL gap closed

((ℓ, ) FC)gap closed
100

We note that we do not report computational times in these tables,

as our focus is to evaluate the strength of lower bounds with flow covers
(rather than computational efficiency) and the impact of different in-
equalities. Although we noted earlier that the time limit of 600 s was
sufficient to complete the exact separation process for all 450 test in-
stances, it would be valuable to briefly comment on the computational
effort needed for this process. For the smallest problems with =n 2, the
average computational time for all instances (i.e., all parameter set-
tings) is only 3.1 s, whereas this average increases to 97.6 s for instances
with 12 periods. Although there is at times significant variation in
computational times of individual instances due to randomization, we
have not observed any significant differences in computational times
due to different parameters settings.

As Tables 2–4 indicate, the average percentage of gap closed for
both approaches slowly deteriorates from low return to high return. On
the other hand, both FL and +S(ℓ, ) FC close bigger percentages of the
initial gaps as the setup cost for remanufacturing approaches the setup
cost for manufacturing, while the root gaps decreases for these in-
creasing remanufacturing setup costs. An important point to note is that
an increase in the number of periods does not seem to affect the cap-
ability of either FL or +S(ℓ, ) FC approaches with respect to closing the
root gaps.

With regards to the numbers of flow cover cuts added, it seems that
R and RE cuts become less often violated when the return variability is
increased. It is noticeable from the results that the D and DE cuts are the
most violated inequalities in most settings, which make them perfect
candidates for a more computationally effective framework. Finally, we
note that the contributions made by the RD cuts are only limited to
instances with small number of periods, which is not helpful in case of
practical settings.

When we compare relative performances of +S(ℓ, ) FC and FL, we
observe that the advantage of +S(ℓ, ) FC deteriorates in general with

Table 3

[Medium] Numerical results for facet-defining inequalities of the ELSRs problem.

n Kt
r Root % root gap closed # cuts added (FC) +S FC(ℓ, )

Gap (%) FL +S FC(ℓ, ) R RE D DE RD vs. FL

2 10 45.0950 26.9075 94.4611 0 0 2 0 0 72.5786
30 42.8864 31.1835 95.2767 0 0 2 0 0 68.3412
50 40.2386 34.7207 96.4270 0 0 2 0 0 64.7389
90 32.8733 40.3537 98.5051 0 0 2 0 0 59.2821
200 15.9223 78.7215 100 0 0 1 0 0 21.2786

4 10 49.7403 35.3968 68.0173 0 0 2 1 0 52.1367
30 47.6494 46.0011 74.8182 0 0 2 1 0 40.7644
50 45.2408 53.6317 80.5717 0 0 2 1 0 34.9492
90 40.3614 58.9151 90.0060 1 1 2 1 0 26.3695
200 29.4189 91.5988 96.9788 0 0 1 0 0 5.8726
500 3.2088 100 100 0 0 0 0 0 0

6 10 49.3599 49.9758 60.1883 0 0 2 5 0 18.4488
30 47.9154 59.4096 67.6241 0 0 2 6 0 13.3061
50 46.4717 66.3107 72.9706 0 0 2 6 0 9.9277
90 43.8035 77.6025 82.3302 0 0 2 5 0 6.1446
200 36.0323 89.7151 91.4156 0 1 1 0 0 2.1343
500 24.3197 98.7498 100 1 1 0 0 0 1.2502

8 10 54.8327 56.2942 67.5875 0 0 5 6 0 19.2394
30 52.2178 64.0220 72.3168 0 0 4 5 0 13.2511
50 49.9530 69.0474 76.2635 0 0 5 5 0 10.3687
90 46.1356 76.6449 77.4577 1 2 3 3 0 0.7057
200 38.4081 83.8108 83.2445 1 1 1 2 0 −1.1520
500 26.3794 91.7442 92.2815 1 0 0 1 0 0.4788

12 10 59.2999 52.0590 51.8342 0 0 2 6 0 1.2009
30 57.5021 59.1354 60.3081 0 0 2 8 0 2.6055
50 56.0083 64.7985 64.9259 0 0 2 8 0 0.5619
90 53.6279 71.6369 69.5996 0 0 1 7 0 −3.0779
200 46.4377 83.4929 79.4322 0 0 0 5 0 −5.6437
500 34.2895 90.1208 87.6771 0 1 0 2 0 −2.8061
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the increasing number of periods. On the other hand, we observe that
+S(ℓ, ) FC consistently has a much stronger performance when return

variability increases and when setup cost for remanufacturing de-
creases. This results in superior performance even in the case of the
biggest problems considered here with 12 periods, where the high re-
turn variability and lowest levels of remanufacturing setup costs show
significant improvements over the FL, in contrast to poor performance
seen in low variability case with 12 periods. This observation makes
intuitive sense, since in both cases of increasing return variability and
decreasing remanufacturing setup costs, remanufacturing will be more
attractive and hence take place more often, resulting in more effective
flow cover cuts.

Finally, we present further computational results with some bigger

size instances that have 24 and 48 periods in order to provide further
insights. First of all, we run some preliminary tests in order to gain
insight into running times necessary to complete exact separation, and
we determined to use a 1 h time limit. For this test, we focus on the
instances with high return variability, for two reasons: 1) gaps closed by
the two methods were weakest in this set, and 2) flow covers performed
better in this set, relative to the facility location reformulation. The
same experimental design principles and parameter settings were used
to generate these instances, and we present the results in Table 5. We
first note that all instances with 24 periods could be completed with this
time limit (hence providing us an exact as in earlier tests), and although
the running times were more volatile for instances with 48 periods and
a third of these 30 instances were not completed within this time limit,

Table 4

[High] Numerical results for facet-defining inequalities of the ELSRs problem.

N Kt
r Root % root gap closed # cuts added (FC) +S FC(ℓ, )

Gap (%) FL +S FC(ℓ, ) R RE D DE RD vs. FL

2 10 57.5876 24.5649 79.4025 0 0 1 0 0 71.2885
30 54.3917 27.2093 80.5020 0 0 1 0 0 69.1753
50 51.1973 29.2590 80.5231 0 0 1 0 0 66.8088
90 44.7598 31.1094 80.7856 0 0 1 0 0 64.2208
200 22.2754 37.5051 89.1584 0 0 1 0 0 59.0290

4 10 55.3992 32.8398 55.2681 0 0 2 1 0 47.3823
30 52.6569 41.0820 62.1798 0 0 2 1 0 37.9533
50 50.3678 46.6797 67.0364 0 0 2 1 0 32.8480
90 45.3242 51.0317 73.3504 0 0 1 1 0 23.8992
200 31.5619 81.5030 90.3511 0 0 1 0 0 10.4204
500 13.7853 100 100 0 0 0 0 0 0

6 10 55.6137 45.5415 56.9709 0 0 2 3 0 20.1430
30 52.9243 53.6717 61.9214 0 0 3 3 0 12.9995
50 50.7867 59.5644 67.9446 0 0 3 3 0 11.4530
90 47.5418 67.9697 73.8230 0 0 3 4 0 6.9820
200 37.4267 82.9882 86.8705 1 2 2 2 0 4.4484
500 23.4955 97.7132 97.9943 0 0 0 0 0 0.2914

8 10 56.9692 58.4371 62.8906 0 0 3 3 0 6.7093
30 54.5931 64.2582 67.4552 0 0 3 3 0 4.6992
50 51.6575 68.7684 71.4358 0 0 3 1 0 3.5303
90 47.5161 75.2219 76.6774 0 0 2 1 0 1.8891
200 39.3639 87.0346 86.4874 0 0 2 0 0 −0.7299
500 25.7692 93.9996 94.9315 0 1 0 0 0 0.9840

12 10 63.0503 48.3811 53.9802 0 0 2 6 0 13.6969
30 60.8534 57.1965 60.7815 0 0 2 5 0 7.1225
50 59.0818 62.7979 65.0870 0 0 1 6 0 4.3014
90 55.7265 70.2096 70.7575 0 0 1 6 0 1.1469
200 48.3331 82.5790 81.1046 0 0 1 5 0 −1.7651
500 34.6776 88.4368 87.5205 0 0 1 0 0 −1.0873

Table 5

Numerical results for larger [High] instances.

n Kt
r Root % root gap closed # cuts added (FC) +S FC(ℓ, )

Gap (%) FL +S FC(ℓ, ) R RE D DE RD vs. FL

24 10 63.3546 59.5230 60.9084 0 0 1 8 0 2.3387
30 63.9191 67.1785 67.5560 0 0 1 8 0 0.5511
50 64.2062 71.4966 71.1044 0 0 1 8 0 −0.5887
90 63.9053 77.2983 75.8265 0 0 1 5 0 −2.0085
200 61.8837 83.5224 81.3234 0 0 0 6 0 −2.7801
500 54.0915 91.1676 88.9633 0 0 0 4 0 −2.4821

48 10 73.1216 62.1041 61.8368 0 0 0 4 0 −0.4401
30 74.0453 69.3531 68.1933 0 0 0 4 0 −1.7068
50 74.3979 74.2511 72.3792 0 0 0 6 0 −2.5911
90 74.6121 79.4440 76.5107 0 0 0 1 0 −3.8559
200 73.1370 86.8438 83.8011 0 0 0 6 0 −3.6592
500 68.1152 92.0747 90.2282 0 0 0 1 0 −2.0533
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it was still valuable to obtain an intermediate lower bound in such cases
to observe general trends. As in previous tests, both FL and +S(ℓ, ) FC
close bigger percentages of the initial gaps as the setup cost for re-
manufacturing approaches the setup cost for manufacturing, while the
root gaps decreases for these increasing remanufacturing setup costs. It
is also encouraging to see that the capability of both FL and +S(ℓ, ) FC
approaches remain stable with respect to closing the root gaps. In line
with the previous observations, the D and DE cuts are again the most
violated inequalities, and +S(ℓ, ) FC has a stronger performance when
the setup cost for remanufacturing decreases. Due to the incomplete
computational runs (also observed from the lower number of cuts
generated), the performance of +S(ℓ, ) FC seems to be poorer than FL
for instances with 48 periods, though the methods do not differ sig-
nificantly with respect to % root gaps closed.

6. Conclusions and future research

In this paper, we discussed a lot-sizing problem with re-
manufacturing, where setups for manufacturing and remanufacturing
are separate. Following some recent work in this area, we presented two
reformulations of this problem and presented an important theoretical
property with regards to their strength, indicating that they do indeed
provide equivalent lower bounds. Then, we presented a detailed poly-
hedral analysis for a mixed integer set that is not only a relaxation of
the original problem but also is an intersection of two knapsack sets
based on the well-known single node fixed-charge network (SNFCN).
This polyhedral analysis indicated that a number of flow cover cuts are
facet-defining for this mixed integer set under some general conditions.
In order to computationally evaluate the theory developed, we pre-
sented detailed numerical results, which in particular indicated which
types of inequalities are more advantageous and in which settings.
These results indicated that these cuts are in particular strong and
useful when the return variability increases and/or when the re-
manufacturing setup costs decrease relevant to manufacturing setup
costs. Such knowledge is crucial for building effective computational
frameworks for real-world problems, when the problem in question
becomes large-scale and contain further complicating elements.

There are some immediate research directions following this study.
First of all, the rich structure of the mixed integer set presented in
Section 4 deserves further analysis, not only for the particular set stu-
died but also to extend this analysis to more sophisticated problems,
such as when capacities are present on the remanufacturing, which is
more often the case in practice than capacities for manufacturing, as the
latter can often be satisfied with orders arriving from outside the
system. One particularly interesting direction is the case when multiple
items to be remanufactured share a resource with a constant capacity
(i.e., remanufacturing with big bucket capacity) and no setup times.
This case is also interesting from a practical point of view, as many
SMEs with limited and often inflexible resources remanufacture for a
range of manufacturers. From a theoretical perspective, the recent
study of Doostmohammadi and Akartunalı (2018) on a manufacturing
problem with similar properties hints at some strategies for further
analysis, e.g., extending valid inequalities with a single period nature to
valid inequalities covering consecutive periods. Though such theore-
tical analysis is challenging due to its complex nature, it is very pro-
mising to identify further strong valid inequalities, and therefore, we
are currently investigating this.

Moreover, such theoretical understanding would help us to develop
appropriate solution methods that are computationally capable to solve
sophisticated real world problems. As we have already noted in the
computational results, exact separation of valid inequalities is often
time consuming, and there is a need to develop customized methods for
computational efficiency. One immediate direction is to develop heur-
istic separation algorithms in order to generate only a small number of
effective inequalities, and then integrate these with an overall suc-
cessful heuristic method, such as the variable descent algorithm of

Sifaleras and Konstantaras (2017). Such integrated methods often
benefit from the strengths of both exact and heuristic methods, e.g.,
valid inequalities directing the heuristic search in more promising re-
gions while computational times not being hindered thanks to heuristic
components.
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