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Abstract�Lightning strike is one of the most serious 

damages to the wind turbine blade. The blade is in rotation 

when lightning strike happens. The influence of the rotation to 

the lightning attachment manner of wind turbine blade is not 

fully studied. Experimental work has been done in this paper. 

A 1:30 scale 3MW wind turbine is built. There are 3 side 

receptors on each blade according to the real wind turbine 

blade. A rod electrode is used as the high voltage electrode to 

simulate the downward leader. Both negative and positive 

250/25000ȝs standard switching impulses are applied. 

Different blade tip linear speeds, equal to the real wind 

turbine, are used to study the influence of the blade rotation to 

attachment process. The results show that the influence of the 

rotation can be classified into two types, one is the impact on 

the location of the striking attachment point, the other is the 

impact on the discharge channel close to the blade. The 

influence depends on the polarity of the discharge. Positive 

discharge is more dangerous to wind turbine blade in rotation. 

Keywords�lightning protection, wind turbine blade, rotation, 

receptor, lightning attachment  

I. INTRODUCTION 

Wind power generation has become one of the most 
important renewable energies of the world. In China, over 
100 000 wind turbines have been installed at the end of 2017. 
With the increasing of the onshore and offshore wind 
turbine, more and more lightning accidents have been 
reported. The damage rate of wind turbine blade in China is 
about 1% and for some thunderstorm area it can reach 5%, 
according to the data of Chinese Wind Energy Equipment 
Association. 

Most of wind turbines are equipped with lightning 
protection system (LPS) [1]. However, the existing LPS 
doesn�t provide enough protection to the blades. Many 
experimental researches have been done with real wind 

turbine blade tip specimen to improve the design of the LPS 
[2]-[7]. The blade is in rotation when lightning accident 
happens. Field observation indicates that the wind turbines in 
rotation are more likely to be hit by lightning strikes [8]-[10]. 
The breakdown voltages of static and rotation blade have 
been compared by using a scale wind turbine with an arching 
electrode [11]. The attachment process of the rotation wind 
turbine blade remains to study. 

In this paper, a scale rotation wind turbine is built, and 
the same linear speed of the real wind turbine is used. Both 
negative and positive standard switching impulses are 
applied. The influence of the rotation to attachment process 
under different polarity impulse has been studied. 

II. EXPERIMENT WORK 

A. Scale wind turbine model 

A 1:30 scale rotation wind turbine model is built, 
according to a real 3MW wind turbine (Fig. 1). The height of 
the steel tower is 4m. The length of the blade is 1.8m. The 
blade is made of glass fiber reinforced polymer (GFRP). 
There are three aluminum side receptors (named #1, #2, and 
#3 from the blade tip) on the blade. The location of the 
receptors is shown in Fig. 2. The radius of the receptor is 
0.5cm. The receptors are connected by 10mm2 copper down 
conductor. A commutator is used in the hub to connect the 
down conductor in the blade and the tower. The hub is 
connected to the motor with the same shaft and the motor is 
installed in the nacelle. The nacelle is protected by grounded 
steel mesh outside. The motor is powered by a small 
generator to eliminate the influence of the change of the 
ground potential due to the discharge. 
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Fig. 1 The 1:30 scale rotation wind turbine model 

 

 
Fig. 2 The arrangement of the receptors 

B. Experimental setup 

A rod electrode is used as the high voltage electrode to 
simulate the downward leader. The distance between the rod 
electrode and the nacelle is 3m. the electrode is right above 
the scale wind turbine. 

The electric field produced by switching impulse is more 
similar with that of real lightning strikes [12]. The 
250/2500ȝs standard switching impulse is used as the testing 
waveform. Although about 90% natural lightning strikes are 
negative, the positive ones are more destructive. So, both 
negative and positive impulses are use in the experiments. 

The length of a 2 - 3MW wind turbine blade is about 
50m, and the rotational speed is about 6 - 20r/min. The linear 
speed of the blade tip can range from 40 - 100m/s. Some 
parameters of 2 - 3MW wind turbines are shown in Table I. 
To simulate the linear speed of the real wind turbine blade 
tip, 0r/min, 200r/min and 350r/min are used as the speed of 
the scale wind turbine, which the linear speeds are 0m/s, 
37.68m/s and 65.94m/s, respectively. 

 

 

TABLE I PARAMETERS OF 4 TYPES OF 2-3MW WIND TURBINES 

Model 
Capacity 

(MW) 

Length 

of 

blade 

(m) 

Range of 

rotational 

speed 

(r/min) 

Linear 

speed of 

the blade 

tip (m/s) 

Vestas V90 2 44 8.6-18.4 39.6-84.7 
Vestas V112 3 54 6.7-17.7 37.9-100.0 

Sinovel 
SL3000/105 

3 50 7.5-17.5 39.5-92.1 

Goldwind 
GW115 

2 56.5 14.5-18.2 85.7-107.6 

 

Both static and rotational experiments are conducted 
under both negative and positive standard switching 
impulses. For the static condition, experiments are conducted 
under four different blade orientations, which are 30°, 45°, 
60°, and 90° with horizontal, as shown in Fig. 3. For the 
rotational condition, two different speeds (200r/min, 
350r/min) are used. The impulse is generated by 5400kV 
impulse voltage generator in NCEPRI. A digital camera and 
a high-speed camera are used to record the attachment 
process. The speed of the high-speed camera is 240616fps. 

 
Fig. 3 Four types of wind turbine blade orientations 

III. EXPERIMENT RESULTS 

A. Attachment manner under negative switching impulses  

Table II and Fig. 4 shows the results of negative 
experiments. The side receptor works well and intercepts all 
the discharges. All the striking attachment points are located 
at #1 receptor for both static and rotation condition. There 
are no observably difference on the location of striking 
attachment point between the static and rotation results. 

TABLE II RESULTS OF THE ATTACHMENT MANNER OF WIND TURBINE 

BLADE UNDER NEGATIVE STANDARD SWITCHING IMPULSE 

Rotational 

speed 

(r/min) 

Blade 

orientation 

Breakdown 

voltage a 

(kV) 

Striking attachment point 

#1 

Rece-

ptor 

#2 

Rece-

ptor 

#3 

Rece-

ptor 

Static 90° -1020.43 20 - - 
Static 60° -1284.92 20 - - 
Static 30° -1731.49 20 - - 
200 - - 20 - - 
350 - - 20 - - 

aˊ The breakdown voltage is the average instantaneous value of all the discharges under the same 

condition. 



 

Fig. 4 The distribution of the striking attachment points for static and 
rotation condition (negative) 

For static condition, no damages are made on the receptor 
or on the blade surface near the receptor. Upward leaders are 
observed being incepted from the #1 receptor under all the 
three blade orientations, as shown in Fig. 5. It is worth being 
noted that, the upward leader can be divided into two 
patterns from the static results, 1/3 of the upward leaders 
develop in the air near the blade (Fig. 6(a)), and the other 2/3 
of the upward leaders develop along the blade surface (Fig. 
6(b)). 

 
Fig. 5 The discharge channel of negative impulse 

 
(a) upward leader develops in the 

air near the blade 
(b) upward leader develops along 

the blade surface 

Fig. 6 The path of upward leader incepting from the receptor 

There are some puncture damages near the receptor 
reported from the field observation, and the junction of the 

beam and the core material is the most vulnerable position of 
the blade from experimental study [13]. So, although the 
receptor intercepts the downward leader successfully, it may 
still cause damages due to the path of the discharge near the 
receptor. There are two suggestions proposed by this paper to 
improve the performance of the wind turbine blade LPS 
against lightning strikes, one is that reinforcing the strength 
of the material near the receptor to withstand the discharge, 
the other is that modifying the design of the receptor to avoid 
upward leader developing along the blade surface. 

For rotation condition, the path of the discharge near the 
receptor is in arc-shape, as shown in Fig. 7. The length of the 
arc-shape channel ranges from 0.2m (200r/min) to 0.3m 
(350r/min). Surface scorching may happen on the blade 
surface near the receptor (Fig. 8), which is reported by real 
wind turbines [14]. The length of the scorching mark ranges 
from 21.2mm (200r/min) to 32.6mm (350r/min). The blade 
orientation is random when the discharge happens, however, 
all the marks caused by surface scorching are in the opposite 
direction of the rotation. 

(a) Scale wind turbine (b) Field observation 

Fig. 7 The arc-shape discharge channel near the receptor 

 

Fig. 8 Surface scorching phenomenon 

B. Attachment manner under positive switching impulses 

Table III and Fig. 9 shows the results of positive 
experiments. The location of the striking attachment points is 
significantly different from that of negative experiments. 

TABLE III     RESULTS OF THE ATTACHMENT MANNER OF WIND TURBINE BLADE UNDER POSITIVE STANDARD SWITCHING IMPULSE 

Rotational 

speed 

(r/min) 

Blade 

orientation 

Breakdown 

voltage a 

(kV) 

Striking attachment point 

total 
#1 

Receptor 

#2 

Receptor 

#3 

Receptor 

Blade 

body 
Nacelle 

Static 90° 641.01 20 - - - - 20 
Static 60° 881.66 20 - -  - 20 
Static 45° 1073.13 11 9 - - - 20 
Static 30° 1103.57 - 10 10 - - 20 
200 - - 15 3 - 1 1 20 

                                                                                                          a. The breakdown voltage is the average instantaneous value of all the discharges under the same condition. 



Where the discharge hits on the blade depends on the 
orientation of the blade whenever the blade is static or in 
rotation. 

 
Fig. 9 The distribution of the striking attachment points for static and 

rotation condition (positive) 

For static condition, all the downward leaders are 
intercepted by receptors. However, the receptors that attract 
the downward leaders are significantly different with that of 
negative discharges. When the blade orientation is larger 
than 45° with horizontal, the #2 or #3 receptor will intercept 
the downward leader instead of the #1 receptor, as shown in 
Fig. 10. Multiple upward leaders can be observed incepting 
from #2 and #3 receptors of different blades, as shown in 
Fig. 11. There is even no corona or upward leader incept 
from the #1 receptor. It is indicated that the receptors far 
from the blade tip are necessary for LPS of wind turbine 
blade against positive lightning strikes. 

 
Fig. 10 The #2 and #3 receptor intercept the downward leader instead 
the #1 receptor for positive discharge under blade orientation larger than 

45° 

 
Fig. 11 Multiple upward leaders incept from different receptors of 

different blades 

For rotation condition, some positive discharges hit on 
the blade surface and the nacelle rather than the receptors. As 
shown in Fig. 12, the discharges may hit on the blade surface 
and the nacelle when the blade orientation is near 30° with 
horizontal in rotation. The critical angle of the blade 
orientation that the #1 receptor fails to intercept downward 
leader in rotation condition is about 50°, which is larger than 
that of static condition (45°) (Fig. 9). Both the critical angle 

and the case that all the receptors fail to attract downward 
leader indicate that the rotation blade is more vulnerable to 
be hit by positive lightning strikes. However, there is no 
significantly difference for negative discharges between 
static and rotation condition. It is worth being noted that 
there is no obvious arc-shape channel for positive discharges. 
The reason may be that the linear speed of the #2 or #3 
receptor is small than that of the #1 receptor. 

One of the reasons why the #1 receptor fails to attract 
downward leader is that it difficult for negative upward 
leader to incept it. Table IV shows the length of the 
downward leader when upward leader incepts under negative 
and positive discharges. Negative upward leader incepts 
much later than the positive one, so there is not enough time 
for #1 receptor to attract the downward leader and the 
downward leader finds a closest point to hit on. 

 
(a)                                 (b) 

Fig. 12 Positive discharges hit on (a) the blade body and on (b) the 
nacelle  

TABLE IV THE LENGTH OF THE DOWNWARD LEADER WHEN THE 

UPWARD LEADER INCEPTS 

Polarity 

Rotation 

speed 

(r/min) 

Ratio between the 

length of the downward 

leader and the whole air 

gap 

SD 

Negative 200 20.77% 0.1085 
Negative 350 13.59% 0.0674 
Positive 200 44.14% 0.1008 

IV. DISCUSSION 

The influence of rotation can be divided into 2 types, one 
is the influence during the attachment process, the other is 
after the leaders connect. 

The duration of the attachment process is about 8ȝs from 
the results of high speed camera. The distance the blade 
moves in such short time is about 0.30mm (200r/min) / 
0.53mm (350r/min). For the real blade, the duration of the 
attachment process is about 120.4 � 173.9ȝs [15]-[17], the 
movement of the blade is about 4.82 � 17.39 mm. so the 
blade can be regarded as being static during the attachment 
process. As a result, the attachment manner has no difference 
for negative condition. However, there are some cases that 
receptor fails to intercept the discharge for positive condition 
when blade is in rotation. 

On the contrary, the arc-shape channel is obvious for 
negative discharges but not for positive discharges. The 
reason may be that the location of the striking attachment 
points of negative and positive discharges is different. Many 



of positive discharges hit on the #2 and #3 receptor whose 
linear speed are smaller the that of #1 receptor. 

V. CONCLUSION 

There are two kinds of influence due to the rotation of the 
blade. One is the influence on the location of the striking 
attachment point which is decided during the attachment 
process. The other is the influence on the discharge channel 
after the upward and downward leaders connect. 

The degree of the influence depends on the polarity of the 
discharges. For negative discharges, the striking attachment 
points are not influenced by rotation, but the arc-shape 
channel can be observed due to the rotation. For positive 
discharges, the striking attachment points are dramatically 
influenced by rotation and the orientation of the blade, but 
the rotation doesn�t affect the discharge channel. 

There is a dramatic polarity effect for negative and 
positive discharges for both static and rotation condition. 
Much more interception failures happen to positive 
discharges. The protection of positive lightning strikes 
should be paid more attention to. 
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