
Wong, Cuebong and Yang, Erfu and Yan, Xiu-Tian and Gu, Dongbing

(2018) Optimal path planning based on a multi-tree T-RRT* approach for

robotic task planning in continuous cost spaces. In: 12th France - Japan

Congress, 10th Europe - Asia Congress on Mechatronics, 2018-09-10 -

2018-09-12, Mie University. ,

http://dx.doi.org/10.1109/MECATRONICS.2018.8495886

This version is available at https://strathprints.strath.ac.uk/64678/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195292826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Optimal Path Planning Based on a Multi-Tree

T-RRT* Approach for Robotic Task Planning

in Continuous Cost Spaces

Cuebong Wong, Erfu Yang, Xiu-Tian Yan

Space Mechatronic Systems Technology Laboratory

Strathclyde Space Institute

University of Strathclyde, Glasgow G1 1XJ, UK

{cuebong.wong, erfu.yang, x.yan}@strath.ac.uk

Dongbing Gu

School of Computer Science and Electronic Engineering

University of Essex

Wivenhoe Park, Colchester CO4 3SQ, UK

dgu@essex.ac.uk

Abstract—This paper presents an integrated approach to
robotic task planning in continuous cost spaces. This consists
of a low-level path planning phase and a high-level Planning
Domain Definition Language (PDDL)-based task planning phase.
The path planner is based on a multi-tree implementation of
the optimal Transition-based Rapidly-exploring Random Tree (T-
RRT*) that searches the environment for paths between all pairs
of configuration waypoints. A method for shortcutting paths based
on cost function is also presented. The resulting minimized path
costs are then passed to a PDDL planner to solve the high-level
task planning problem while optimizing the overall cost of the
solution plan. This approach is demonstrated on two scenarios
consisting of different cost functions: obstacle clearance in a
cluttered environment and elevation in a mountain environment.
Preliminary results suggest that significant improvements to path
quality can be achieved without significant increase to computa-
tion time when compared with a T-RRT-based implementation.

Keywords - task planning, sampling-based path planning, cost
space planning, autonomy, robotics

I. INTRODUCTION

There is an ongoing shift towards the deployment of more

autonomous robotic systems in complex environments for a

diverse range of applications. These span across areas such

as plant inspection, planetary exploration, product assembly,

building deconstruction, surveillance, search and rescue and

much more. All of these tasks require some form of planning

to determine how a series of tasks should be performed.

At a high level, the process of planning the sequence in

which to perform a series of tasks is called task planning. At

a lower level, path planning involves finding an appropriate

path between the robot’s starting configuration and its final

goal configuration. For the most part these two activities

have been studied extensively but independently. Recent work

have begun to study the unification of path planning and

task planning to enable autonomous planning of robots that

optimize a solution plan based on the path distances required

to reach various landmarks in order to perform some tasks.

An example of recent work can be found in [1], where

a greedy A*-based path planning algorithm was integrated

with a Planning Domain Definition Language (PDDL) planner

to tackle the challenges of autonomous robotic exploration

missions. However, the use of deterministic graph-search-

based path planning methods is unsuited to problems of high

Fig. 1. Example scenario of a task planning problem solved using the multi-
tree T-RRT*-based algorithm described in this paper.

dimensions and complexity. Furthermore, little work has been

devoted to the process of optimally dealing with general cost

spaces in robotic task planning.

To this end, this paper presents an approach to integrated

path planning and task planning that deals with continuous

cost spaces. The method of path planning is based on a

multi-tree extension of the optimal transition-based rapidly-

exploring random tree (T-RRT*) [2] to efficiently find an

optimal path for all pairs of landmarks. The costs of each

path is then passed to a PDDL planner to optimally solve the

task planning problem in relation to the path-quality criterion

used to compute path costs. This approach is demonstrated

on two challenging scenarios. The first involves maximizing

obstacle clearance in a cluttered environment, while the second

case involves planning on 3-dimensional terrain. A heuristic

for path shortcutting of solutions is also presented.

The rest of this paper is organized as follows. A brief

review of related work on T-RRT* and PDDL planning is

presented in Section II. Then the approach to multi-tree T-

RRT* path planning and task planning is described in Section

III. Experimental results are presented in Section IV, before

a discussion on this approach and future work is provided in

Section V. Section VI concludes this paper.

II. RELATED WORK

A. Multi T-RRT* Path Planning

Sampling-based approaches to path planning, such as the

probabilistic roadmap [3] and the rapidly-exploring random

tree (RRT) [4], have been widely adopted due to their ef-

fectiveness in solving high dimensional problems. Focusing

on RRT-based algorithms for its simplicity and efficiency

in solving complex planning problems, numerous variants

of RRT have been proposed to address the sub-optimality

and slow convergence rates associated with the original RRT

algorithm. The RRT* [5] provides asymptotic optimality by

introducing a rewiring function to iteratively update the path

quality to nodes within the tree. The informed RRT* [6]

further improves the convergence rate of the RRT* by biasing

sampling of new nodes within an elliptical subset of the

configuration space determined from the current best solution

found.

Meanwhile, bi-directional RRT methods have also emerged.

RRT Connect was proposed in [7], which attempted to connect

multiple trees grown from different tree roots. This approach

demonstrated significant improvements to the convergence rate

of the standard RRT for complex problems. A bi-directional

RRT* [8] variant was developed to provide the same asymp-

totic optimality properties of the RRT* method. More recently,

the bi-directional tree approach to path planning was success-

fully demonstrated using the informed RRT* [9], improving

both quality of solutions and efficiency of the planner.

All of the above works considered path planning only

from the perspective of minimizing path length. They are,

however, ineffective for planning in continuous cost spaces.

An alternative variant of RRT called Transition-based RRT

(T-RRT) [10] was proposed with this problem in mind. The

approach introduces a transition test during the sampling stage,

which chooses to accept or reject a sample based on the

relative differences between the cost of the new sample and

the cost of the nearest node within the tree. As a result,

samples that lead to low-quality paths would not be added

to the tree. A multi-tree extension of the T-RRT variant was

later investigated in [11], demonstrating the effectiveness of

solving complex continuous cost space problems by growing

a tree at each waypoint of interest.

Nevertheless, T-RRT do not possess any optimality guaran-

tees, hence solutions are sub-optimal. This was then addressed

by combining T-RRT and RRT* [2], bringing together the

transition test and near-neighbour wiring procedures of these

two variants to guarantee asymptotic optimality while dealing

with continuous cost spaces.

B. PDDL Planning

The PDDL was developed in 1998 to standardize the repre-

sentation of AI planning problems [12], and was used to assess

automatic planners in the International Planning Competition

(IPC). PDDL captures the definition of a problem and the

related physics of a domain through two component files: the

domain file and the problem file. With each IPC the PDDL

has been further developed to consider additional features of

AI problems, with the latest version being PDDL version 3.1.

However, most planners are unable to handle all features that

can be expressed through PDDL. To facilitate this, subsets of

features are grouped into requirements. Hence each domain

file must specify the requirements necessary for solving related

problems. Consequently, the type of planner used must match

the requirements of the planning problem it is applied to.

The PDDL approach to solving planning problems have

been applied to a variety of complex problems such as vehicle

routing [13] and robot manipulation [14]. In this paper, PDDL

is used to formally represent the robot task planning problem

with the requirement that the chosen planner used to solve this

problem must be capable of handling STRIPS actions [15],

actions involving numerical expressions and minimization of

plan metrics (the cost representing path quality).

For the requirements described above, an extension of the

Local Search for Planning Graphs (LPG) [17] planner, called

LPG-td [16], was chosen to solve the problems represented

in PDDL. It also possesses capabilities to handle much more

requirements such as durative actions, which includes a dura-

tion parameter for each action to handle various consequences

at the start, all over or at the end of an action. Nevertheless,

there are numerous planners available that also meet the re-

quirements above, such as LAMA (a planner based on pseudo-

heuristics derived from landmarks) [18], Metric-Fast Forward

(Metric-FF) [19], and Subgoal Partitioning and Resolution in

Planning 6 (SGPlan6) [20].

III. GENERAL APPROACH

A. Task Planning Domain

The task planning domain is defined as follows. We assume

a single robot free to move in an environment that may consist

of obstacles. The robot is required to perform a series of

tasks located at n waypoints within the environment. These

waypoints represent particular configurations qkinit, k = 1...n,

within the configuration space C. Tasks may have certain

prerequisites or dependency on the completion of other tasks

and therefore the sequence in which to perform these tasks

may not be arbitrary. The robot starts at some initial waypoint

q0init and, for each movement from one waypoint to another,

the robot accumulates a total cost based on the path cost

cp(q
i, qj), where qi represents the waypoint that the robot

travels from and qj is the waypoint the robot is travelling

to. This cost is computed from path planning according to

predefined path quality criteria. The goal of the task planner

is to find a sequence of actions that lead to the completion

of all tasks while minimizing the total cost of the plan.

This is illustrated in Fig. 2. In order to smoothly relate the

information from path planning into the task planning process,

a script is developed to automatically generate the required

PDDL domain and problem files from within the path planning

environment. We use MATLAB to execute these processes.

B. Optimal Path Planning in Continuous Cost Space

1) Problem Formulation: Letting C represent the robot

configuration space, all infeasible regions due to collisions is

denoted as Cobs ⊂ C. Consequently, the obstacle-free space is

defined as Cfree := C\Cobs. For a given initial configuration

qinit ∈ C and goal configuration qgoal ∈ C, the path planning

problem involves finding a feasible path σ : [0, 1] → C such

Fig. 2. Illustration of the integrated approach. Given a problem scenario
defining task requirements, the path planner computes an optimal path for all
pairs of waypoints qk , including the robot start configuration. The costs of
these paths are consolidated in the task planner, which finds an optimal path
sequence to meet task requirements.

that σ(τ) ∈ Cfree for all τ ∈ [0, 1]. The set of all feasible

paths in C is denoted as Σfree.

For continuous cost spaces, the cost function is defined as

c : C → R+ such that a real positive cost value is assigned

to all configurations within the set C. Hence cost space path

planning consists of solving the above path planning problem

while taking into consideration the function c during sampling

of the configuration space and optimization of the solution

path. In order to assess path quality of solutions, a path quality

criterion is defined as cp : Σfree → R+ such that a real

positive cost value is assigned to every feasible path within C.

Using the concept of mechanical work as the quality criterion

[2] [10], the cost of any given path is determined by

ωc

n
∑

k=1

max

{

0,

(

c

(

qk

)

− c

(

qk−1

))

di

}

+ ωd

n
∑

k=1

di (1)

where di is the distance between qi and qi−1, and wc and

wd are weights associated with cost space and distance,

respectively, and are used to prioritize between finding lower

cost paths versus shorter paths. Here wd is set to a very low

value relative to wc such that the main objective is to find

paths with optimal mechanical work values. Hence the goal

of planning optimal paths in continuous cost space requires

finding a solution path with a minimum path cost cp.

2) The T-RRT* Based Multi-Tree Approach: The approach

developed in this work adopts the heuristics presented in [8]

and combines it with the concept of T-RRT* to enable effective

connections of multiple trees in an efficient manner. Like all

variants of RRT, our approach progressively grows a tree by

iteratively sampling the configuration space. The pseudo-code

of our approach is presented in Algorithm 1.

First, n trees are initialized and rooted at each waypoint

qkinit for k = 1...n. During each iteration, a single tree, denoted

by T ′ to identify it from the remaining trees, is chosen for

expansion in a round-robin fashion. A random configuration,

qrand is then sampled with a small bias towards selecting

one of the roots of the other trees as qrand. Like any RRT

algorithm, the nearest node q′nearest in T ′ is identified and

a new point qnew is generated through a steering function.

Using the characteristic transition test of the T-RRT method,

Algorithm 1 Multi-Tree T-RRT*

Input: The configuration space C, the cost function c→ R+

and waypoints qkinit, k = 1...n
Output: Trees Tk, k = 1...n and path solutions Σbest

1: for k = 1 to n do

2: Tk ← initTree(qkinit)
3: end for

4: Cbest ←∞; Σbest ← ∅
5: while not stoppingCriteria(Tk, k = 1...n) do

6: T ′ ← chooseNextTreeToExpand()
7: qrand ← sampleConfiguration(C)
8: q′nearest ← findNearestNeighbour(T ′, qrand)
9: qnew ← steer(q′nearest, qrand)

10: if transitionTest(T ′, cnearest, cnew) then

11: Q′
near ← findNearNeighbours(T ′, qnew)

12: Lnear ← sortNeighbours(Q′
near)

13: q′parent ← getParent(Lnear, qnew)
14: addNodeandEdge(T ′, q′parent, qnew)
15: for all (cp(qnew), q

′
near, σnear) ∈ Lnear do

16: if cp(qnew) + cp(σnear) < cp(q
′
near) then

17: rewire(T ′, q′near, qnew)
18: end if

19: end for

20: for all Tk 6= T ′ do

21: (σsol, cp(σsol))← connectTrees(T ′, Tk, qnew)
22: if cp(σsol) 6= null then

23: Cbest|T ′,Tk
← cp(σsol); Σbest|T ′,Tk

← σsol

24: end if

25: end for

26: end if

27: end while

28: Σbest ← shortcutting(Σbest)

a filtering process is applied to reject samples that lie in

high-cost regions. The behaviour of the transition test is

characterized by the temperature T and a temperature increase

rate Trate ∈ (0, 1], which controls the level of exploration in

high-cost regions. Readers are directed to [10] for details of

this function’s implementation.

For all accepted qnew, the algorithm searches for the set

of neighbouring nodes Q′
near that lie within a radius r from

qnew. From among these nodes, the algorithm finds the node

that leads to the lowest path cost to qnew to serve as its parent.

To achieve this in a computationally efficient manner, a sorting

technique is adopted from [8] (Line 12 in Algorithm 1). The

concept consists of generating a list of cost, configuration

and path triplets (cp, q, σ) for each neighbouring node stored

within the parameter L and sorting the elements in L according

to path quality. In the original implementation in [8], the

cost used was simply the path distance from the tree root to

qnew through neighbouring node qinear. Instead, we compute

cp(qnew) using (1) for each neighbouring node and sort

the list L according to this value. This approach minimizes

the number of collision checks and connecting procedures

required for selecting the parent node of qnew. Subsequently,

(a) (b)

Fig. 3. Illustration of path shortcutting acceptance criteria. Shortcut is
accepted only if the maximum cost of a point lying on the original path
(shown as a red point) is greater than the maximum cost of a point lying
on the shortened path (shown as a blue point). (a) Shortcut is accepted since
closest point on new path is further to obstacle than the original path. (b)
Shortcut is rejected as the shortened path approaches closer to the obstacle.

the getParent function in line 13 performs collision check

along the connecting edge to determine if a direct collision-

free path exists between qinear and qnew.

Like the RRT*, a rewiring stage is performed to optimize

the connections in the tree. For each neighbour in Q′
near, a

new path cost is computed from the current path cost of qnew
and the path cost of the connecting edge between said two

nodes. Connections to the neighbour node are rewired under

the condition that the new path cost is lower than its initial

value. Finally, the algorithm checks to see if a connection can

be made between T ′ and every other tree through qnew. This

is performed using the connectTrees function (Line 21), which

executes the following: for each tree Tk 6= T ′, the nearest node

q′′nearest to qnew is found. If the distance between q′′nearest and

qnew is within a predefined step size allowed for tree growth,

an attempt is made to connect these two nodes. This check

prevents the algorithm from checking for connections if no

possibilities exist. Then, all neighbouring nodes of qnew in Tk

are obtained and a sorting procedure arranges these nodes in

order of highest potential for generating a low cost connection.

Until a solution is found, the algorithm checks each node

to assess if the resulting connection is collision-free and

whether improvements to the total path cost cp(σsol) < cbest
is observed. When both conditions are true, the connection

is accepted and the function returns the solution path and its

associated cost function. If no nodes are accepted, the function

returns null.

Once the termination criteria (line 5) is met, a final path

shortcutting procedure is executed to optimize the quality

of final paths further. Unlike most other variants of RRT

where shortcutting simply deals with shortening segments of

a solution path that are collision-free, here the procedure must

take into consideration the cost function that determines the

quality of the path. This is achieved by assessing whether

a path shortcut results in an improvement to path quality.

This acceptance criteria is implemented by comparing the

maximum cost value along the proposed shortcut path against

the maximum cost value along the original path. This is

illustrated in Fig. 3 for the case of maximizing obstacle

clearance. Here a shortcut is accepted only when the closest

point along the shortcut σq1,q3 to an obstacle is further away

than the closest point along the original path σq1,q2,q3 to

(a)

(b)

Fig. 4. (a) Growth of five trees in a cluttered environment after 3000 iterations.
The colour of each tree corresponds with the color of its tree root shown in
the legend on the right. (b) Final path obtained from PDDL planner based on
paths found in (a).

an obstacle. Additionally, to account for shorter paths with

similar maximal cost, we include a small weighted path length

parameter in the comparison as in (1) for computing total

path cost. Hence the expression for calculating the cost csc
for shortcutting is given as

csc = max
k:qk∈σqi,qj

c(qk) + ωddi (2)

IV. EXPERIMENTAL RESULTS

Our approach was evaluated on two test scenarios consisting

of differing types of cost functions. In the first scenario,

the integrated task planner was applied to a cluttered two-

dimensional environment where the path quality is described

by obstacle clearance (Fig. 4). Here the robot starts from base

and must visit four landmarks with no constraints on the order

in which these landmarks must be visited. The robot must then

return to base. Fig. 4a presents the expanded T-RRT* trees

rooted at each waypoint for 3000 iterations and Fig. 4b shows

the resulting path found from the PDDL planner using path

costs obtained from the multi-tree T-RRT* path planner.

The power of PDDL-based task planning to support diverse

types of problems is briefly examined in scenario two, which

consists of a 3-dimensional mountain environment. Planning

in these environments are typically more challenging for a

number of reasons. For one, traditional path planning methods

are slow in these environments due to their increased scale.

Solutions found by planning algorithms that simply find the

shortest path are often far from true desired optimal paths

TABLE I
COMPARISON BETWEEN T-RRT* AND T-RRT-BASED INTEGRATED MULTI-TREE PLANNER

Method Environment
Total Total Total Computation

tree nodes path cost path length time (s)

T-RRT*
Mountain 1918 241.66 746.39 7.15
Cluttered 1777 15.51 510.73 3.19

T-RRT
Mountain 1985 426.00 793.14 6.28
Cluttered 1845 20.94 507.79 2.65

(a)

(b)

Fig. 5. Planning in mountain environment. (a) Initial planner solution found
after 1188 iterations. Sequence of motion: robot base → landmark 3 → robot
base → landmark 4 → landmark 1 → landmark 2 → robot base. (b) Improved
planner solution after 3000 iterations. Sequence of motion: robot base →

landmark 3 → landmark 4 → landmark 2 → landmark 1 → robot base.

as it can result in the traversal of steep slopes. Ultimately,

little work has been invested into task planning within these

environments that optimize the true quality of the entire route.

To address this, path quality is assessed by elevation in this

second scenario, as shown in Fig. 5, with two additional

problem requirements defined: (i) landmark 2 should be visited

after landmark 3, and (ii) the robot has a limited battery supply

and can only be recharged at the robot base. For demonstration

purposes, it was assumed that the amount of energy required to

move between landmarks is directly proportional to the cost of

the path. Fig. 5a presents a sample solution of the initial path

found after 1188 iterations, while Fig. 5b presents a lower-

cost solution found after 3000 iterations. While the solution

shown in Fig. 5a involves revisiting the base to recharge, the

improved solution solves the problem without an intermediate

stop at robot base. This is a result of the planner finding more

optimal paths and consequently reducing energy consumption.

Finally, we compare the performance of our integrated

(a) (b)

Fig. 6. Tree expansions comparison for landmark 2 illustrating path opti-
mality. Paths from landmark 2 to other landmarks shown in red. (a) Solution
from T-RRT expansion, (b) solution from T-RRT* expansion.

planner with the performance of an equivalent approach that

employs T-RRT for the two scenarios described above. These

experimental results were obtained using an Intel Core i5

3320M 2.6 GHz processor with 8 GB RAM. Table I presents

the total number of nodes, solution path cost, solution path

length and the computation time for each test under the follow-

ing conditions: 100 trials were performed with the termination

criteria for line 5 in Algorithm 1 being met when an initial

path is found for all pairs of waypoints. The values given

in Table I are hence averages of these trials. An example of

the tree expansion for T-RRT and T-RRT* is provided in Fig.

6 for one landmark, with resulting paths to other landmarks

found from the searched space of these trees shown in red. A

discussion of these results are provided in Section V.

V. DISCUSSION

In Fig. 4a we observe that the combined implementation

of the transition test and rewiring procedures characteristic

of the T-RRT* method enables the algorithm to explore only

safe regions of the environment away from obstacles, while

keeping track of the most optimal routes to reach all the

sampled configurations in the trees. Through the power of

using multiple trees rooted at each waypoint, the algorithm

can quickly find low-cost paths between all pairs of waypoints

despite the complexity of the cluttered environment. From a

more general point of view, our integrated approach effectively

links together continuous cost space considerations with high-

level task planning processes and performs efficiently in

complex environments where traditional graph-search based

methods fail to find a solution in reasonable time.

Fig. 5 also demonstrates the potential of our approach for

extension to anytime applications [21]. The concept of anytime

algorithms consists of finding an initial feasible (sub-optimal)

path and continuing to improve upon the solution over time

as the robot executes the initial plan. Using our integrated

approach, individual solution paths between waypoints can

be improved as the robot executes the first path in the

task sequence. Furthermore, from a high-level task planning

perspective, the order in which waypoints are visited may

also be updated based on the improvements made in the path

planning phase, leading to changes in how the sequence of

tasks are performed online.

In the performance comparison between T-RRT and T-

RRT* based approaches presented in Table I, we observe a

significant improvement in the total path cost of solutions

obtained from T-RRT* for both test scenarios. On average,

we observe a 26% improvement for the cluttered environment

and a 43% improvement for the mountain environment. These

improvements can be explained by the asymptotic optimality

guarantee provided by the rewiring process in the T-RRT*

method [2]. This has been verified as shown in Fig. 6, where

the T-RRT*-based approach provides observably shorter paths

than T-RRT for the same set of sampled nodes. Despite

these large differences, the T-RRT* based approach does not

require significantly longer computation times (20% increase

for cluttered environment and 13.8% increase for mountain

environment). This result stems from the improved efficiency

of the planner due to the implemented heuristics and modifica-

tions described in Section III-B. Furthermore, the total number

of tree nodes do not differ significantly between the two

implementations. This is expected as the filtering behaviour

provided by the transition test is unchanged.

While this paper has presented preliminary results for the

proposed approach to path and task planning, future work

consist of investigating more thoroughly the performance of a

unified task and path planner for more complex problems.

VI. CONCLUSION

In this paper we have presented a new approach to task

planning in complex cost spaces through a multi-tree imple-

mentation of the T-RRT* algorithm integrated with a PDDL

planner. This approach uses a number of heuristics within

the rewiring, tree-joining and path shortcutting procedures

to generate asymptotically optimal paths without significant

increase in computation time when compared with the T-

RRT based approach. The planner has been tested on two

different scenarios and results demonstrate its potential for

extension to an anytime implementation. While experiments

discussed in this paper focuses primarily on task planning

without constraints, preliminary investigations show that the

use of PDDL to model the task planning problem enables ex-

pansion to facilitate more complex problems (in a standardized

way) involving task-dependencies, numerical constraints and

durative actions etc. Ultimately the task problem would only

be limited by the capabilities of PDDL and the PDDL solver

chosen. Indeed the planner used to solve the PDDL problem

need not be LPG-TD as selected in this work, but depends on

the nature of the original task planning problem.

ACKNOWLEDGMENT

This research is funded by the Engineering and Physical

Sciences Research Council (EPSRC) under its Doctoral Train-

ing Partnership Programme (DTP 2016-2017 University of

Strathclyde, Glasgow, UK).

REFERENCES

[1] P. Muoz, M. D. R-Moreno, and D. F. Barrero, Unified framework for
path-planning and task-planning for autonomous robots, Rob. Auton.

Syst., vol. 82, pp. 114, Aug. 2016.
[2] D. Devaurs, T. Simeon, and J. Cortes, Optimal path planning in complex

cost spaces with sampling-based algorithms, IEEE Trans. Autom. Sci.

Eng., vol. 13, no. 2, pp. 415424, Apr. 2016.
[3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces, IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566580, 1996.

[4] S. M. LaValle and J. J. Kuffner, Randomized kinodynamic planning, Int.

J. Rob. Res., vol. 20, no. 5, pp. 378400, May 2001.
[5] S. Karaman and E. Frazzoli, Sampling-based algorithms for optimal

motion planning, Int. J. Rob. Res., vol. 30, no. 7, pp. 846894, Jun.
2011.

[6] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, Informed RRT*:
optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic, in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014, pp. 29973004.
[7] J. J. Kuffner and S. M. LaValle, RRT-connect: an efficient approach

to single-query path planning, in Proceedings ICRA. Millennium Con-

ference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings, 2000, vol. 2, pp. 9951001.
[8] M. Jordan and A. Perez, Optimal bidirectional rapidly-exploring random

trees, Comput. Sci. Artif. Intell. Lab., 2013.
[9] F. Burget, M. Bennewitz, and W. Burgard, BI2RRT*: an efficient

sampling-based path planning framework for task-constrained mobile
manipulation, in 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2016, pp. 37143721.
[10] L. Jaillet, J. Cortes, and T. Simeon, Transition-based RRT for path

planning in continuous cost spaces, in 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2008, pp. 21452150.
[11] D. Devaurs, T. Simeon, and J. Cortes, A multi-tree extension of the

transition-based RRT: application to ordering-and-pathfinding problems
in continuous cost spaces, in 2014 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2014, pp. 29912996.
[12] D. McDermott, The PDDL planning domain definition language, AIPS-

98 Plan. Compet. Comm., 1998.
[13] W. Cheng and Y. Gao, Using PDDL to solve vehicle routing problems,

Int. Conf. Intell. Inf. Process., pp. 207215, 2014.
[14] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,

Combined task and motion planning through an extensible planner-
independent interface layer, in 2014 IEEE International Conference on

Robotics and Automation (ICRA), 2014, pp. 639646.
[15] R. E. Fikes and N. J. Nhsson, STRIPS: A New Approach to the

Application of .Theorem Proving to Problem Solving, Artif. Intell. 2,
pp. 189208, 1971.

[16] A. Gerevini, A. Saetti, I. Serina, and P. Toninelli, LPG-TD: a fully
automated planner for PDDL2.2 domains, 14th Int. Conf. Autom. Plan.

Sched. Int. Plan. Compet., 2004.
[17] A. Gerevini and I. Serina, LPG: a planner based on local search for

planning graphs with action costs, Am. Assoc. Artif. Intell., pp. 1322,
2002.

[18] S. Richter and M. Westphal, The LAMA Planner: guiding cost-based
anytime planning with landmarks, J. Artif. Intell. Res., vol. 39, pp. 127-
177, 2010.

[19] J. Org Hoomann, The metric-FF planning system: translating ignoring
delete lists to numeric state variables, J. Artiicial Intell. Res., vol. 20,
pp. 291341, 2003.

[20] Y. Chen, B. W. Wah, and C.-W. Hsu, Temporal planning using subgoal
partitioning and resolution in SGPlan, J. Artif. Intell. Res., vol. 26, no.
1, pp. 323369, 2006.

[21] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
Anytime motion planning using the RRT*, in 2011 IEEE International

Conference on Robotics and Automation, 2011, pp. 14781483.

