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USING BAYESIAN NETWORKS FOR THE ASSESSMENT OF UNDERWATER 

SCOUR FOR ROAD AND RAILWAY BRIDGES 

 

 

 

 

 

ABSTRACT 

Flood-induced scour is by far the leading cause of bridge failures, resulting in loss of lives, traffic 

disruption and significant economic losses. In Scotland, there are around 2,000 structures, considering 

both road and railway bridges, susceptible to scour. Scour assessments are currently based on visual 

inspections, which are expensive, time-consuming, and often the information collected is qualitative and 

subjective. The two main transport agencies in Scotland, Transport Scotland and Network Rail, spend 

£2m and £0.4m per annum, respectively, in routine inspections. Nowadays sensor and communication 

technologies offer the possibility to assess in real time the scour depth at critical bridge locations; yet 

monitoring an entire infrastructure network is not economically sustainable. A way to overcome this 

limitation is to install monitoring systems on a limited number of critical locations and use a probabilistic 

approach to extend this information to the entire population of assets. The state of the bridge stock is 

represented through a set of random variables and ad-hoc Bayesian networks (BNs) are used to describe 

their conditional dependencies. The aim of this paper is to develop a probabilistic scour hazard model by 

building a BN able to estimate the depth of scour in the surrounding of bridge foundations. The BN can 

estimate, and continuously update, the present and future scour depth using real-time information from 

monitoring of scour depth and river flow characteristics. In the occurrence of a flood, monitoring 

observations are used to infer the posterior distribution of the state variables probabilistically, and 

therefore to give in real-time the best estimate of total scour depth. Bias, systematic and model 

uncertainties are modelled as nodes of the BN in such a way as the accuracy of predictions can be 

updated when information from the scour monitoring system is incorporated into the BN. In order to 

demonstrate the functioning of the BN, bridges managed by TS in South-West Scotland were used to 

build a small bridge network. They cross the same river (River Nith) and only one of them is 

instrumented with a scour monitoring system. 

1 INTRODUCTION & BACKGROUND 

Flood-induced scour is the principal cause of failure of bridges, resulting in significant loss of life, traffic 

disruption and economic losses (Wardhana & Hadipriono, 2003). Scour can be defined as the excavation 

and removal of material from the bed of streams around bridge foundations as a result of the erosive 

action of flowing water. Scour processes are classified according to the circumstances and structures that 

have caused it. The following types of scour are reported: (i) constriction scour or contraction scour; (ii) 

local scour; and (iii) natural scour (Kirby et al, 2015). The first two types are associated with the 

existence of a bridge or hydraulic structures and can be collectively termed as localised scour. 

Constriction scour is usually the result of confining the width of the river channel, for instance between 

bridge abutments and piers, while local scour is caused by the interference of individual structural 

elements, such as piers or abutments, with the flow. The latter type of scour is characterised by the 

formation of scour holes only in the immediate vicinity of those elements (Lauchlan & Melville, 2001). 

Natural scour is instead attributable to natural variations in the flow, irrespectively of the presence of a 

river crossing, and its contribution to the total scour is neglected in the proposed work.  

Scour processes occur naturally and are expected to occur at most bridges and any hydraulic structures 

during their service life (Richardson & Davis, 2001). Bridges, culverts and every hydraulic structure 

founded on a river bed are prone to scour around their foundations. The main scour mechanisms listed 

above work additively to give the total scour (Figure 1). A bridge may fail due to a combination of 
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different scour types; however, one mechanism is often the major cause to bridge failure. When the depth 

of scour becomes significant, the capacity of abutment or pier foundations of bridges may be severely 

compromised, leading to structural instability and ultimately catastrophic failure. Development of scour 

holes can cause damages to bridges, thus posing a potential threat to public safety.  

 
Figure 1. Schematic illustrating total scour (Kirby et al, 2015) 

In the UK, there are more than 9,000 major bridges over waterways. According to Van Leeuwen and 

Lamb (2014), abutment and pier scour was identified as the most common cause of 138 rail bridge 

failures during the period 1846-2013; in some cases, the failure was associated with fatalities. Almost 

95,000 bridge spans and culverts are susceptible to scour processes. Reviews of 1,502 river crossing 

failures that occurred in the United States in the period 1966 - 2005 revealed flooding and scour were the 

cause of 58% of the recorded failures (878 bridge failures) (Briaud et al, 2007). Following record daily 

rainfalls for the UK in November 2009, 20 road bridges across Cumbria were damaged or destroyed and 

the town of Workington was severed (Cumbria Intelligence Observatory, 2010). Furthermore, the winter 

storms of 2015 resulted in serious damage/destruction to bridges across Scotland and the north of 

England (DoT, 2015). This included the Lamington viaduct, which resulted in the closure of the West 

Coast mainline between Glasgow and London for nearly three months (Network Rail, 2016). 

1.1 Vulnerability of bridges to scour 

Current risk models calculate potential losses by combining specific hazard parameters, quantified and 

characterised exposed components and their assessed vulnerability. Vulnerability (or fragility) analysis is 

an important part in the risk assessment because a vulnerability model can define how much a structure is 

susceptible to failure with respect to a hazard or, in other words, what is the chance of failure due to the 

impact of a given hazard (Roca & Whitehouse, 2012). There are two fundamental approaches to evaluate 

the hazard vulnerability of a system, such as a building or a bridge: fragility functions and hazard indexes 

(Calvi et al, 2006). The first examples of such risk frameworks started to be developed in earthquake 

engineering (Porter, 2003) but in the following years, risk analyses combining different stages were 

employed in flood and coastal engineering (FEMA, 2005) as well as hurricane engineering (Barbato et al, 

2013). 

A few researchers have then applied this breakdown of risk assessment into basic probabilistic analyses to 

the problem of scour induced by flood (Roca & Whitehouse, 2012; Tubaldi et al, 2017). However, scour 

bridge vulnerability has not been adequately studied in the past, perhaps due to the lack of a scour 

damage database. However, in the literature it is possible to find three different approaches to describe the 

vulnerability of a bridge against scour mechanisms. These proposed methodologies are based on:  

(i) Structural analyses. This vulnerability approach involves finite element analysis to model the 

interaction between all the components and media included (deck, pier, foundation, soil and 

water) (Hung & Yau, 2014; Klinga & Alipour, 2015; Zampieri et al, 2017); 

(ii) Geotechnical analyses. This approach evaluates the vulnerability to scour considering the 

bearing capacity of bridge foundation changes resulting from scour (De Falco et al, 1997; 

Federico et al, 2003);  

(iii) Performance parameters. The most common parameter involved in this approach is the ratio 

between the total scour depth DT at the pier and the foundation depth DF. The employment of 



this performance parameter has led researchers to proposed methodologies to compute a scour 

vulnerability index (SVI) (Barbetta et al, 2015). 
 

1.2 Bridge scour in the UK  

Network Rail (NR) owns and operates around 19,000 underline bridges nationally: approximately 8,700 

of these structures are held within a National Scour Database and the projected spend on scour protective 

works from 2014-2019 is in the region of £27m. For the Scotland Route only, 1,750 structures are 

routinely inspected for scour and, of those, 58 are considered to be at high risk. Transport Scotland (TS) 

is responsible for the Scottish trunk road network including 1,567 bridges or culverts over water. Of 

those, around 8% are currently classified as needing detailed consideration, including possible monitoring 

and scour protection measures. TS is currently aware of about £3.5m of known scour repairs and scour 

resilience works to carry out. 

The current practice for bridge scour inspection depends on visual checks at regular intervals. NR and TS 

assess the risks associated with scour and other effects on highway and railway structures during floods 

using the Procedures BD 97/12 and EX2502, respectively. The total NR Scotland Route spend on scour 

assessments in 2016/2017 was approximately £440,000. Similarly, TS spends £2m per annum on routine 

inspections of bridges and other structures and approximately one-third of its total assets are inspected 

each year. In addition, all bridges over water are visually inspected for scour effects following periods of 

heavy rainfall. Underwater visual inspections are even more expensive and time-consuming, and often the 

information collected is qualitative and subjective. Along with rules on how to perform scour visual 

inspections and to calculate the estimated scour depth, these two procedures provide a scour risk 

assessment framework based on a SVI. 

In this paper, we develop a scour hazard model by building a Bayesian Network (BN) able to estimate the 

depth of scour surrounding bridge foundations. The BN can estimate, and continuously update, the 

present and future scour depth using real-time information from monitoring of scour depth, and river flow 

characteristics. Through a feature of BNs called Bayesian Learning, the observations collected from a 

scour monitoring system installed on a critical bridge can be spread across the network thus appraising 

and updating scour at unmonitored bridges. By estimating the depth of the scour hole near the bridge 

foundation, the bridge vulnerability analysis based on the SVI (defined as the ratio DT/DF) can therefore 

be performed. This work is the first application of BNs to bridge scour risk management, and also the first 

implemented case where updating of the network is based on real-time information from a monitoring 

system. 

In section 2, we describe the developed BN for scour depth prediction and the two numerical algorithms 

employed to update the variables involved. Section 3 presents the small bridge network consisting of 

bridges managed by TS in south-west Scotland. It was built by choosing bridges over the same river 

(River Nith) to demonstrate the functioning of the BN. Only one bridge is instrumented with a scour 

monitoring system. In section 4, the results obtained with the two algorithms are reported.  

2 METHODOLOGY 

Sensor and communication technologies offer nowadays the possibility to monitor in real-time every 

change in characteristics of a bridge; yet monitoring an entire infrastructure network is economically 

unsustainable. A way to overcome this limitation is to install monitoring systems at a limited number of 

critical locations and use a probabilistic approach to extend this information to the entire asset. The idea is 

to represent the state of the bridge stock through a set of random variables and to use ad-hoc Bayesian 

Networks to describe their conditional dependencies. 

A BN, depicted in Figure 2, is a probabilistic graphical model that represents a set of random variables 

and their conditional dependencies via a directed acyclic graph comprised of nodes and links (Jensen and 

Nielsen, 2007). It was created by Judea Pearl in 1985. The presence of a link between two nodes means 

that the node that appears earlier in the chain has a direct influence on the other connected node. Nodes 

that are not connected (there is no path from one of the variables to the other in the Bayesian network) 

represent variables that are conditionally independent of each other. Each node represents a random 



variable in the Bayesian sense, i.e., the relation between the two variables is always given by the Bayes’ 
rule: 

  (1) 

where  is the probability distribution function (pdf) known as the likelihood of the observed 

data y ,  is the prior pdf of parameter し.  is called the posterior probability of し and the 

dominator 
  pdf( y) is a normalising factor called evidence. Bayes’ rule describes how the probability of 

parameter し changes given information gained from measured data y . In Bayesian network terminology, a 

node is a parent of a child if there is a link from the former to the latter. 

 

Figure 2. An example of a Bayesian Network 

Probabilistic inference in BNs takes two forms: forward (predictive) analysis and backward (diagnostic) 

analysis. The former type of analysis for the node Xi is based on evidence nodes connected to Xi through 

its parent nodes and it is also called top-down reasoning. Instead, the diagnostic analysis for the node Xi 

is based on evidence nodes connected to Xi through its child nodes and it is also called bottom-up 

reasoning (Ben Gal, 2007). This backward analysis is called Bayesian learning as well.  

The true power in using BNs comes from the ease with which they facilitate information updating when a 

new observation becomes available (Jensen & Nielsen, 2007). When evidence (e.g., information that a 

node is in a particular state) on one or more variables is entered into the BN, the information propagates 

through the network to yield updated probabilities in light of the new observations.  

For these reasons, Bayesian network frameworks can be merged with monitoring systems to continuously 

update the risk map of infrastructure systems. This capability of updating is indeed particularly 

advantageous when the information on which the analysis of a system is based is evolving, as in the case 

of a real-time monitoring system. If we consider the bridge scour problem, in the occurrence of a flood, 

monitoring observations are used to probabilistically infer the posterior distribution of all the parent nodes 

of the network by exploiting features of Bayesian Learning, and to therefore give in real-time the best 

estimate of scour depth, even in unmonitored bridges.  

2.1 Bayesian Network for scour depth estimation 

The BN employed in the scour hazard model was developed according to the “Procedure BD 97/12 - The 

assessment of scour and other hydraulic actions at highway structures” (DoT, 2012). From here the 

Procedure BD 97/12 will be called just BD 97/12 for brevity. The document provides processes for 

determining the level of risk associated with scour effects at bridges starting from a design value of river 

flow. This procedure is based on a two-level assessment and it is used by TS to assess the scour and other 

hydraulic actions at highway structures. The first level includes simple methods, involving engineering 

judgement, to identify structures that are not at risk from scour or where the risk is tolerably low. When 

these conditions are not met, a Level 2 Assessment is performed; it consists of a framework for estimating 

scour depth at bridge locations, which provides a scour vulnerability analysis based on a SVI defined as 

the ratio between the total scour depth DT and the foundation level DF.  



By following all the steps provided by BD 97/12, the scour estimation process was reproduced in the 

form of a BN. Figure 3a depicts the probabilistic correlation among variables involved in the appraisal of 

total scour depth DT. Starting from the river flow characteristics (such as assessment flow QA and river 

level yB) it is possible to estimate the depth of the two components of scour, constriction scour DC and 

local scour DL, whose sum is equal to the total scour depth.  The appraisal of the former type of scour 

involves variables like the mean threshold velocity vB,C below which scour does not occur and the type of 

bed material. The phenomenon of constriction scour leads to an increase 〉A in cross-section area of flow 

that allows estimating an average value of erosion, DC,ave. The variable DC refers to the depth of 

constriction scour at a particular location along the transverse profile of the watercourse. The local scour 

principally depends on the shape and width of the pier and on the angle between the flow and the pier. 

The factor fy, called depth factor, takes into account the relative depth of the approach flow to the pier 

width and, for this reason, it depends on the depth of constriction scour DC itself. 

            
 

Figure 3. BN for scour depth prediction based on Procedure BD 97/12 (a), and the simplified version (b) 

The models implemented into the BN can employ two types of variables relationships: deterministic and 

probabilistic. The former correlations consist of models being well-establish or involving variables can be 

assumed deterministic not to complicate the resolution of the BN. The latter ones, for their probabilistic 

nature, must always deal with uncertainties and errors. Models are nothing more than a simplification of 

the reality, and the “perfect” model does not exist. Therefore, a modified version of the BN is shown in 

Figure 3b.  

Let us focus on the quantities that can be monitored, that is, river level and depths of scour, and the used 

models. The water level yB is measured by gauging stations; an observation of yB updates the water flow 

QA. The model employed is assumed to be deterministic using the well-known Manning’s equation that 

connects river flow and level. A scour monitoring system can provide data about the scour depth, for 

instance, in the middle of the channel (constriction scour, D*
C) and at a pier location (total scour, DT). 

Observations of these variables cannot update the absolute parent node QA because the path is blocked by 

the observation of yB. In order to exploit these scour observations within the BN, two new variables, 

しDC,ave and しDL, were therefore included; they are model uncertainties added to the mathematical models 

used to estimate the variables DC,ave and DL, respectively. These new absolute parent nodes are named not-

fixed model uncertainty because they are updated every time new observation of D*
C and DT entering the 

network. Through their employment, the value of scour depths obtained with the empirical formulas 

provided by BD 97/12 is corrected thanks to observations from scour monitoring system. 

Let us summarise the three steps for solving the network and updating the posterior pdf of the nodes once 

observations about some variables become available: 
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(i) the BN starts with the prior pdfs of the parent nodes: flow QA and the not-fixed model 

uncertainties しDC,ave and しDL. Observations of river level yB, constriction scour in the middle of 

the river D*
C and total scour DT enter into the network (Figure 4a); 

(ii) the BN is figuratively split into three sub-networks because there are three different updating: the 

observation of y updates QA; the observation of D*
C and the updated pdf of y update not-fixed 

model uncertainty しDC,ave; and the observation of DT, the updated pdf of y and DC,pier update the 

not-fixed model uncertainty しDL (Figure 4b); 

(iii) descendant nodes are updated through the models provided by BD 97/12 exploiting updated 

information given by evidence on the parent nodes (Figure 4c). 

                        
Figure 4. Starting with prior pdfs (a), updating of parent nodes (b), and updating of descendant nodes (c) 

By following the same stages described above in the construction of the BN, we can develop a network 

on a bigger scale. For instance, Figure 5 shows a BN for correlating the total scour depth prediction at 

two different bridges, each of them with N piers. The estimation of the scour at the second bridge is based 

on the models corrected by the model uncertainty updated by direct observations of D*
C and DT at the 

first bridge. The two not-fixed model uncertainties are parent nodes of both sub-network because the 

models used to estimate scour depth are the same for any bridge. Consequently, uncertainties and error 

are correlated at all bridges. 

 
2.2 Numerical algorithms for model updating 

Correlations present in a BN are expressed in Bayesian terms so Eq. (1) is always the basis of Bayesian 

statistic inference, but in most of the cases it is hard to know how the evidence at the denominator can be 
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Figure 5. Bayesian Network for two different bridges, both with N piers 



described; a closed form to calculate it exists only in a few simple cases. To solve Eq. (1) and find the 

shape and estimators of posterior distribution we need a numerical algorithm for Bayesian inference. 

In the past few years, computer algorithms have been developed to draw an (approximate) random sample 

from the posterior distribution, without having to evaluate it. We can approximate the posterior 

distribution to any accuracy we wish by taking a large enough random sample from it. Examples of 

sampling methods are the Markov Chain Monte Carlo (MCMC) and the Metropolis-Hasting (MH). 

In this section we will present two different algorithms to solve numerically Eq. (1) into a Bayesian 

Network. The two numerical algorithms are based on, respectively, the Hessian Matrix method and the 

Transitional Markov Chain Monte Carlo (TMCMC) method.  

2.2.1 Linear Gaussian Bayesian Networks 

The first developed algorithm can solve any Linear Gaussian Bayesian Network (LGBN) by updating 

parent nodes’ pdfs when data or observations about one of their child nodes enter into the BN. LGBN is a 

Bayesian network where the involved variables can be described only by Normal (Gaussian) or Log-

Normal pdfs and with linear relationships among the variables. This means that, if the model employed 

between two variables is non-linear, a linear interpolation that fits with the non-linear relationship must 

be found. Uncertainties from models, variables, and observations and can be implemented into the 

algorithm. 

In mathematics, the Hessian matrix or Hessian (H) is a square matrix of second-order partial derivatives 

of a scalar-valued function. This algorithm is based instead on another definition of H: if we define the 

variable LH as the negative logarithm of the likelihood, in the word of statistics H is the inverse of 

likelihood covariance matrix. The basic equations to calculate estimators of posterior  are given 

below: 

  (2) 

 
 (3) 

  (4) 

  (5) 

where estimators (i.e., mean value and standard deviation) with  as a subscript refer to the posterior 

pdf, with 
 
to the prior pdf, with 

 
to the likelihood, and 

 
indicates the likelihood function. 

2.2.2 Transitional Markov Chain Monte Carlo method 

Th MCMC method can simulate random samples from a target pdf that can only be evaluated up to a 

scaling constant. From the Bayesian point of view, the target pdf is the posterior pdf, and the scaling 

constant represents the evidence appearing at the denominator of Bayes’ Theorem. The most popular 

MCMC method is the MH algorithm. MH algorithm can draw samples from the target pdf without 

knowing the model evidence, but it cannot evaluate it (Ching & Wang, 2015).  

In 2007, a modified version of the MCMC method was proposed, called the Transitional Markov Chain 

Monte Carlo algorithm (Ching & Chen, 2007). The TMCMC algorithm is a marriage between the MH 

algorithm and the sampling-importance-resampling (SIR) method and it was motivated by the Adaptive 

MCMC (Beck & Au, 2002). Similar to the MH algorithm, the TMCMC algorithm can draw samples from 

the target pdf without the knowledge of the model evidence. Nonetheless, it can estimate the model 

evidence, without extra computation cost. TMCMC algorithm is more complicated and more different to 

code than the MH algorithm, but there is no need to specify the proposal pdf, no need to determine the 

burn-in period, the convergence issue is minimised, and the computational time is extremely reduced. 



More details about the method, including the steps to code the algorithm, can be found in (Ching & Chen, 

2007; Ching & Wang, 2015).  

3 CASE STUDIES 

The functioning of the developed BN was demonstrated using a small bridge network, consisted of 

bridges managed by TS in South-West Scotland. It was built by choosing bridges over the same river 

(River Nith) with only the first bridge being instrumented with a scour monitoring system. Consequently, 

the aim is to exploit observations on Bridge 1 in order to predict scour depth at other bridge locations. 

Figure 6 depicts the map of River Nith with bridges chosen for the network. ͒ 

 

Figure 6. Small network of bridges over the River Nith. Red circles represent SEPA’s gauging stations  

Three bridges were chosen from the TS scour database; they have been checked through a Level 2 scour 

assessment in the last few years because they all have experienced significant scour events in the past. In 

the following, some information and details about the three bridges are reported: 

 Bridge 1: A76 200 Bridge on River Nith in New Cumnock 

It is a 3-span (9.1m, 10.7 m and 9.1 m) stone-masonry arch bridge, with two piers in the riverbed, 

carrying an 8.5m-width carriageway. Abutments and piers are all founded on spread footings on 

the natural riverbed. 

              

 
              Figure 7. Picture, location plan and transversal section of Bridge 1 

9.1m
10.7m

9.1m

3.5m



 Bridge 2: A76 120 Guildhall bridge on River Nith in Kirkconnel 

It is a 3-span (8.8m, 11.3 m and 11.3 m) masonry arch bridge, with one piers in the riverbed. 

Abutments and piers are all founded on spread footings on natural ground except one abutment’s 
spread footing that is founded on rock. 

                 

 
    Figure 8. Picture, location plan and transversal section of Bridge 2 

 Bridge 3: A75 300 Dalscone bridge on River Nith in Dumfries 

It is a 7-span (spans of 35 m and two of 28 m) steel-concrete composite bridge, with three piers in 

the riverbed. Abutments are founded on spread footings on made up ground, while piers are all 

founded on spread footings on natural ground. 

          
 

      
Figure 9. Picture, location plan and transversal section of Bridge 3 

As can be seen from Picture 6, a SEPA’s gauging station precedes every bridge of the network.  

Consequently, there is no need to set the assessment flow QA as an absolute parent node in common for 

all the bridges. QA represents one of the parent node of each sub-network reproducing the scour depth 

prediction at any single bridge. The whole BN for the estimation of scour depth at every pier of A76, 

Guildhall and Dalscone bridge is depicted in Figure 10. 

4 RESULTS 

Normal distributions were employed for every variable except for the river flow; a log-normal 

distribution was adopted because the discharge cannot be negative. According to Figure 4, the first step in 

the resolution of the BN is the definition of the prior pdfs of absolute parent nodes. The pdfs of the not-



fixed model uncertainties were set as Normal distributions with zero mean and a standard deviation of 1 

m. Regarding river flow nodes, the parameters of the log-normal pdf were obtained from the data 

recorded by SEPA’s gauging station of last ten years. 

Let us focus now on the observations collected from monitoring systems that are entering the BN. Scour 

is induced by a flood event, consequently, the peak value of river level was chosen to simulate a heavy 

river flood condition. Table 1 shows these peak values. 

Table 1. Case scenario for river level observations 

SEPA station Bridge 
Water level [m] 

30/12/2013 

Dalgig A76 1.879 

Hall Bridge Guildhall 3.015 

Friar’s carse Dalscone 1.512 

The maximum value recorded by the monitoring station at Dalgig was collected on 30th December 2013 

and, in order to simulate an extreme event during the time, the other two values are the maximum in the 

following hours on the same day. Scour data entering the network were hypothesised to represent a 

critical situation since the monitoring system had not yet been installed at the time of this analysis. These 

hypothesised values are 20 cm for constriction scour depth D*
C and 45 cm for total scour depth DT. 

4.1 LGBN 

The employed models have to be linearised in order to apply the algorithm that solves LGBN. The 

variable scale was changed to logarithm scale, which allows overcoming problems with exponents or 

products. To linearise more complicated models, such as the relationship between constriction scour DC 

and river level yB shown in Eq. (6), a simple linear regression was performed to finds the linear function 

that predicts the dependent variable values (constriction scour) as a function of the independent variable 

(river level). In Eq. (6), which is provided by BD 97/12, Manning’s equation was employed to describe 

QA as a function of yB, while the mean threshold velocity vB,C at the denominator was calculated using the 

Colebrook-White equation (Kirby et al, 2015). 
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Figure 10. Final BN for depth of scour estimation at three bridges in the South-West of Scotland 
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Table 2 depicts the results obtained by solving the LGBN. Mean values and standard deviations of 

constriction and total scour depth at piers of every bridge are reported. It is worth recalling that the BN 

starts from observations about D*
C and DT on Pier 1 of A76 200 bridge. 

Table 2. Mean values and standard deviations of scour depth obtained by solving the LGBN 

 A76 200 Guildhall Dalscone  

 
Pier 1  

(‒) 
Pier 2  

(《) 
Pier 1  

(《) 
Pier 1  

(《) 
Pier 2  

(《) 
Pier 3  

(《) 
たDC [m] 0.20 0.191 0.654 0.478 0.464 0.471 

jDC [m] - 0.247 0.609 0.621 0.614 0.619 

たDT [m] 0.45 0.438 0.953 0.791 0.807 0.794 

jDT [m] - 0.436 0.632 0.763 0.761 0.758 

M: Measured, E: Estimated 

4.2 TMCMC 

The prior pdfs and the hypothesised values chosen were the same used with the previous method. Table 3 

shows the results obtained in the form of mean values and standard deviations of constriction and total 

scour depth. 

Table 3. Mean values and standard deviations of scour depth obtained with TMCMC 

 A76 200 Guildhall Dalscone  

 
Pier 1  

(‒) 
Pier 2  

(《) 
Pier 1  

(《) 
Pier 1  

(《) 
Pier 2  

(《) 
Pier 3  

(《) 
たDC [m] 0.20 0.199 0.607 0.421 0.420 0.432 

jDC [m] - 0.137 0.225 0.192 0.190 0.187 

たDT [m] 0.45 0.452 0.932 0.802 0.798 0.805 

jDT [m] - 0.194 0.248 0.243 0.240 0.238 

M: Measured, E: Estimated 

As it can be seen by making a comparison between the two tables, estimations of the mean value of scour 

depth are consistent between the two algorithms whereas the TMCMC method obtains lower values (from 

45% to 65% lower than LGBN results) of standard deviations. It is worth remembering that the variance 

values (i.e., the square of standard deviation) is inversely proportional to the accuracy of a 

measurement/estimation. This can be explained by TMCMC algorithm’s capacity to handle non-linear 

models and relationships among variables; the need to linearise strong non-linear models in order to build 

a LGBN has significantly increased the uncertainties and reduced the accuracy of variable estimations. 

5 CONCLUSIONS 

In this paper we presented a BN able to estimate the depth of scour surrounding a bridge foundation. The 

BN can estimate, and continuously update, the present and future scour depth using real-time information 

from monitoring of scour depth and river flow characteristics. Once an observation collected from a scour 

monitoring system installed on a critical bridge enters into the BN, its information can be spread across 

the network thus appraising and updating scour depth at unmonitored bridges. This work is the first 

application of BNs to bridge scour risk management, and also the first implemented case where updating 

of the BN is based on real-time information from a monitoring system. 



The resolution of the BN starts by defining the prior pdfs of parent nodes. The parent nodes consist of the 

uncertainty of the model for the prediction of total scour depth so that they can guarantee correlations 

among every bridge since the estimation models are employed for every bridge of the network. In order to 

make inference by updating the parent nodes, observations of river level and scour depth are entered into 

the network.  

Two different algorithms were developed to solve the Bayes’ rule, the basis of Bayesian statistic 
inference and, in turn, of BNs. The two numerical algorithms are based on, respectively, the Hessian 

Matrix method and the TMCMC method. The former algorithm is can model any LGBN, which is a 

Bayesian network employing only Normal or Log-Normal pdfs and with linear relationships among 

variables. TMCMC method can easily handle any pdf and non-linear models.  

The functioning of the developed BN was demonstrated using a small bridge network, consisting of 

bridges managed by TS in south-west Scotland. It was built by choosing bridges over the same river 

(River Nith), with only the first bridge being instrumented with a scour monitoring system. A flood event 

was simulated using river level data from SEPA’s gauging stations. Scour depths were hypothesised since 
the monitoring system had not yet been installed at the time of this analysis.  

Both methods led to similar results of the first estimator (i.e., mean value) of scour depth posterior pdfs. 

In contrast, using the TMCMC algorithm results in lower standard deviations (the second estimators) for 

all the cases because it allows the implementation of any models and variable relationships (i.e., linear 

and non-linear). This decrease ranges from 45% to 65% with respect to LGBN results. A lower value of 

standard deviation means a higher accuracy in the estimation of the variable. 
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