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AbstractʊThis paper will review the recent and on-going 

changes to the power system in Great Britain (GB). One of the 

main challenges resulting from these changes in generation mix 

is the assurance of frequency stability in a low inertia system, 

and the provision of adequate dynamic responses to frequency 

changes, while meeting the requirements of the energy trilemma. 

Specifically, the increase in penetration of non-synchronous 

generation increases the risk of undesired operation of 

protection devices and contributes to a shortage of dynamic 

immediate response to frequency changes. 

A range of potential solutions will be briefly reviewed in this 

paper including, demand side response (DSR), energy storage, 

synthetic inertia, and synchronous condensers. A case study 

concerned with evaluating the impact that synchronous 

compensation may have in a low inertia power system will be 

described in the paper. The paper will conclude with an outline 

of the avenues for further study towards addressing the 

challenge of frequency stability and system inertia in a future 

power system. 
 

Index Terms--Demand side response, energy storage, low 

inertia system, power system protection, RoCoF, synchronous 
compensation, synthetic inertia. 

 

I. INTRODUCTION 

 The energy network is required to be more sustainable, 

while maintaining security of supply and availability, without 

incurring heavy costs to the consumer; such a network will 

need to be robust enough to support the expected growth in 

demand amidst the ongoing changes to the energy landscape 

[1] � [3]. In the United Kingdom (UK), the 2009 Renewable 

Energy Directive target is to achieve 15% energy 

consumption from renewable sources by 2020, which results 

in an expectation of 30% of electricity generation from 

renewable sources [4]. Furthermore, a 2050 target of at least 

80% reduction in GHG emissions compared to 1990 baseline 

levels is put forward by [5]. The resultant impact is the 

increased proliferation of low carbon, particularly renewable, 

generation. In Great Britain (GB), the two major renewable 

sources are wind and solar power, which are (in their 

majority) converter-connected technologies and their 

percentage share of generation is expected to grow [3]. 

Following the fifth carbon budget legislated in July 2016, the 

power sector is expected to increase the low carbon 

generation percentage (including renewables) from 45% to 

80% by 2030, while coal plants are expected to close, and 

system flexibility increased via interconnection, demand side 

response, storage, and flexible back-up capacity [6]. 

The increasing penetration of non-synchronous 

technologies (solar, wind and interconnectors) on the 

transmission network presents challenges [7]. Traditionally, 

transmission connected synchronous machines have been the 

main source of system inertia, since they are inherently 

electromagnetically coupled to the transmission network. 

Conversely since non-synchronous generation technologies 

are connected to the transmission network, often via a solid-

state electronic converter, they are decoupled, and therefore 

do not have the same inherent capability of providing inertia 

to the power system [8], [9]. 

The inertia of a power system is an inherent capability that 

affects the rate of change of frequency (RoCoF) following a 

system event [9], [10]. The relationship between system 

inertia and RoCoF is illustrated via the swing equation, 

shown in (1) below where dP is the change in active power, Hୱ୷ୱ is the system inertia, f୭ is the system frequency, df is the 

change in frequency over time, dt. As system inertia reduces, 

the RoCoF ሺ݂݀Ȁ݀ݐሻ increases. 

 

 ݀ܲ ൌ 	 ቀଶ	ൈுೞ೤ೞ௙೚ ቁ 	ൈ 	ቀௗ௙ௗ௧ቁ (1) 

 

Generally, a power system with larger system inertia will 

be more resilient to frequency disturbances than a power 

system with smaller system inertia [1], [11], [12]. If the 

RoCoF following a frequency deviation is too high, it 

increases the risk of cascading frequency events, as a result of 

the tripping of RoCoF relays. RoCoF relays are widely used 

in some countries, including the UK and Ireland, in loss of 

mains (LOM) protection for distributed generation [13], [14]. 

These relays are designed to open the circuit when the system 

RoCoF reaches a given limit [15]. The resultant impact of the 

undesirable operation of ROCoF relays in low inertia power 

systems is an increased risk of loss of supply. Consider the 

recent Australian power incident, which illustrates the 

concern [16] � [18]. In this instance, the Australian power 

network experienced a frequency collapse in the presence of a 

high penetration of wind and inadequate provision of reserve 



   

to secure against disturbances that might have been 

reasonably expected, albeit exacerbated by undocumented 

features of some wind turbines� protection systems. 

The increase in penetration of converter-connected devices 

is not limited to generation but is also expected to be the case 

with demand [19], reducing the inertia that demand provides 

the power system; while the changing nature of demand, i.e., 

the increased penetration of constant power loads [20], [21], 

is expected to lead to a reduction of active power response to 

frequency deviations.  

The future energy scenarios (FES), published annually by 

National Grid (the GB system operator), put forward four 

broad scenarios of the future GB power network that 

encapsulate the ideas behind a changing energy landscape. 

These scenarios are: gone green, slow progression, consumer 

power and no progression � details behind these scenarios can 

be found in [19], [22], [23]. The scenarios and results of 

accompanying studies form the basis for other documents 

from the GB system operator (SO); most notably the system 

operability framework (SOF) reports, which present the 

challenges of a future power system alongside discussions 

around potential solutions and avenues that require further 

investigation [7], [24]. 

As put forward by the recent SOF 2016 report and agreed 

upon by industry experts, one of the main challenges resulting 

from these changes to the electrical power landscape is the 

assurance of frequency stability in a low inertia system, and 

the provision of adequate dynamic responses to frequency 

changes, while meeting the requirements of the energy 

trilemma. This challenge relates to the behaviour of the 

system during the first 30 s following a frequency event, in 

terms of RoCoF and frequency deviations, which are 

collectively determined by the level of system inertia, the size 

of generation � demand imbalance, and the magnitude and 

speed of delivery of frequency response.  

There are operational limits, relating to both RoCoF and 

minimum or maximum frequency excursions that the SO 

must adhere to in the event of a disturbance. In a system with 

decreasing levels of system inertia the challenge of 

complying with these limits increases, leading to a need for 

the consideration of potential solutions. This is coupled with 

the knowledge that the increase in penetration of non-

synchronous generation raises the risk of undesired operation 

of protection devices and further contributes to the need for 

more adequate dynamic responses to frequency changes.  

Ultimately, the concern regards the integrity of low inertia 

power systems with a high penetration of non-synchronous 

sources of power and converter-interfaced loads. Some of the 

systems that are already experiencing operational scenarios in 

which credible loss of in-feed events within normal security 

standards give rise to concern include those on the island of 

Ireland and in GB.  

Some potential solutions to the challenge of low inertia 

power system will be introduced in Section II. A case study 

concerned with evaluating the impact that synchronous 

compensators may have in a low inertia power system will be 

presented in Section III. The paper will conclude with an 

outline of the avenues for further study towards addressing 

the challenge of frequency stability and system inertia in a 

future power system. 

II. POTENTIAL SOLUTIONS 

One potential solution, in the GB context, is to raise the 

RoCoF limit at the relevant relays or to remove the RoCoF 

limits altogether; doing so will minimise the risk of 

undesirable operation of RoCoF relays. 

In GB, the RoCoF limit has been changed to 1 Hz/s for all 

new and existing generators with a delay of 500 ms, while 

synchronous generators commissioned before 1st July 2016 

can have a minimum setting of 0.5 Hz/s with the same delay 

[25]. The original document gave existing synchronous and 

non-synchronous generators until the 1st July 2016 to make 

the relevant changes; however, coordinating and 

implementing these changes, particularly in reference to 

distributed generation has proven challenging, thus the 6 GW 

of distributed generation that is still operating with RoCoF 

relays setting of 0.125 Hz/s. This leads to a practical RoCoF 

limit of 0.125 Hz/s. 

One way to address this practical limit is to constrain the 

largest loss of demand or generation (largest loss risk), to 

reduce the risk of a cascading event because of the tripping of 

LOM RoCoF relays [7]. Given the RoCoF limit and system 

inertia, the largest loss risk can be calculated using the swing 

equation in (1). For instance, a system with post-fault inertia 

of 130 GVAs has a largest loss risk of 650 MW, which in 

terms of generation requires curtailment of any single unit 

(generator or interconnector) supplying power at the normal 

loss limit. The normal loss limit is the loss of a maximum of 1 

GW, such that frequency deviates no more than 0.5 Hz from 

nominal (50 Hz). It can be inferred that there are two factors 

determining the largest loss risk, the size of frequency 

deviation and RoCoF. Consequently, the system must be 

secured against the lower of the two limits, i.e., in the case of 

a system with 130 GVAs of inertia, the RoCoF limit results in 

a smaller amount of permitted loss than the normal loss limit, 

and the system must be secure against that limit. 

Alternatively, raising the inertia of the power system, using 

solutions such as synchronous compensators, can also reduce 

the risk of undesirable operation of RoCoF relays in low 

inertia power systems. The impact of deploying additional 

synchronous compensation in a low inertia power system will 

be investigated in Section III. 

There are other solutions being considered in response to 

some of the challenges posed by a low inertia power system. 

These include (but are not limited to), demand side response, 

energy storage, and synthetic inertia. 

A. Demand Side Response 

Demand side response (DSR) is a technique that involves 

managing the power demand from the consumer�s side of the 

power flow. DSR aids in addressing some of the problems of 

frequency containment arising from generation � load 



   

imbalance, via the provision of active power response from 

demand [26]. In a typical DSR scheme, proactively 

participating consumers (typically under a prearranged 

agreement) reduce their demand in order to compensate for 

the effective loss of generation. DSR has been considered in 

GB and trials have been conducted to see how effective it will 

be at alleviating the grid constraints, towards being included 

as a tool in the future smart grid [26] � [29]. 

DSR requires consumer participation, communication, and 

data management, and together with other solutions, it can be 

a viable source of the provision of response; however, the 

costs for system-wide deployment are not unsubstantial and 

proactive participation presents its own constraints. DSR is a 

potentially viable solution to frequency containment and 

RoCoF issues [2], [26]. 

B. Energy Storage 

Thermal storage, pumped hydro storage, compressed air, 

fly wheel, battery, and even hydrogen, are optional methods 

for energy storage being developed, which when applied to 

the grid will have aid in addressing the challenge of 

frequency stability in low inertia power systems [26], [30], 

[31]. These technologies allow excess energy produced to be 

stored for later use. Energy storage can be directly 

incorporated into frequency response services and activated 

very quickly, slowing down the RoCoF during a frequency 

event. Energy storage can also be applied to technologies like 

wind and solar, where generation can be considered variable; 

energy can be stored during overproduction and utilized 

during underproduction [26], [30 � 32]. 

Many storage technologies are considered expensive 

solutions that require further development [31], with concerns 

in relation to detecting when (and how much) response is 

needed. This concern is addressed, in part, by the SO�s Smart 

Frequency project, which puts forward a method and system 

for coordinating the active power response of a range of 

providers across locational boundaries [8], [33].  

Limiting factors aside, this year�s accepted tenders for the 

SO�s enhanced frequency response (EFR) service are all via 

energy storage, providing a total of 200 MW of response that 

can be fully delivered in 1 s or less [34], with a few hundred 

milliseconds activation time; which in comparison to similar 

scenarios without EFR, will reduce total active power 

response requirement, while giving other response providers 

time to act by slowing down the RoCoF. 

C. Synthetic Inertia 

Synthetic inertia is the provision of an active power 

response that mimics the active power response that is 

provided by synchronous inertia (the inherent inertia of 

synchronous machines). Synthetic inertia in wind turbines 

employs the use of a controller to demand more torque from 

the turbine, while feeding its controller a false rise in rotor 

speed to overcome the actual fall in rotor speed because of 

extracting more torque; however, this method comes with an 

energy deficit a few seconds later, known as the �recovery 

period� [35].  

During a generation � load imbalance, the rate and 

magnitude of frequency deviation can be dampened via an 

injection of power, thereby aiding to preserve the integrity of 

the power; however, unlike traditional thermal plants, the 

wind that a wind farm exploits cannot be controlled. In the 

case of a loss of in-feed (LOIF) event, an increase in wind 

farm power production to compensate via synthetic inertia 

alone raises inherit questions about this method as a complete 

solution to the provision of adequate dynamic responses to 

frequency changes [11], [26], [36], [37]. Another question 

raised by industry experts about synthetic inertia is the 

inherent delay in its inertial response, unlike the inertial 

response of a synchronous machine, likening synthetic inertia 

to very fast acting active power responses. Notwithstanding, 

when considering services such as EFR, there is a benefit in 

having very fast acting response; the challenge with this 

method is in its inherent recovery period. However, combined 

with other frequency response solutions, synthetic inertia may 

prove valuable. 

III. SYNCHRONOUS COMPENSATORS 

A synchronous compensator (SC), also known as a 

synchronous condenser, is an inherently unloaded 

synchronous motor that is considered to have the potential to 

offer, among other benefits, a boost to system inertia and an 

increase to system fault level [38]. In [26], SCs are 

considered to have the potential to solve RoCoF issues, 

regional stability, voltage dips and management, and HVDC 

commutation. It is an established technology, which could be 

purchased for purpose or retrofitted by taking advantage of 

thermal plants scheduled for decommissioning, and saving on 

the implementation costs; however, it will require further 

investigation and market development before GB wide 

deployment (see [39]).  

Using in-house developed GB transmission models and 

operating algorithms, a study was conducted to investigate the 

potential impacts that synchronous compensation (SC) would 

have on RoCoF and fault levels. 

D. RoCoF Study 

Fig. 1 below illustrates the impact of deploying a 5 GVA 

SC with a 2-s inertia constant, where a comparison is made in 

terms of RoCoF for scenarios with and without the SC. The 

study was conducted for a 75 GVAs scenario with 20 GW 

demand, and it indicates that a 5 GVA SC, while considering 

dynamic system elements, can reduce the RoCoF from 0.116 

Hz/s to 0.103 Hz/s for a 375 MW LOIF. Similarly, it was also 

observed that the deployment of a 5 GVA SC with a RoCoF 

limit of 0.125 Hz/s raised the LOIF tolerance from 410 MW 

without the SC, to 460 MW with the SC. 

It is observed that the deployment of a 5 GVA SC can 

permit a larger loss limit for a given RoCoF limit, minimising 

the need for system constraints (e.g. constraining the largest 

loss risk) that may be required to secure the system, 

potentially reducing the costs associated with the provision of 

system security. Similarly, a system condition that would 



   

have originally been at the cusp of breaching the RoCoF limit 

is brought further within acceptable limits when a 5 GVA SC 

is introduced to the network. This reduction in RoCoF, 

following a frequency event, allows more time for other 

services to respond and could contribute to a reduction in the 

overall active power requirement for frequency containment. 

Furthermore, a reduction in the RoCoF can mitigate the risk 

of a cascading event because of the undesired tripping of 

RoCoF protection applied to distributed generation, which 

would exacerbate the initial system disturbance.  

 
Fig. 1: RoCoF comparison with system dynamics. 

E. Fault Level Study 

A study was conducted concerning the benefits that the 

deployment of a SC would have on fault levels and short 

circuit ratio (SCR); of particular interest is the potential to 

avoid/mitigate the risk of loss of commutation on current-

sourced converter-based (LCC) HVDC links, e.g. the Western 

Link project connecting Ayrshire in Scotland to the Wirral in 

England [40]. This risk is assessed using the short circuit ratio 

on the AC system at the terminal(s) of the Western link, 

illustrated in Fig. 2. Where SCRs of less than or equal to 3 are 

deemed to increase the risk of loss of commutation (in the 

event of an AC system fault near a converter�s terminals) in 

LCC-HVDC systems, with a SCR of greater than 3 desired to 

minimise the risk of commutation loss [41].  

The study was conducted based on a three-phase busbar 

fault at Hunterston, illustrated as �S1� in Fig. 2 below, under 

current summer minimum demand conditions using 

DigSILENT�s IEC 60909 [42] minimum short circuit tool on 

PowerFactory; faults levels were recorded and SCR 

calculated. 

A SC, with capacity varied from 0 to 1 GVA in 200 MVA 

steps, was placed at two locations, Neilston (S2 in Fig. 2) and 

Longannet (S3 in Fig. 2). Fig. 3 below shows the trends of the 

impact on fault levels, in terms of apparent power (at 80 ms 

after the fault inception) and short circuit ratio at Hunterston 

with increasing capacities of synchronous compensation at 

both locations. The study indicates that the fault level and the 

short circuit ratio at Hunterston rises with increasing 

capacities of synchronous compensation, effectively 

strengthening the AC system. Furthermore, the increase in 

fault levels and short circuit ratio is pronounced if the 

synchronous compensator is placed electrically closer to 

Hunterston. 

 
Fig. 2: Sectioned image of the in-house developed GB reduced network 

model showing Scotland. 

 
Fig. 3: Fault MVA and short circuit ratio at Hunterston for increasing 
penetration of synchronous compensation at Neilston and Longannet. 

IV. DISCUSSION 

The practical RoCoF limit of 0.125 Hz/s presents an 

immediate challenge that can be remedied by adding more 

inertia to the power system, constraining the largest loss risk, 

or deploying the new RoCoF limit across the GB. Currently, 

during periods of low inertia, the SO constrains the largest 

loss risk to keep RoCoF within the limit [7]. The SOF report 

suggests that by 2020/21 at a RoCoF limit of 0.125 Hz/s, the 

loss limit will be below 1 GW a little more than half of the 

time; where in the 2025/26 gone green scenario, the loss limit 

is below 1 GW for most of the year. The economic impact 

can be illustrated by considering the following scenario.  

If by 2025/26 the loss limit is 700 MW about 60% of the 
time then BritNed, a 1 GW interconnector, will have to be 
curtailed by 300 MW to minimize the risk to system security. 
If this interconnector is constrained 60% of the year, a total of 
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1576.80 GWh will be curtailed. The Aurora report puts GB 
market price at £43/MWh [43]; therefore, the curtailed energy 
would cost at least £67.8m over that year. National Grid in [8] 
puts the cost of this solution at £268m per annum by 2020, 
expected to increase year by year. 

These figures are indicative, meant to illustrate the scale of 
the cost of constraining the single loss limit. However, it 
should be noted that this sort of curtailment already takes 
place (see [7]), and while industry experts believe it is 
currently a viable option, it is considered an interim solution, 
as it is expected that in the future the cost will increase, fueled 
in part by more interconnector capacity [7], [43]. At which 
point, the cost of curtailing the largest single loss risk could 
prove too high, potentially eliminating it as a viable solution.  

While synchronous compensation provides a marginal 
benefit to RoCoF, this benefit increases as the system inertia 
reduces. In addition, the deployment of synchronous 
compensation provides other benefits aside from frequency 
stability; for example, the boost to fault levels in a weaker 
system that also utilizes line commutated converters, as 
shown in Section III. It will be useful to conduct further 
studies concerning the location of the synchronous 
compensation deployed, alongside control strategies that will 
optimize the performance of the synchronous compensator. In 
GB, the NIC funded Phoenix project will conduct studies 
investigating this, alongside other aspects relevant to large-
scale deployment [44]. 

DSR and energy storage are potentially useful options that 
address the requirement of additional dynamic responses; 
however, their impact on initial RoCoF following a frequency 
event is minimal at best. Synthetic inertia may provide 
benefits to the initial RoCoF; however, further study will be 
required to quantify the impact, as well as the impact of DSR 
and energy storage on the dynamic response requirements of 
the system following a frequency event, in terms of frequency 
containment and restoration. Another avenue for further study 
is an investigation of the benefits and limitations of DSR, 
storage, synthetic inertia, and SC, in the context of distributed 
resources; i.e., a study addressing the impact of these options 
in terms of where they are placed within the GB power 
network. 
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