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This paper presents a combined parameter and state estimation algorithm for a bilinear system described by its observer canoni-
cal state space model based on the hierarchical identification principle. The Kalman filter is known as the best state filter for linear
systems, but not applicable for bilinear systems. Thus, a bilinear state observer (BSO) is designed to give the state estimates using
the extremum principle. Then a BSO based recursive least squares (BSO-RLS) algorithm is developed. For comparison with the
BSO-RLS algorithm, by dividing the system into three fictitious subsystems on basis of the decomposition-coordination principle, a
BSO based hierarchical least squares algorithm is proposed to reduce the computation burden. Moreover, a BSO based forgetting
factor recursive least squares algorithm is presented to improve the parameter tracking capability. Finally, a numerical example

illustrates the effectiveness of the proposed algorithms.

1 Introduction

Parameter estimation is a significant part in system identification,
and has been widely used in system analysis [1-3], system modeling
[4-7], and system control [8, 9]. Since many industrial processes are
complex and inherently nonlinear, nonlinear system identification
has drawn much attention throughout the world [10-12]. The bilin-
ear approach for modeling these complex processes are proven to be
more precise than any other traditional linear models [13]. However,
the nonlinear term existing in the bilinear model brings some chal-
lenges for bilinear system identification. During the past decades,
much work has been carried out on parameter estimation for bilinear
systems. For example, dos Santos et al. presented a subspace identi-
fication method for bilinear systems by treating the bilinear term as
a second-order white noise process [14]. Larkowski et al. addressed
the identification problem of the diagonal bilinear errors-in-variables
system and extended the bias compensated least squares technique to
bilinear systems [15]. Li et al. applied the polynomial transformation
technique to obtain the equivalent input-output representation of the
bilinear system and proposed the iterative algorithm for parameter
estimation [16-18].

The recursive least squares (RLS) approach is known as the
most commonly used estimation method among numerous different
parameter estimation techniques. Although the RLS method offers
a fast convergence rate, there exists several problems such as the
increase in the computational burden and the decline in the track-
ing capability [19, 20]. The hierarchical identification principle is
applied to decompose a bilinear system into several subsystems
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for parameter estimation [21]. Recently, Ma et al. proposed the
modified Kalman filter hierarchical least squares algorithm for the
multivariate Hammerstein system [22]. Wang et al. presented a
hierarchical stochastic gradient algorithm for bilinear-in-parameter
systems [23]. Chu et al. proposed a diffusion variable forgetting fac-
tor RLS algorithm on the basis of a local polynomial modeling of the
time-varying systems [24]. Wang et al. presented an interval vary-
ing recursive least squares algorithm with two forgetting factors for
pseudo-linear systems with missing data [25].

Nonlinear filtering techniques have attracted much attention in
signal processing [26, 27] and have wide applications in many areas
[28-31]. The classical Kalman filter (KF) is recognized as the best
linear filter for linear systems under Gaussian noises. However, it is
not suitable for nonlinear systems and bilinear systems, which pro-
motes the development of the alternative filtering methods such as
the extended KF, the unscented KF and the H-infinity filter. In the lit-
erature, Favoreel et al. considered a bilinear system as a time-varying
linear system, and applied the Kalman filter to estimate the unknown
states [32]. Basin et al. designed a mean-square finite-dimensional
filter for the incompletely measured bilinear time-delay system over
linear observations [33].

The previous work in [34] considered the state filtering and least
squares estimation problem for a linear state space system. It is well
known that the system identification of nonlinear systems is more
difficult than that of the linear case. Moreover, for linear systems,
the Kalman filtering algorithm can directly obtains the state esti-
mates, but is not applicable for nonlinear system state filtering. Thus,
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this paper extends the parameter estimation and state filtering prob-
lem from linear systems to bilinear systems. In the state estimation,
the bilinear state observer is designed to obtain the system states
by replacing the unknown parameters with their estimates. In the
parameter estimation, by replacing the unknown states with their
estimates, the parameters can be identified based on the least squares
principle. They form the interactive estimation. Then the bilinear
state observer based recursive least squares (BSO-RLS) algorithm
is proposed. Furthermore, the original system is decomposed into
three subsystems by means of the decomposition-coordination prin-
ciple and a bilinear state observer based hierarchical least squares
(BSO-HLS) algorithm is derived to reduce computational burden.
Finally, a bilinear state observer based forgetting factor recursive
least squares algorithm (BSO-FF-RLS) is proposed to improve the
parameter tracking capability compared with BSO-RLS algorithm.

This paper is organized as follows. Section 2 gives the identifica-
tion model of the bilinear state space system and introduces the iden-
tification problems to be discussed. Section 3 derives a bilinear state
observer by minimizing the state estimation error. Section 4 proposes
a BSO-RLS algorithm based on the state observer. By using the hier-
archical identification technique, Section 5 presents the BSO-HLS
algorithm based on the extremum principle. In Section 6, the BSO-
FF-RLS algorithm is proposed and the computational complexity
analysis is discussed. The example is provided in Section 7 to ver-
ify the effectiveness of the proposed algorithm. Finally, concluding
remarks are given in Section 8.

2 The bilinear system and its identification
model

Let the expression “A =: X”or “X := A” stand for “A is defined
as X”. Let the superscript T denote the matrix/vector transpose,
6(t) denote the estimate of the parameter 6 at time ¢. The sym-
bol I (Iy) stands for an identity matrix of appropriate sizes (n X
n); z represents a unit forward shift operator: zx(¢t) = (¢t + 1)
and 2z a(t) = (¢t — 1). 1,, represents an n—dimensional column
vector whose elements are all unity.
Consider a bilinear system in Figure 1:

z(t + 1) = Ax(t) + Bx(t)u(t) + fu(t), (1)
y(t) = ca(t) +v(t), @)
where x(t) := [21(t), 22(t),...,2n(t)]T € R™ is the state vec-

tor, u(t) € R is the system input, y(¢) € R is the system output,
v(t) € R is an uncorrelated random noise with zero mean, and A €
R™" B e R™ " f e R" and ¢ € R'*" are the system param-
eter matrices/vectors. Transforming the bilinear system in (1)—(2) in
its observer canonical state space model gives

[ —a1 1 0 0
—as 0 1 0
A= . . € R,
: : 0
—ap—1 0 -~ 0 1
—an 0o --- 0 0
_bl
bo .
B:=| .| eR™" b, e RM*",
Lbn,
f= [flvf?: .. -,fn]T S Rn,
c:=1[1,0,...,0] € R"",

Referring to the method in [35, 36] and from (1)—(2), we have

n

w1(t) ==Y aiz1(t —i)+ »_ b(t —i)u(t —i)
=1

i=1

+ Z fiu(t — Z)
=1

Define the information vector ¢ (t) and the system parameter vector
0 as

(1) = 05 (1), @ (1), (0] € RY 2",
@ (t)i=[—z1(t — 1), —21(t —2),...,—z1(t —n)]" € R",
Poult) = [2" (¢t = Du(t — 1), 2" (t = 2u(t - 2),...,
' (t —n)u(t —n)]" e Rn2,
0o () i=[u(t — 1), u(t —2),...,u(t —n)]" € R",
9 :— [aT, b, f'r}'r c Rn2+2n’
a:=la1,az,... 7an]T e R",
b:=col[B"] e R"",
f=1f1, o .., fn]" € R™

Then the identification model of the bilinear system in (1)—(2) can
be expressed as

y(t) = pz()a + 3, ()b + @4, (1) f + (D)
=" (t)0 + v(t). 3)

According to the least squares principle, defining and minimizing
the cost function

t
10) == S"Iy) — " ()6

j=1

lead to the following recursive least squares algorithm:

B() =0t~ 1) + L) — " 0O~ 1)], @
L) = P(t - D[l +¢" ()P~ D], ()
P(t)=[I - L)  ()1P(t - 1), ©)

where P (t) is the covariance matrix and L(t) := P(t)p(t) is the
gain vector. Give the initial parameter as 8(0) = 1,2, 9,,/Po.

Remark 1. Notice that ¢(¢) involves the unknown states x(t).
The recursive least squares algorithm in (4)—(6) cannot obtain the
system parameters, so it is necessary to derive a combined parameter
estimation and state filtering algorithm for the bilinear system. For
a linear system, the Kalman filter can be applied to give its state
estimates. However, the system in (1)—(2) is bilinear. Thus, we are
supposed to design a bilinear state observer for state estimation and
choose a suitable observer gain vector so as to minimize the state
estimation error, which is similar to the requirement of the Kalman
filter for the linear case. The details are in Section 3.

Remark 2. In system identification, the standard least squares
method is recognized as the widely used parameter estimation
method. In spite of its widespread use, it presents some potential
problems in this paper and these drawbacks motivate us to study
new identification methods. The bilinear system in (1)—(2) contains
n? +2n parameters to be identified. With the dimension n increas-
ing, the system contains more parameters and the dimension of
P(t) becomes larger especially for large-scale bilinear systems. The
amount of calculation for P(t) determines the entire computational
load, so a high-dimensional P (¢) leads to heavy computational bur-
den. Thus, in order to reduce the calculation amount, this paper uses
the hierarchical identification principle to decompose the system into
several subsystems. Moreover, in order to improve the parameter
tracking capability for the bilinear system, we introduce a forget-
ting factor in the parameter estimation algorithm and improve the
algorithm activity.
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Fig. 1: The bilinear state space system

3 The bilinear state observer

It is known that the Kalman filter is the best linear state filter for
the linear system, but it cannot be applied to obtain the unknown
states of nonlinear systems (i.e., bilinear systems). Thus, this section
presents a bilinear state observer to obtain the state estimates & (¢) of
the unknown states x(t) for the bilinear system by minimizing the
state estimation error.

If the parameter matrices/vector A, B and f are known, similar
to the state observer, we construct

@(t +1) = Az(t) + Bi(t)u(t)
+fu(t) + Lz (t)[y(t) — cz(t)],

where L (t) is the observer gain vector. Defining the state estima-
tion error & (t) := x(¢) — &(¢), we have

Z(t+1)=[A— Ls(t)c]x(t) + B&(t)u(t) — L (t)v(t). (7)
Define the state estimation error covariance matrix
Py (t) = B[&(t)&" (1)]. ®)

The aim is to choose an optimal gain vector Lz (¢) to minimize
the state estimation error covariance matrix Py (t + 1) := E[Z(t +
1)&T(t + 1)]. Using (7), we have

Pp(t+1)=[A — Lo (t)c]P:()[A" — ¢"LL(t) + B u(t)]
+Bu(t)Py(t)[A" — ¢"LL(t) + Bu(t))]

+L(t)RyLL(2). )

It is difficult to determine L (t) because computing the partial
derivative of Py (t + 1) in (9) with respect to Lz(¢) is not easy.
Here, we adopt the extremum principle to obtain the filtering gain
vector Ly (t). Assume that L (t) is the optimal gain vector to min-
imize the state estimation error covariance matrix Py (¢t + 1), and
P, (t + 1) is minimal. It is obvious that if there exists the depar-
ture 0 L. (t) from the filtering gain vector to the optimal gain vector,
the estimation error covariance matrix obtained from (9) will deviate
from the minimal Py (¢ + 1) and reach P:(¢t + 1) + 6Pz (t + 1),
where § Py (t + 1) is the non-negative definite matrix. From (9), we
find that L (t) + 0L+ (t) and Pr(t 4+ 1) + 0Pz (t + 1) satisfy

Py(t+1)+0P:(t+1)

={A — [La(t) + 6La(t)]c}Pr(t)
x{A" = "[Lo(t) + 6L (t)]" + BTu(t)}
+Bu(t)Pe(t){A" — ¢"[Lo(t) + 6L (t)]" + B u(t)}
+[La(t) + 0Le ()| Ro[La(t) + 6L (1)]', (10)

where Py (t+ 1) and L. (t) satisfy (9). Substituting (9) into (10)
gives

SPy(t+1)
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= —0Ly(t)[cPy(t)A"cPy(t)e" L (t) + cPy(t) BT u(t)
—RyLL(t)] — [ePy(t)A" — cPy(t)c" Ly (t) + cPy(t)B u(t)
—RyLL(t)]"6L%(t) + 6Ly (t)[cPy(t)c" + Ry]OLL(t)

—~ o~

= M (t) + M"(t) + 6Ly (t)[cPx(t)c" + Ry|0LL(1), an
where
M (t) := =Ly (t)[cPy(t)A" — cPy(t)c" LL(t)
+cPy(t) B u(t) — RuLy(t))- (12)

If take M (t) = 0, i.e.,
cPy(t)A" — ¢Py(t)c"Ly(t) + ¢Px(t)B u(t) — RyLL(t) = 0,

then we can obtain

L. (t) = [A + Bu(t)|P:(t)c" [eP:(t)c" + Ry) ™! (13)
Thus, we have
SPy(t+1) = 6Ly (t)[cPy(t)c" + Ry)oLy(t).  (14)

From (14), it can be found that c Py (t) ¢+ Ry is non-negative at
least because R, is non-negative, the matrix Py (t) is non-negative
definite. If 6 L (t) # 0, then 6 P (¢t + 1) is the non-negative definite
matrix, which explains that the non-negative deviation is generated
when any departure 0L (t) effects the filtering gain vector Ly (t).
Therefore, Lz (t) in (13) is the optimal gain vector which makes the
state estimation error covariance matrix minimum. To summarize,
the bilinear state observer is as follows,

&(t+1) = A2(t) + Ba(t)u(t) + fu(t)

+L:()[y(t) — c2(t)], (1) =1n/po, (15)
L.(t) = AP (t)c"[ePe(t)c" + Ry~  Bu(t) Px(t)
xc'[ePy(t)c" + Ry ™Y, Pr(1)=1I,, (16)

Py(t+1)=[A — La(t)c + Bu(t)|P:(t)[A" — "L (t)

+B"u(t)] + Lo (t) Ry Ly (t). (17)
If the parameter matrices/vector A, B and f are unknown, the bilin-
ear state observer in (15)—(17) cannot obtain the state estimates.
Then we apply the parameter identification algorithm to give the
parameter estimates, and use the estimated parameters to compute
the estimates &(t) of the states x(t). Define the estimates of the
parameter vectors 0, a, b and f as

T(0), £ e Y2
) a‘n(t)]T € Rn?

D>
[w b3

a'(t),
dl(t)7 &Q(t), o

(t) :=
(t):=

(=}



Lba(O]F € R™,
..,fn(t)]T eR"™

Use af(t), b(t) and f(t) to construct the estimates A(t), B(t) and
f(t)of A, B and f as

T —ait) 10 0
) “as(t) 0 1 0
A(t) = S
Can_1(t) 0 0 1
—an(t) 0 0 0
[b1(t) f1(1)
B(t) = bzz(t) ) = fzft) : (19)
Lbn (1) fn(®)

Replacing A, B and f in (15)-(17) with A(t), B(t) and £ (t) gives

&B(t+1)= A()2(t) + B)Z(t)u(t) + f()u(t)
+La(t)[y(t) — c&(t)], (1) =1n/po, (20)
L.(t) = A(t)Pe(t)c" [ePe(t)c" + Ry ' B(t)u(t) Px(t)
xc'[ePy(t)e" + Ry] ™Y, Pu(1) = I, Q1)
Py(t+1) = [A(t) — La(t)e + B(t)u(t)| Pu(t)[AT(t) — " Ly(t)
+B"(t)u(t)] + Ly (t) Ry Ly (t). (22)

Equations (18)—(22) form the parameter estimates based bilinear
state observer to compute the estimates & (¢) of the state vector x ().

4 The BSO based recursive least squares
algorithm

In this section, a bilinear state observer based recursive least squares
algorithm is employed to solve the combined state and parameter
estimation problem of the considered bilinear system.

From (4)—(6), we find that the RLS algorithm cannot obtain the
unknown parameters because of the unknown states x(t). So based
on the bilinear state observer proposed in Section 3, we replace the
unknown state x (¢ — ¢) with its estimate & (¢ — ¢) and define

() = [PE(D), @hu (1), b (0] € R T2,
@ (t) = [ (t — 1), =21 (t — 2),...,—21(t —n)]" € R",
P () = [&T(t — Du(t —1),2"(t — 2) (t—2),...,
&' (t —n)u(t —n)|" e R™ .

Moreover, employing the bilinear state observer in (18)—(22), and
replacing x(t), ¢(t), me( ) and gom( ) with their estimates &(t),
@(t), @, (t) and @, (t) in (4)—(6) gives the bilinear state observer
based recursive least squares (BSO-RLS) algorithm:

6(t)=6(t—1)+ L( y(t) — @' (M6t — 1)),  (23)
Lt)=P(t— )01+ (OPt—1)p®)] ", (24)
P(t)=[I-L(t)" ()Pt —1), (25)
@(t) = (@2 (1), @ru (1), (1), (26)
@) =[=21(t —1),..., =21 (t —n)]", @7

G () = [ (t = Du(t —1),8"(t — 2u(t - 2),...,
:f:T(t —n)u(t — n)]T, (28)

P (t) = [u(t — 1), u(t = 2),...,u(t —n)]", (29)

&t +1) = A(D)2(t) + BO)2(t)u(t) + f()u(?)
+La(t)[y(t) — c&(t)], (30)

L.(t) = A(t)Pu(t)c [ePu(t)c" + Ry~
+B(H)u(t)Pe(t)c [eP(t)c" + Ry] ™Y, (31)

Pyp(t+1)=[A(t) — La(t)c + B(t)u(t)]Px(t)[A"

—c"L3(t) + BT (t)u(t)] + Lz (t) Ry L (), (32)
—a1(t) 1 0 0
. —aa(t) 0 1 0
At) = o |l (33)
—an_1(t) 0 0 1
| —an(t) O 0 0
[b1(t) f1(t)
so-|"" ] fo-| "], (34)
Lbn (1) fn(t)
0(t)=1[a"(t),b"(t), fT(1)]". (35)

To summarize, we list the steps for implementing the algorithm in
(23)—(35) as follows.

1. To initialize: let t =1, 8(0) = 1,2 5, /po, (1) = 1n/pos
P(0) =polp2y0p, Pr(1) = In,po = 10°.

2. Collect the measurement data u(t) and y(t). Form ¢(t) using
(26)-(29).

3. Compute the gain vector L(t) using (24), the covariance matrix
P(t) using (25).

4. Update the parameter estimate B(t) using (23).

5. Read a;(t), bi(t) and f;(t) from O(t) in (35). Construct A(t),
B(t) and f(t) using (33)—(34).

6. Compute L (t) and Py (¢t + 1) using (31)—(32).

7. Compute & (¢ + 1) using (30).

8. Increase ¢ by 1 and turn to Step 2.

5 The BSO based hierarchical least squares
algorithm

In order to improve the computational efficiency, based on the
hierarchical identification principle, we decompose the original sys-
tem into three fictitious subsystems and derive a hierarchical least
squares algorithm to estimate the unknown parameters of the bilinear

system.
Define three intermediate variables:
Y2 () == y(t) — Pou(®)b — @, (1) f €R, (36)
Yyou(t) :=y(t) — pz()a — ¢, () f €R, 37)
yu(t) :=y(t) — oy (t)a — g, (b € R. (38)

Decompose the system in (1)—(2) into three subsystems:

Y (t) = ey (t)a + v(t), (39)
You(t) = @ (£)b + v(2), (40)
Yu(t) =@y, (t) f +v(t). 1)

Let a(t), b(t) and f(t) be the estimates of a, b and f at time ¢. For
the sub-identification models in (39)—(41), define and minimize the
following three cost functions

t
= [y (5) - pr()al’,

Jj=1
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— ¢nu(7)b],

t
Z yaru

— o0 () 17

:Zyu

According to the least squares principle, we get the least squares
based recursive relations:

a(t)=a(t —1) + Li(t)[ya () — e (Da(t - 1)],
=a(t—1)+ Li(t

—o, () f —pr(ta(t —1)], a(0) = 1n/po, (42)

Pt — e,
L= 1 i P Dy () “
Py(t)=[I — Li(t)e, (t)|PL(t — 1), (44)
b(t) = b(t — 1) + La(t)[yzu(t) — L, ()B(E — 1)),

[
b(t — 1) + La(t)[y(t) — T( )a
—@u () f — @ru (bt — 1)], b(0) = 1,2 /po, (45)

_ P (t — 1)Qoa:u(t)
Ly(t) =17 cp'gfgz(t)Pg(t — Degu(t)’

Py(t) = [I = La(t) g, ()| Pa(t — 1), 7)
Ft)=Ft—1)+Lat)yu(t) — oy, () F(t = 1)],
=f(t—1)+Ls@®)[y(t) — ¢y (t)a
@ ()b — @y, (1) f(t — 1)), £(0) = 1n/po, (48)

(46)

_ P— e,
L) = TGP D@ “
Py(t) = [ — Ly (), (1] Ps(t = 1). (50)

Remark 3. However, the information vector ¢, (¢) and ¢, (t) con-
tain the unknown states «(t). Equations (42), (45) and (48) contain
the unknown parameters f, b and a, so the algorithm in (42)—
(50) cannot compute the parameter estimates. This problem will be
solved by a coordination approach.

Remark 4. The strategy of the coordination is to employ the bilin-
ear state observer in (18)—(22) to obtain the state estimates, and then
replace the unknown states x(t) with its corresponding estimates
Z(t) and the information vector o (t) with @(t), ¢, (t) with @, (¢)
and @, (t) with @, (). The unknown parameters f, b in (42) are
replaced with f(¢ — 1) and b(¢ — 1). The unknown parameters a
and f in (45) are replaced with @(t) and f(t — 1). The unknown
parameters a and b in (48) are replaced with a(t) and b(t).

Equations (15)—(17) contains the system parameters A, B and
f to be estimated. So the algorithm in (15)—(17) cannot be used
directly to estimate the system states @(t). The method is to use the
estimated parameters a (t), b(t) and f(t) obtained by the parame-
ter estimation algorithm in (42)—(50) to construct the estimates of
the system parameter matrices and parameter vector A(t), B(t) and
£(t) to take place of A, B and f. Similarly, replacing (t) in ¢(t)
with & (t) gives the estimates @, (t), @, (t) and ¢(t) in (42)—(50).
Then we obtain

a(t) =a(t —1) + Li(t)[y(t) — ¢z (1)b(t — 1)

—pn () f(t—1) — gL(t)a(t — 1)), 1)
_ Pyt — 1), (t)
B R e, o
Pi(t)=[I — L1(t)¢,(t)| Py (t — 1), (53)
b(t) =b(t — 1) + La(t)[y(t) — pu(t)al(t)

—pu(®)f(t —1) = eru (Dbt — 1)), (54

IET Research Journals, pp. 1-10
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7 Pg(t — 1)¢mu<t)
LQ(t) - 1+ ¢1m-u(t)P2 (t - 1)¢mu(t)’ >

Py(t) = [T — La(t) g, (1) Po(t — 1), (56)
Ft)=Ft—1)+ La(t)[y(t) — pL(t)a(t)
~ua()b(t) — @y () f(t = 1)), (57)
Ls)=17 souétt)P;(i (>Zau( o) 8
Ps(t) = [I — L3(t)g, ()| Ps(t — 1), (59)
@u(t) =[=21(t = 1),..., =21 (t —n)]", (60)
@) =[2"(t = Du(t —1),&"(t — 2u(t - 2),...,
2" (t — n)u(t —n)", 61)
@, (t) =[u(t — 1),u(t — 2),...,u(t —n)]", (62)
@(t+1) = A()i(t) + B(t fe(t)u( )+ f(tyut)
+La(H)[y(t) — c&(t)], (63)
L,(t)=A () 2 (t)e [Py (t)e’ + Ry] ™
B(t)u(t)Py(t)c"[cPr(t)c” + Ro] ™, (64)
Pp(t+1)= [A( ) — Ly (t)e + B(t)u(t)| Pr(t)[AT
—c"LY(t) + B"(t)u(t)] + Lo (t)RuLL(¢), (65)
—a1(t) 1 0 0
R —as(t) 0 1 0
A(t)= ol (66)
—an_1(t) 0 0 1
| —an(t) O 0 0
[b1(t) 0!
so=|""1 fo=|""|. 1
Lbn (t) fn(t)

Equations (51)-(67) form the BSO-HLS algorithm for the bilinear
system in (1)—(2), which realize the interactive estimation of bilinear
system states and parameters. The steps for implementing the BSO-
HLS algorithm as follows.

1. To initialize: let t = 1, @(0) = 1, /po, b(0) = 1,,2/po, £ (0)
Ln/po. &(1) = 1n/po. P1(0) = poIn. P2(0) = poly2. P5(0)
poIn, Py(1) = In, po = 10°.

2. Collect the measurement data w(t) and y(¢). Form @,(t),
B2, (1) and @, (1) using (60)-(62)

3. Compute the gain vector L1 (t) using (52) and the covariance
matrix P (¢) using (53). Update the parameter estimates a(t) using
(51).

4. Compute the gain vector Lo(t) using (55) and the covariance
matrix Py (t) using (56). Update the parameter estimates b(t) using
(54).

5. Compute the gain vector L3(t) using (58), the covariance matrix
P5(t) using (59). Update the parameter estimates f (t) using (57).
6. Construct A(t), B(t), f(t) using (66)—(67).

7. Compute the observer gain vector L (t) and Py (¢t + 1) using
(64)—(65). Compute the state estimates & (¢ + 1) using (63).

8. Increase ¢ by 1 and turn to Step 2.

In order to improve the BSO-RLS algorithm ability, the next section
presents a forgetting factor recursive least squares algorithm based
on the bilinear state observer.



6 The BSO-FF-RLS algorithm

To improve the tracking capability of the BSO-RLS algorithm, we
introduce a weighting matrix constructed by a forgetting factor in
the cost function of the general RLS algorithm.

The identification model of the bilinear system is rewritten as

y(t) =" (£)0 + v(t). (68)

Define the stacked output vector Yz, the stacked information matrix
H, the stacked error vector V; as

'y(;)' LPI(l)
Y: = y(: ) eR', H;:= ¥ :(2) c ]Rtx(n2+2n)7
Ly(®)] (1)
-U(l)-
)|
Vii=| . | €R.
_v(.t)_

Then Equation (68) can be expressed as
Y. = H0 + V. (69)
Define a quadratic loss function

J(O(t) :=Vi'W,V;
= [Y; — HiO()"Wi[Y: — H (1)),  (70)

where W; = diag[ﬂt_l, g2, ,BO} is the weighting matrix.
Computing the partial derivative of J(0) at @ = 0(¢):

9J(6(t) _ —2H{W,[Y; — H/0(t)]
00(t)
and making a'g(éé((té)) equal zero gives

6(t) = [Hf WiH;| ' H{W,Y;.
Defining the covariance matrix Py (t) := [H} Wy H;] ™!, we have
Pl =8Pt —1) + o(t)e (). (1)

Then, the least squares based recursive relation can be given by

(1) =0(t — 1) + La(®)[y(t) — 9" WO — 1), (72)
Pt D)

L) = G oo Batt - Vel 73

mw:%u—LMWWMma—m (74)

where L4(t) is the gain vector. From (72)-(74), we find that
the information vector ¢(t) contains the unknown states, so the
algorithm cannot be realized. Thus we take use of the bilinear state
observer in (15)-(17) to obtain the state estimates &(¢) of x(t).
Replacing ¢(t) in (72)—~(74) with its estimate ¢(t), and combining
the bilinear state observer in (18)—(22) gives

o(t)

Ly(t)

Bt — 1) + La()ly(t) — " (18— 1], (T5)
I (0
B+ T (0Pt — )(0)

(76)

Pi(t) = 5T = La()@" (O]Pa(t = 1), )
@ (t)=[~1(t = 1),...,—&1(t —n)]", (78)
Prn ) =27 (t — Du(t —1),&"(t — u(t —2),...,
:iT(t —n)u(t — n)}T7 (79)
0, () =[u(t —1),u(t —2),...,ult —n)]", (80)
&(t+1) = A(D)2(t) + B)&(t)u(t) + £ (t)u(t)
+Le(t)[y(t) — cz(t)], (81)

+B(Hu(t)Pe(t)c [ePe(t)c” + Ry ™Y, (82)
Py(t+1) = [A(t) — La(t)e + B(t)u(t)] Pu(t)[A”

—c"LL(t) + B"(t)u(t)] + L () RuLL(t), (83)
—a1(t) 1 0 0
A —ag(t) 0 1 0
A(t) = ) . o | (84)
—an_1(t) 0 0 1
| —an(t) 0 0 0
[b1(t) f1(t)
so-|""] fo-| "], 5
Lbn(t) fn(®)

which forms the bilinear state observer based forgetting factor
recursive least squares algorithm.

In general, the number of the multiplication and addition oper-
ations is used to show the calculation amount of an algorithm. A
division is treated as a multiplication and a substraction is treated
as an addition. A multiplication or an addition operation is called a
flop (floating point operation). The total flop is treated as the compu-
tation cost of an algorithm. The computation cost of the BSO-RLS
algorithm and the BSO-HLS algorithm is shown in Table 1.

The calculation amount of the state estimation algorithm is not
taken into consideration. The difference of the computation cost
between two algorithms is

N1 — No=4(n? +2n)? + 6(n” + 2n) — (4n* + 1802 + 20n)
=16n> + 4n® — 8n. (86)

Since n > 1, the difference N1 — Na is positive, which shows that
the computation burden of the BSO-RLS algorithm is heavier than
that of the BSO-HLS algorithm. That is to say, the hierarchical
principle helps reduce the computation cost.

7 Example

Consider the following observer canonical bilinear state space sys-
tem:

w(t+1):[ ~0.30 1 ]w(t)+ { 0.10 0.15

0.25 0 0.30  0.20 } (t)u(t)
1.15
+ {1.56} u(®),
y(t) =[1, 0]z (t) + v(¢).

The parameter vector to be identified is

0 = [a1,az2,bi1,b12,b21,b22, f1, fo]"
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Table 1 The computation efficiency of the BSO-RLS and BSO-HLS algorithms

Algorithms Number of multiplications Number of additions Total flop
BSO-RLS 2nt + 8n + 12n2 + 8n 2nt + 8n3 4 10n2 + 4n Ny = 4n* + 1613 + 22n2 + 12n
BSO-HLS 2n* + 10n? + 12n 2n* 4+ 8n? + 8n Ny :=4n* + 18n2 + 20n

=1[0.30, —0.25,0.10,0.15,0.30,0.20, 1.15,1.56]".  (87)

In simulation, the input {u(¢)} is taken as an uncorrelated persistent
excitation signal sequence, and {v(¢)} as a white noise sequence
with zero mean and variance o2 = 0.10%. Take the data length
L = 3000 and apply the BSO-RLS and BSO-HLS algorithms to
estimate the parameter vector 6 and the states (¢) of the system.
The parameter estimates and errors 6 = ||0(¢) — @||/]|0|| are shown
in Table 2 and Figure 2, and Table 3 and Figure 5 with o2 = 0.10%.
The BSO-RLS parameter estimates are shown in Figures 3 and 4.

Based on the BSO-RLS algorithm, choose the forgetting factor
B =0.99. The BSO-FF-RLS parameter estimates and errors are
shown in Table 4 and Figure 6. The parameter estimates are shown
in Figures 7 and 8. The states x;(t) and their estimates Z; (¢) against
t are shown in Figures 9 and 10.

0.5

0 500 1000 1500 2000 2500 3000
t

Fig. 2: The BSO-RLS estimation errors d versus ¢ (02 =0.10%)
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Fig. 3: The BSO-RLS estimates aj (¢), az(t), 511(15), Elg(t) versus
t (02 =0.10%)

From Tables 2—4 and Figures 2-10, we can draw the following
conclusions.

1. The parameter estimation errors § of the proposed BSO-RLS,
BSO-HLS and BSO-FF-RLS algorithms become smaller with ¢
increasing, see Tables 2, 3 and 4 and Figures 2, 5 and 6.

2. The parameter estimates reach their true values with the increase
of the data length. Moreover, the BSO-RLS algorithm stops the
parameter modification after ¢ > 2400, which means that the param-
eter accuracy cannot improve even if the recursive process continues,
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Fig. 4: The BSO-RLS estimates bo (t), boo (), f1(t), f2(t) versus
t (0 =0.10%)
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Fig. 5: The BSO-HLS estimation errors & versus ¢ (o2 = 0.10%)
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Fig. 6: The BSO-FF-RLS estimation errors § versus ¢

see Figure 3. For comparison, the BSO-FF-RLS parameter estimates
continue updating with the data length increasing, which shows
that the BSO-FF-RLS algorithm always takes use of the new data
information, see Figures 3—4 and 7-8.

3. A small noise variance results in higher accurate parameter
estimates, see Figure 6 and Table 4.

4. The state estimates obtained from the bilinear state observer
match their true values with ¢ increasing, see Figures 9 and 10.



Table2 The BSO-RLS estimates and errors (o2 = 0.10?)

t a as bi1 bi2 ba1 b2 f1 fo 3 (%)
100 0.18252 -0.15717 0.07431 0.17139 0.27482 0.17339 1.15153 1.48225 8.71584
200 0.22467 -0.19104 0.09307 0.15919 0.27461 0.20254 1.15011 1.48691 6.12559
500 0.25421 -0.22152 0.09509 0.15442 0.28348 0.20567 1.15948 1.49865 4.17901
1000 0.27539 -0.23708 0.09752 0.15573 0.29256 0.20197 1.15652 1.52449 2.31081
2000 0.28818 -0.24418 0.09889 0.15230 0.29386 0.20390 1.15066 1.54207 1.16763
3000 0.29181 -0.24600 0.09835 0.15371 0.29527 0.20256 1.15162 1.54752 0.83940
True values 0.30000 -0.25000 0.10000 0.15000 0.30000 0.20000 1.15000 1.56000
Table 3 The BSO-HLS estimates and errors (2 = 0.102)
t ay a b1y b12 ba1 bao f1 fo 5 (%)
100 0.21926 -0.24168 0.19017 -0.06910 0.38898 -0.10189 1.22239 1.82083 24.02848
200 0.29848 -0.27590 0.17698 0.00678 0.35461 -0.00487 1.21911 1.66932 14.76811
500 0.32287 -0.27652 0.12893 0.09151 0.32983 0.11510 1.19150 1.59357 6.35331
1000 0.31685 -0.26185 0.11318 0.12662 0.32310 0.15436 1.17081 1.58774 3.49174
2000 0.31202 -0.25677 0.10738 0.14085 0.31432 0.17827 1.15796 1.57976 1.89333
3000 0.30992 -0.25401 0.10424 0.14625 0.31065 0.18537 1.15662 1.57648 1.39257
True values 0.30000 -0.25000 0.10000 0.15000 0.30000 0.20000 1.15000 1.56000
Table4 The BSO-FF-RLS estimates and errors
o? t ay as b1 b12 ba1 baa bil fo 6 (%)
0.10? 100 0.20899 -0.18206 0.08631 0.16630 0.27579 0.18990 1.13885 1.48345 7.01308
200 0.26247 -0.22266 0.10104 0.15131 0.28698 0.20906 1.14717 1.51356 3.35240
500 0.28744 -0.24524 0.10178 0.14576 0.29004 0.20574 1.15964 1.53811 1.49169
1000 0.30125 -0.24456 0.09294 0.16006 0.30325 0.20390 1.15054 1.56154 0.71927
2000 0.30668 -0.24770 0.10045 0.14858 0.29435 0.21296 1.15027 1.55866 0.78988
3000 0.29733 -0.24696 0.09812 0.16167 0.29815 0.20459 1.15884 1.55654 0.81525
0.052 100 0.18270 -0.16933 0.08776 0.16369 0.27443 0.18128 1.14551 1.45860 8.85331
200 0.24951 -0.21963 0.10272 0.14635 0.28043 0.20791 1.14775 1.50008 4.30179
500 0.29222 -0.24834 0.10101 0.14833 0.29437 0.20305 1.15551 1.54651 0.88712
1000 0.30060 -0.24730 0.09645 0.15507 0.30163 0.20195 1.15027 1.56072 0.36073
2000 0.30333 -0.24884 0.10023 0.14928 0.29719 0.20645 1.15013 1.55932 0.39332
3000 0.29873 -0.24850 0.09905 0.15583 0.29911 0.20229 1.15441 1.55830 0.40619
0.012 100 0.15627 -0.15516 0.09072 0.16326 0.27388 0.17251 1.15324 1.43185 10.83426
200 0.23450 -0.21413 0.10542 0.14185 0.27539 0.20642 1.14906 1.48345 5.46982
500 0.29555 -0.25079 0.10045 0.15046 0.29781 0.20083 1.15242 1.55253 0.46468
1000 0.30012 -0.24950 0.09928 0.15103 0.30032 0.20039 1.15005 1.56012 0.07208
2000 0.30066 -0.24977 0.10005 0.14986 0.29944 0.20129 1.15002 1.55986 0.07840
3000 0.29975 -0.24970 0.09981 0.15117 0.29983 0.20046 1.15088 1.55967 0.08101
True values 0.30000 -0.25000 0.10000 0.15000 0.30000 0.20000 1.15000 1.56000
06
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Fig. 7: The BSO-FF-RLS estimates a1(t), a2(t), b11(¢), bi2(t)
versus ¢ (02 = 0.102)

8 Conclusions

A bilinear state observer based hierarchical least squares algorithm
and a bilinear state observer based forgetting factor recursive least

Fig. 8: The BSO-FF-RLS estimates boj (t), boa(t), f1(t), folt)
versus t (02 = 0.102)

squares algorithm are presented for identifying the bilinear sys-
tems with unknown states in this paper. The unknown states are
obtained under the framework of the bilinear state observer. The
decomposition-coordination principle is applied to decompose the
bilinear system into three subsystems. The simulation results show
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Fig. 9: State x1 () and its estimate &1 () against ¢ (¢2 = 0.10%)

State estimate of x,
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Fig. 10: State 25 (¢) and its estimate #(¢) against ¢ (2 = 0.10%)

that the proposed algorithms are effective in the parameter identifi-
cation and state estimation. Compared with the BSO-RLS algorithm,
the proposed BSO-HLS algorithm has high computational effi-
ciency. Moreover, the BSO-FF-RLS algorithm has better parameter
tracking capability and higher parameter estimate accuracy. The
identification method presented in this paper can combine iteration
[37, 38] and the data filtering methods to study the identification
problems of linear, bilinear and nonlinear systems with different
structure and disturbance noise [40—42]. Some mathematical skills
[43—48] and statistical methods [49-55] can be used to study the
performances of parameter estimation algorithms.
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