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Abstract: 

Na1/2Bi1/2TiO3 (NBT) based ceramics are amongst the most promising lead-free ferroelectric 

materials. It was expected that the defect chemistry and the effect of doping of NBT would be similar 

to that observed for lead based materials, however, acceptor doping does not lead to ferroelectric 

hardening. Instead, high oxygen ionic conductivity is induced. Nevertheless, for solid solutions with 

BaTiO3 (BT), which are more relevant with respect to ferroelectric applications, such a drastic change 

of electrical properties has not been observed so far. To rationalize the difference in defect chemistry 

between NBT and its solid solution 94(Na1/2Bi1/2TiO3)-0.06 BaTiO3 (NBT-6BT) compositions with 

different concentrations of Fe-dopant were investigated. The study illustrates that the materials exhibit 

very similar behavior to NBT, and extraordinarily high oxygen ionic conductivity could also 

be 

This is the peer reviewed version of the following article: Steiner, S., et al. "The effect of Fe-acceptor doping on 
the electrical properties of Na1/2Bi1/2TiO3 and 0.94 (Na1/2Bi1/2)TiO3–0.06 BaTiO3", Journal of the American 
Ceramic Society (2019), which has been published in final form at https://doi.org/10.1111/jace.16401. This 
article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-
Archiving.
This article is protected by copyright. All rights reserved. 
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of ionic conductivity with dopant concentration. Previous studies of NBT-6BT have not reached 

sufficiently high dopant concentrations to observe high conductivity. In consequence, the same defect 

chemical model can be applied to both NBT and its solid solutions. This will help to rationalize the 

effect of doping on ferroelectric properties of NBT-ceramics and defect chemistry related degradation 

and fatigue. 

 

Introduction: 

Acceptor doping of ferroelectric materials is known to cause a “hardening” effect on the ferroelectric 

properties(1-4). This effect has often been reported for Fe
3+

 ions occupying the Ti
4+

 B-sites in lead 

zirconate titanate (Pb(Zr,Ti)O3, PZT) or BaTiO3 perovskites and is related to the formation of defect 

dipoles between the Fe acceptor ion and the charge compensating oxygen vacancies.(5-7) These 

defect dipoles induce a time dependent clamping of the domain wall motion and, in consequence, lead 

to ferroelectric hardening.(5, 8) 

For the lead-free ferroelectric ceramic sodium bismuth titanate (Na1/2Bi1/2TiO3, NBT) it can generally 

be expected that oxygen vacancies are induced by acceptor doping or bismuth off-stoichiometry:(9-

11) 

 

           
    

      
                                                     (1) 

     
     

      
       

                                                       (2) 

 

Eq. (1) is an example of an acceptor doping reaction and Eq. (2) represents the evaporation of Bi2O3. 

Thus oxygen vacancies can be generated by either acceptor doping or bismuth non-stoichiometry. In 

PZT and BaTiO3 based ceramics defect complexes such as      
    

     are formed and
 
oxygen 

vacancies are thus not mobile. For NBT, however, acceptor doping can lead to an unexpectedly high 

ionic conductivity. Studies by Li et al. reported a 4 orders of magnitude higher ionic conductivity in 

Mg B-site acceptor doped as well as slightly non-stoichiometric (1 mol% Bi-deficiency) NBT.(9, 10) 

The conductivity is even in the range of excellent oxygen ionic conductors like yttria stabilized 

zirconia (YSZ). This is highly detrimental for piezoelectric applications and illustrates that knowledge 

of the defect chemical properties of lead-based ferroelectrics cannot be directly transferred to the lead-

free successors. However, evidence has been provided that the complex formation in NBT is highly 

dependent on dopant concentration, or oxygen vacancy concentration, respectively.(9-13) The higher 

the dopant concentration, the higher the concentration of mobile oxygen vacancies. The dependence 

of complex formation on vacancy concentration can be expected to be non-linear as the ionic 

conductivity changes by orders of magnitude with only small changes in acceptor concentration.(13) 

Furthermore, the conductivity is affected by the temperature dependent changes in the crystal 

structure as well as by a coexistence of phases in NBT.(13-15) The resulting non-linear dependence of 
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conductivity on defect concentration is in stark contrast to other common ceramics. The conductivity 

  is actually expected to increase linearly with oxygen vacancy concentration: 

 

        
                                                                      (3) 

 

where      is the temperature dependent vacancy mobility,    
    the oxygen vacancy concentration 

and    the vacancy charge. There are other examples of changes in migration barrier height with high 

acceptor dopant concentration leading to a deviation of the linear relationship.(16, 17) However, the 

impact on conductivity is by far not as extensive and the low temperature conductivity is hardly 

affected. In case of NBT the conductivity changes from low intrinsic electronic conductivity to orders 

of magnitude higher ionically dominated conductivity with small acceptor content variations over a 

wide temperature range.(13) With respect to the ferroelectric properties it could be shown that high 

dielectric loss and leakage current results with high oxygen vacancy content already at room 

temperature.(18) Compositions for which polarization loops could be obtained did not show a 

hardening effect. The remanent polarization, however, could be indirectly modified by the influence 

of defects on grain size. The size of the grains has a profound impact on the dominant relaxor 

phases.(18) 

For ferroelectric applications pure NBT is less relevant, the solid solution 0.94(Na1/2Bi1/2TiO3)-0.06 

BaTiO3 (NBT-6BT) is at the morphotropic phase boundary and thus exhibits superior ferroelectric 

properties.(19-21) The data on the impact of Bi-deficiency on NBT-BT is rather ambiguous. In one 

previous study it was found that NBT-6BT is significantly less sensitive to the generation of ionic 

conductivity with A-site non-stoichiometry than NBT.(22) The dielectric loss increases but generally 

only the ferroelectric properties are modified. Different synthesis procedures lead to different bismuth 

evaporation and hence defect concentration (Eq. 2). Thus, this could also explain a rather large spread 

of reported properties of NBT-BT in literature. However, Prasertpalichat et al. provided evidence of 

high ionic conductivity in off-stoichiometric NBT-BT.(23) Nevertheless, Sapper et al. even reported 

that ferroelectric hardening in NBT-6BT is possible by a B-site Fe acceptor doping.(24) It has also 

been shown that A-site acceptor doping introduced by A-site non-stoichiometry can induce 

hardening.(25) The extent of hardening was, however, reduced from that expected using the 

knowledge of lead-containing ceramics. Recently, it was even shown that by controlling A-site 

stoichiometry it is possible to produce NBT-BT material with very low dielectric loss up to almost 

400°C. This extraordinarily resistive dielectric is amongst the most promising materials for high 

temperature capacitor applications.(26) In consequence, it can be seen that the properties of NBT-

based materials range from highly ionically conductive to highly resistive. Such a wide spread of 

properties of a ceramic is quite unique, even accounting for variations due to the formation of the 

solid solutions. On the one hand, this makes NBT-based material interesting for various applications, 

on the other hand it highlights the lack of an understanding of the defect chemical origin for this large 
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property range. So far we do not even have enough information to explain the effect of defects on the 

favored primary ferroelectric properties. For example, it could be shown that changes in the A-site 

stoichiometry significantly impact the microstructure of NBT solid solutions which additionally 

influences ferroelectric properties. In NBT solutions with strontium titanate the development of core-

shell structures could be controlled, which changed ferroelectric parameters drastically.(27) It is 

currently not possible to predict secondary properties such as degradation and fatigue.(28) In 

consequence, investigations that provide insight on the mechanisms responsible for this unusual 

behavior are of particular importance.  

In this study, the effects of B-site Fe acceptor doping on the electrical conductivity of NBT and NBT-

6BT are investigated, and compared. It provides evidence that suggests the defect chemical 

approaches, which have already been established for pure NBT, can also be applied to the 

technologically relevant complex solid solutions. A main focus of the study was to investigate the 

relation between acceptor dopant induced oxygen vacancies and their effect on the electrical 

conductivity. To avoid undesired high leakage current due to low levels of Bi deficiency, especially in 

the NBT compositions, a small Bi-excess (0.2 mol%) was added to the nominal starting compositions.  

 

Experimental 

Polycrystalline samples of Na0.5Bi0.501TiO3 (NBT), and Na0.5Bi0.501FexTi1-xO3 (x=0.001, 0.003, 0.01, 

0.02, 0.03, and 0.04) as well as 0.94Na0.5Bi0.501FexTi1-xO3-0.06BaTiO3 (x=0.01, 0.02, 0.03, and 0.04) 

were prepared using the conventional solid oxide synthesis route with reagent oxides and carbonates 

(Alfa Aesar GmbH & Co. KG). Na2CO3 (99.5%), Bi2O3 (99.975%), TiO2 (99.6%), BaCO3 (99.8%) 

and Fe2O3 (99.5%) were used as raw materials and have been dried in an oven (Nabertherm, HTC 

08/15) at 180°C (Bi2O3), 300°C (Na2CO3, Fe2O3, BaCO3) and 1000°C (TiO2), for 8 h before weighing 

to avoid non-stoichiometry caused by hygroscopic carbonates.(10) Furthermore, to avoid the 

formation of additional Bi vacancies and corresponding oxygen vacancies during the processing, all 

Fe-doped starting compositions exhibit a small Bi-excess of 0.2 mol% as the volatilization 

temperature of Bi2O3 (T>825°C) is considerably lower than for Na2O (T>1132°C).(29) All the 

weighed powders were submerged in ethanol and ball milled in a planetary ball mill (Fritsch, 

Pulverisette 5) for 6 h using yttria stabilized zirconia balls (diameter 10 mm; ratio 10:1). Afterwards, 

the dried powders were calcined in a covered alumina crucible at 800°C for 2 h. To guarantee a 

homogeneous distribution, the calcined powders were ball milled again for 4 h and calcined a second 

time at 850°C for 2 h followed by ball milling over 6 h to enable a full reaction of the raw materials. 

The prepared powders have been uniaxially compacted into pellets (diameter 10 mm) with a pressure 

of ca. 25 MPa and pressed cold isostatically at 200 MPa (Weber, KIP 100E). Finally, the pressed NBT 

and NBT-6BT pellets were sintered at 1150°C for 2 h at a heating rate of 5 K/min.  
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The phase and purity of the prepared compositions have been investigated via X-ray diffraction 

(XRD) using      radiation (Bruker AXS D8 Advance). Grain size as well as the possible formation 

of secondary phases have been investigated via scanning electron microscopy (SEM) (JEOL, Model 

JSM 7600F, Japan) in the SE (samples thermally etched at 1100°C for 5 minutes and sputtered with 

gold) and back-scattered electron (BSE) (samples sputtered with carbon) mode with additional energy 

dispersive X-ray (EDX) analysis (Oxford Link ISIS, Oxford Instruments Ltd., Oxfordshire, UK). 

With the help of a Novocontrol alpha A impedance analyzer (Novocontrol, Montabaur, Germany), the 

temperature and frequency dependent impedance was determined. The frequency range of the probing 

signal was set between 0.1 Hz and 3 MHz with an amplitude of 0.1 V. The investigations were 

conducted in a temperature range between 150°C and 700°C with a step size of 10 K. For the analysis 

of the generated impedance results, the RelaxIS software (rhd instruments, Darmstadt, Germany) was 

used. The ferroelectric polarization at room temperature has been investigated at 1 Hz and an electric 

field up to 8 kV/mm
 
(high voltage amplifier TREK model 20/20C, Trek Inc., USA). Furthermore, 

oxygen ion transport numbers were determined by electromotive force measurements (EMF) with a  

ProboStat system (NorECs Norwegian Electro Ceramics AS, Oslo, Norway). The ceramic pellet was 

sealed onto a YSZ tube using a commercial glass frit. An oxygen partial pressure, pO2, difference was 

created across the ceramic by flowing N2 into the YSZ tube and leaving the outside of the ceramic in 

air. The pO2 difference was monitored by measuring the voltage across the inner and outer electrodes 

on the YSZ tube. The voltage was measured using a Solartron Schlumberger 7150 digital multimeter.  

 

Results and Discussion 

Figure 1 shows the XRD patterns of 0.1-4 mol% Fe doped as well as pure NBT and 1-4 mol% Fe 

doped NBT-6BT ceramics. All ceramics are consistent with the room temperature R3c-group 

structure.(14, 30, 31) However, if the amount of Fe2O3 doping exceeds 1 mol% for NBT or 3 mol% 

for NBT-6BT, secondary phases (denoted by stars, see Figure 1) can be detected. Additional EDX 

analysis revealed that this secondary phase is a Fe-, Ti-rich and Bi-deficient phase (see supporting 

information Figure S1). It can be concluded that the solubility limit for Fe-doping is reached in NBT 

between 1 and 2 mol% and in NBT-6BT between 3 and 4 mol%, respectively. SEM analysis was 

carried out to elucidate the morphology of the secondary phases (BSE mode) and to investigate the 

influence of defect concentrations on the microstructure (secondary electron mode SE). 

Figure 2 depicts the microstructures of pure NBT and NBT-6BT (Figure 2(a) and (b)) and 4 mol% Fe-

doped NBT and NBT-6BT (Figure 2(c) and (d)) (SE and BSE images of the other processed 

compositions are given in the supporting information Figure S1). The Fe-acceptor doping shows a 

significant impact on the grain growth in both cases. The phenomenon has been previously attributed 

to the presence of increased oxygen vacancy concentration in literature. Higher oxygen vacancy 

concentration is expected to impact the grain boundary migration energy which leads to enhanced 
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grain growth.(22, 32-34) The insets in Figure 2(c) and (d) represent backscattered electron images of 

the 4 mol% Fe-doped compositions with highlighted secondary phases.  

The grain size analysis for all processed compositions is summarized in Figure 3. Both ceramics 

provide a very similar grain size without Fe-doping (pure NBT ~3µm, pure NBT-6BT ~2µm). By 

adding only 0.1 mol% Fe, NBT shows an increase of about 400% in grain size. At 1 mol% Fe-doping 

the grain coarsening is about 800% with respect to pure NBT. NBT-6BT also shows grain coarsening 

but the effect is significantly smaller. Figure 3 also illustrates that a maximum grain size is obtained 

for 3 mol% Fe-doped NBT (grain size ~33µm). Due to the occurrence of secondary phases, the 

oxygen vacancy concentration in the matrix material may be reduced and thus additional grain 

coarsening could be inhibited.(35) Furthermore, the grain growth mechanism can be impacted by the 

secondary phase itself. The strong dependence of grain size with doping content is clearly shown in 

Figure 3. The formation of a solid solution, for instance with BaTiO3, seems to buffer against grain 

coarsening. According to previous reports, immobile oxygen vacancies can reduce grain boundary 

mobility.(36, 37)  

Electron paramagnetic resonance (EPR) results from the 1, 2, and 4 % Fe doped NBT and NBT-6BT 

powdered ceramic samples are depicted in Figure 4. The low field resonance line at approximately 

150 mT is characteristic of Fe
3+

 centers in a strongly axial crystal field exhibiting a large second order 

zero field splitting and can be attributed to Fe
3+

 nearest neighbor oxygen vacancy complex defects, 

     
    

    .(38) This resonance can be observed from all the samples studied. The weaker line 

observed in the 1% doped NBT sample centered at approximately 330 mT can be attributed to B-site 

substituted Fe
3+

 centers within complete oxygen octahedra. However, at higher Fe concentrations the 

line shape of the EPR line in the 300 mT region broadens markedly. The EPR of Fe2O3 and from Fe 

containing impurity phases exhibit similar broad resonances.(1, 39) The spectra observed from the 2 

% and 4 % Fe doped NBT samples are consistent with an increasing contribution for EPR spectra 

from Fe-containing impurity phases. The spectral contribution in the region of 300 mT observed from 

the 2 % and 4 % Fe doped NBT-6BT samples (Fig. 4b) can also be attributed to Fe-containing 

impurity phases. The spectrum from the 4 % doped sample clearly exhibits two contributions in this 

field region, the additional narrow line is likely due to an impurity phase in which the Fe centers are 

exhibiting exchange narrowing. The onset of the detection of a broadened spectrum in the 

approximate region of 300 mT for 2 % Fe in NBT is consistent with the detection of Fe-rich 

secondary phases by XRD (Figure 1(a)). For NBT-6BT a secondary phase was detected by XRD in 

the 4% Fe and there is a dominant contribution from a Fe-containing impurity phase in the EPR 

(Figure 4(b)). For the NBT samples contribution from      
    

     centers increases on increasing 

from 1 % to 2 % Fe, however no further increase is evident for the 4 % Fe doped sample. The 

contribution from the      
    

     centers does not markedly change for the Fe doped NBT-6BT 

samples.  
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The variation in grain size with Fe-doping shown in Figure 3 provides evidence for the presence and 

importance of oxygen vacancies, while the EPR results demonstrate the existence of      
    

     

centers for both materials. Information on the mobility of the oxygen vacancies involved is required to 

further elucidate the difference between NBT and NBT-6BT. To achieve this, the impact of doping on 

the electrical properties will be discussed in the following. Figure 5 shows the Nyquist plots 

(imaginary part -Z’’ plotted against real part Z’ of impedance) from impedance spectroscopy (IS) data 

of Fe doped NBT and NBT-6BT measured from 0.1 Hz to 3 MHz at 500°C. In the case of pure NBT, 

0.1 and 0.3 mol% Fe doped NBT and pure as well as 1 mol% Fe-doped NBT-6BT only one single 

semicircle  and therefore a single conduction process can be detected within the measuring frequency 

range (Rb~1.2 MΩcm at 500°C). This is well in line with recently reported results on Mg-acceptor 

doped NBT.(13) Low concentrations of acceptor dopant do not lead to a significant increase in 

conductivity and the conductivity is dominated by an intrinsic electronic contribution. However, a 

non-linear increase in conductivity can be observed with increasing the concentration to 1% for pure 

NBT. Two semicircles start to form in this case. The high frequency process represents the bulk (Rb~1 

kΩcm at 500°C), the lower frequency process the grain boundary response (Rgb~2.5 kΩcm at 500°C). 

The tail after the second process is a typical feature of Warburg-type diffusion of oxygen ions at the 

sample/electrode interface.(40) This is already a hint towards a dominating ionic conductivity and 

hence a change in primary conduction process with increasing acceptor concentration. When the 

doping level reaches 2 mol% Fe, the total conductivity of all samples again increases by one 

additional order of magnitude until it saturates above a 2 mol% doping content. This finding again 

coincides well with recent findings on other acceptor dopants in NBT.(12) 

The Fe doped NBT-6BT ceramics show a comparable behavior to NBT. A clear transition from low 

to high conductivity can be observed in Figure 5(b). The conductivity values also coincide well with 

the NBT conductivity, which is in the range of excellent oxygen electrolytes like YSZ. This is rather 

unexpected given that NBT-BT has been discussed so far to be different to NBT with respect to 

conductivity. However, the transition towards higher conductivity occurs at a higher acceptor dopant 

concentration. For NBT-6BT the 1 mol% doped sample still exhibits a quite low conductivity with 

only one visible semi-circle. NBT is already highly conductive in this case (see comparison in Figure 

5 (c)). More details are revealed by investigation of Arrhenius type plots of the conductivity which are 

represented in Figure 6. From the slope of the Arrhenius plot the activation energy of conduction 

processes has been calculated. Pure NBT has a low bulk conductivity. The activation energy changes 

from low values (0.92eV) to high values (1.54eV) by increasing the temperature. This phenomenon 

represents a change from extrinsic (lower T) to intrinsic (higher T) semiconducting behavior. In the 

low temperature region, extrinsic semiconducting behavior is dominant with lower activation 

energies. The origin of a decreased activation energy can be attributed to additional energy levels 

within the band gap caused by impurity states. In contrast, the high activation energy, observed at 

elevated temperatures, represents a value close to half of the band gap of NBT (Ebg~3.3 eV) which 
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demonstrates an almost ideal intrinsic electronic behavior.(41) The 0.1 and 0.3 mol% Fe-doped NBT 

compositions also show a relatively low total conductivity. A small decrease in the activation energies 

compared to pure NBT can be explained by an increased level of defect states within the band gap. 

These could of course result from a higher concentration of oxygen vacancies. However, at higher 

concentrations the oxygen vacancies are responsible for the dominant ionic conductivity. This 

behavior has already been reported as a typical feature of NBT based B-site acceptor doped oxygen 

ionic conductors and was attributed to a phase and defect dipole formation dependent concentration of 

mobile vacancies.(12, 13) The total conductivity increases by at least four orders of magnitude over 

the whole temperature range and saturates for doping levels above 2 mol% Fe. Moreover, the 

activation energy of the bulk conduction process changes from higher values (~0.86 eV) to lower 

values (~0.43-0.51 eV) with increasing the temperature. With regards to an increased doping level 

above 2 mol%, the bulk conductivity is not going to be further increased (see Figure 6). As discussed 

above, the solubility of Fe2O3 is limited to less than 2 mol%. Therefore, the induced oxygen vacancy 

concentration did not change any further, even by increasing the doping level. Furthermore, the 

conductivity is already in a range for which a general limit of oxygen ion conductivity is expected in 

perovskites.(35, 42) Thus, irrespective of dopant solubility limit the conductivity is not expected to be 

further increased significantly. 

The similar behavior of Fe doped NBT-6BT compositions is again illustrated in the Arrhenius plots in 

Figure 6(b). The differently doped NBT-6BT compositions show highly resistive as well as highly 

conductive properties. Pure NBT-6BT as well as 1 mol% Fe-doped NBT-6BT show typical 

semiconducting behavior. By doping at least 2 mol% Fe, the conductivity jumps several orders of 

magnitude. A further increase in Fe doping content leads again to a saturation of the conductivity 

while showing a behavior which is usually attributed to oxygen ionic conductivity. Based on these 

results, we can suppose that the induced oxygen vacancy concentration by Fe-doping has a significant 

impact on the conduction mechanisms in NBT as well as NBT-6BT. Semiconducting behavior is 

dominant at low oxygen vacancy concentrations, while oxygen ionic conduction becomes dominant 

when additional oxygen vacancies are generated by the acceptor doping. As already seen for the grain 

coarsening effect, the formation of a solid solution with BT buffers the impact of an increased oxygen 

vacancy concentration compared to NBT with the same doping levels. It nevertheless does not 

completely change the defect concentration dependent behavior. To further prove that the high 

conductivity can be attributed to oxygen ionic conductivity the oxygen ionic transport numbers are 

obtained from electromotive force (EMF) measurements. These quantify the oxygen ionic 

conductivity contribution to the total conductivity and are shown for characteristic compositions (see 

Table 1).(9) According to recent simulations provided by Zhang et al. a high level of cation 

conductivity can be neglected in NBT.(43) As expected, the measured doped NBT samples (1% Fe 

and above) all exhibit dominating oxygen ionic conductivity. The 1 mol% Fe-doped NBT-6BT 

composition, however, shows a low ionic transport number of ~0.07 at 700°C and 800°C. This again 
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illustrates that even though there is a small change in conductivity from NBT-6BT to 1 mol% doped 

material the conduction mechanism is still dominated by electronic conductivity. The additional 

defects most likely rather act as traps for electronic charges leading to the extrinsic electronic 

contribution.(44, 45)  

Even though Fe doped NBT and NBT-6BT show a similar conduction behavior, the needed vacancy 

concentration for dominant oxygen ionic conductivity differs. The NBT-6BT becomes less sensitive 

towards increasing vacancy concentration. This explains why reports on extraordinarily high 

conductivity in NBT-6BT are so rare.(23) The bismuth non-stoichiometry in NBT-6BT investigated 

for example by Seo et al. is not high enough to induce high ionic conductivity.(22) Similarly, it was 

possible for Sapper et al. to investigate ferroelectric hardening in 1 mol% Fe doped NBT-6BT.(24) 

The similarity in variation in structure, phase, and microstructure with Fe doped between NBT and 

NBT-6BT ceramics suggests the decrease in sensitivity of the conductivity to oxygen vacancies for 

NBT-6BT may be due to the A-site ion differences.  The incorporation of a small fraction of Ba
2+

 ions 

at the A-site is the only obvious difference between NBT and NBT-6BT. The activation energy for 

oxygen ion migration in BaTiO3 was reported to be around 1.0-1.1 eV.(46-48) The oxygen migration 

might be hindered in NBT-6BT ceramics due to a difference in the Bi-O and Ba-O bond strength. The 

Bi-O bonds might be weaker compared to Ba-O bonds.(49) In should be noted that the 1 mol% Fe 

doped NBT-BT showed lower ionic conductivity than the equivalently doped NBT. This will be an 

interesting starting point for further investigations.  

The high field property differences between the doped NBT and NBT-6BT solid solutions will be of 

major interest. These affect general ferroelectric properties like remanent ferroelectric polarization    

and coercive field   . Furthermore, they determine electrodegradation of the materials. In Figure 7 a 

first comparison of ferroelectric properties of NBT ceramics with different Fe concentrations are 

given. The figure illustrates the polarization plotted against the applied field at room temperature. For 

all depicted compositions regular ferroelectric polarization curves could be obtained. Even for the 

higher doped materials this is actually achievable without a sign of significant loss. Compared to 

previous literature about non-stoichiometric NBT compositions, these findings are rather surprising as 

a rather bulky and lossy loop would have been expected.(18) Hence, the low temperature resistance is 

high enough to allow for ferroelectric polarization switching. However, in case of the 2% doped NBT 

there was always a breakdown of electrical properties after a loop hinting towards a non-linear 

contribution of oxygen vacancies to the degradation of the material. A ferroelectric hardening should 

result in an increase of    and a lowering of the    value.(5-7) However, from regular NBT to 0.1% 

Fe doping there is actually an increase in    (Figure 7a)). This behavior is rather expected from donor 

doping or isovalent doping e.g. with Zr.(50) For Zr doping a stabilization of the ferroelectric order in 

the relaxor ferroelectric NBT-BT leads to this effect. Only at higher Fe-doping concentrations a 

hardening effect could be identified. This coincides with the onset of high ionic conductivity at higher 

temperatures. Thus, no hardening occurs in NBT material exhibiting semiconducting behavior over a 
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large temperature range, while mobile oxygen ionic defects contribute to a small hardening effect at 

higher concentrations. Nevertheless, it is unlikely that the small effect warrants taking the risk of 

mobile defects contributing non-linearly to loss increase and electrodegradation at room temperature. 

A similar behavior but less extensive can be observed for the NBT-6BT in Figure 7b). Furthermore, a 

generally lower    compared to pure NBT is found which is in line with previous research.(19-21) 

Thus, the point at which an immediate breakdown would occur for a highly Fe-doped NBT-6BT is not 

reached when recording a polarization curve in the range of   .    

With the knowledge about the similarities and differences between NBT and its solid solutions with 

BT it is now possible to gain a general view on the defect chemistry of NBT-based material. This will 

eventually allow for further tuning of dielectric loss/conductivity and understanding the impact of 

defects on ferroelectric properties of NBT-ceramics which is obviously fundamentally different 

compared to lead based systems. Furthermore, this will help to elucidate mechanisms for degradation 

and fatigue which can be attributed to changes in defect chemistry. It can already be assumed that 

acceptor doping is generally detrimental to the long term stability of electrical properties of NBT-

based materials.  

 

Conclusion 

The unusually high oxygen ionic conductivity previously observed in acceptor doped NBT can also 

be induced in acceptor doped solid solutions with BT. The changes in ionic conductivity are 

dependent on the defect concentration (oxygen vacancies and oxygen vacancy acceptor ion 

complexes) and can be rationalized by the same mechanisms. Values of ionic conductivity rivaling 

reported data for excellent oxygen conductors like yttria stabilized zirconia are found. This means that 

the defect chemistry of NBT, and of the far more technologically relevant NBT-6BT, exhibit more 

similarities than initially assumed. The difference is simply in the extent of the dependence of ionic 

conductivity on dopant/defect concentration. While NBT can already become highly ionically 

conductive at acceptor concentrations below 1%, NBT-6BT still exhibits low, mostly intrinsic, 

electronic conductivity. Only at higher acceptor concentrations NBT-6BT also becomes ionically 

conductive. Most of the previous studies on acceptor doping of NBT-6BT and impact of oxygen 

vacancies induced by Bi-deficiency have been performed on materials where the defect 

concentrations were below the threshold for extremely high ionic conductivity. Additionally, it is 

possible to obtain a high enough resistance at room temperature to achieve ferroelectric switching 

even in the ionically conductive materials. This knowledge will be important for rationalizing the 

impact of defects on electrical properties of NBT-based material in general.  The minor hardening 

effect of ferroelectric properties can most likely be attributed to the unusual behavior of oxygen ionic 

defects in NBT materials. Furthermore, the point defect dependent electrical degradation and fatigue 

of ferroelectric NBT-ceramics can be expected to be very different compared to that observed in lead 

based ceramics.  
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Figure and Table Caption List: 

 

Table 1: Ionic transport numbers of the investigated Fe-doped NBT and NBT-6BT compositions. 

 

Figure 1: XRD patterns of undoped and Fe-doped (a) NBT and (b) NBT-6BT. 
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Figure 2: SEM images of (a) pure NBT and (b) NBT-6BT in comparison to (c) 4 mol% Fe-doped NBT 

and (d) 4 mol% Fe-doped NBT-6BT. 

 

Figure 3: Grain size of Fe-doped NBT and NBT-6BT as a function of Fe-doping content. 

 

Figure 4: Electron paramagnetic resonance spectra measured at 9.39 GHz of Fe-doped NBT (a) and 

NBT-6BT (b) as a function of Fe-doping content. The spectral contributions attributed to Fe
3+

-oxygen 

vacancy complexes (black diamond) and the Fe-containing impurity phase (green circle) are marked. 

 

Figure 5: Impedance plots for Fe doped and undoped (a) NBT and (b) NBT-6BT at 500°C. (c) 

Impedance comparison of 1% Fe-doped NBT and NBT-BT at 500°C. 

 

Figure 6: Arrhenius plots for the bulk response of Fe doped and undoped (a) NBT and (b) NBT-6BT.  

  

Figure 7: Polarization vs applied electric field at room temperature for a) NBT based material and b) 

NBT-BT based material of this study. 
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Table 1: Ionic transport numbers of the investigated Fe-doped NBT and NBT-6BT compositions. 

 

Composition tion at 700°C tion at 800°C 

1% Fe NBT 0.93 0.90 

2% Fe NBT 0.89 0.90 

1% Fe NBT-BT 0.07 0.07 

2% Fe NBT-BT 0.83 0.84 

3% Fe-NBT-BT 0.83 0.83 
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