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Cross-View Self-Similarity Using Shared Dictionary
Learning for Cervical Cancer Staging

Nesrine Bnouni, Islem Rekik, Member, IEEE, Mohamed Salah Rhim, and Najoua Essoukri Ben Amara

Abstract—Dictionary Learning (DL) has gained large popu-
larity in solving different computer vision and medical image
problems. However, to the best of our knowledge, it has not been
used for cervical tumor staging. More importantly, there have
been very limited works on how to aggregate different interac-
tions across data views using dictionary learning. As contribution,
we propose a novel Cross-View Self-Similarity Low Rank Shared
Dictionary Learning -based (CVSS-LRSDL) framework, which
introduces three major contributions in medical image-based
cervical cancer staging: (1) leveraging the complementary of axial
and sagittal T2w-Magnetic Resonance (MR) views for cervical
cancer diagnosis, (2) introducing Self-Similarity (SS) patches for
DL training, which explore the unidirectional interaction from
a source view to a target one, and (3) extracting features that
are shared across tumor grades as well as grade-specific features
using the CVSS-LRSDL learning approach. For the first and
second contributions, given an input patch in the source view
(axial T2w-MR images), we generate its SS patches within a
fixed neighborhood in the target view (sagittal T2w-MR images).
Specifically, we produce a unidirectional patch-wise SS from
a source to a target view, based on mutual and additional
information between both views. As for the third contribution,
we represent each individual subject using the weighted distance
matrix between views, which is used to train our dictionary
learning-based classifier to output the label for a new testing
subject. Overall, our framework outperformed several DL based
multi-label classification methods trained using: (i) patch intensi-
ties, (ii) SS single-view patches, and (iii) weighted-SS single-view
patches. We evaluated our CVSS-LRSDL framework using 15
T2w-MRI sequences with axial and sagittal views. Our CVSS-
LRSDL significantly (p<0.05) outperformed several comparison
methods and obtained an average accuracy of 81.73% for cervical
cancer staging.

Index Terms—Shared dictionary learning, low-rank models,
self-similarity, cross-view, cervical cancer stage.

I. INTRODUCTION

CERVICAL cancer is a recurrent gynecological malig-
nancy and a communal cause of death. The patient

outcome relates to the tumor stage, size, nodal status, and
histological grade. Staging in cervical cancer highly influences
the patient treatment as well as prognosis. The International
Federation of Gynecology and Obstetrics (FIGO) [1] staging
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system is the most used for cervical cancer. Knowing the
stage helps the doctor to decide what kind of treatment is
best to help predict a patient’s prognosis [2], [3]. Cervical
cancer staging is a complex task as it covers different grades
[4]. Generally, high grades are correlated with the extent of
cancer spread. Magnetic Resonance Imaging (MRI) is a non-
invasive imaging technique that is commonly used for tumor
detection, staging and measurement of its exact volume, shape,
and local extent of the disease, thereby assisting clinicians
in treatment planning. In particular, T2-weighted (T2w) MRI
images play a crucial role in the identification of the primary
tumor and assessment of its extent as it provides accurate
anatomic details and a fine contrast resolution. Exploiting
axial-T2w and sagittal T2w views is adequate for staging in
most cases. T2w-MRI images of the pelvis are acquired in
axial, sagittal and coronal planes. In cervical cancer, while
axial-T2w images arranged perpendicular to the long axis
of cervix yield more precise evaluation of the parametrial
invasion, the nodes status [5] and the stromal involvement,
sagittal-T2w images planned parallel to the long axis of cervix
provide more accurate assessment of the tumor size [6], [7]
and the extension of neighboring organs.

FIGO divides cervical cancer into four stages. Each stage
is further divided into several sub-stages. Specifically, stage I
tumor is restricted to the cervix. Stage IA is a microscopic
disease and is not observable on MRI. An observable tumor,
even with superficial invasion, is stage IB cancer. Stage II
is well-inspected when the tumor spreads over the cervix.
Involvement of the upper two thirds of the vagina identify
IIA stage. According to FIGO staging, if the tumor area
is ≤ 4 cm, the patient is staged as IIA1, otherwise the
patient is staged as IIA2. In stage IIB, the tumor perturbs the
normally hypointense peripheral stroma on T2w-MR images
and spreads in the parametrium. Stage III is established when
the tumor extends to the lower third of the vagina or the lateral
pelvic wall with related hydronephrosis. The bladder and/or
rectal mucosa involvement or distant metastasis specifies stage
IV. To the best of our knowledge, there has been no record
in the cervical cancer literature of the use or development of
automatic classification methods for cervical cancer staging.

On the other hand, Sparse Dictionary Learning (SDL) strate-
gies have been developed to solve multi-label classification
problems by learning how to extract relevant information.
They have focused on training data from various classes
into a unique dictionary and uses class-specific residue for
classification. This has been achieved by forcing some sort
of sparseness constraints on the coefficients of the learned
representation [8]. Specifically, SDL is a particular sparse
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signal representation and has increased in recent years. Its
goal is to learn a dictionary in which only a few atoms can
be linearly combined to represent a given signal. SDL-based
approaches have performed state-of-the-art performances in
many applications including aperture radar image classification
[9], sparse signal recovery [10], image segmentation [11],
image de-noising [12], video anomaly detection [13] recap-
tured image recognition [14], hyper-spectral image classifica-
tion [15], [16], [17] and medical image classification [18],
[19], [20]. An SDL representation-based classifier has been
also applied for robust face recognition [21]. However, the
majority of existing classification-based SDL approaches have
aimed to learn discriminative class-specific dictionaries by
forcing block-diagonal constraints or favoring the incoherence
between class-specific dictionaries [22], [23], [20], [24], [8],
[25], [26], [27], [19]. This is a strong constraint that overlooks
the shared features across classes. This problem has been
partially addressed by recent efforts [28], [29], [30], [31].
However, shared features across classes have been masked in
the learned class-specific dictionaries. To address this issue,
Low-Rank Shared Dictionary Learning (LRSDL) framework
was proposed in [32], [33] with the special capability of
capturing class-specific features as well as shared features
across different classes. It was essentially a generalized variant
of Fisher Discrimination Dictionary Learning (FDDL)[34],
[23] with the capacity of learning shared features.

In this paper, we first aim to adapt LRSDL to automatically
learn stage-specific dictionaries and a shared dictionary across
cervical cancer stages. Specifically, each stage-dictionary per
stage is simultaneously learned to extract discriminative fea-
tures as well as the shared features that all cancer stages
contain. For the shared part, two intuitive constraints are
imposed. First, the shared dictionary must contain discrimi-
native grade features due to the low-rank structure. Second,
the sparse coefficients corresponding to the shared dictionary
must be similar. Both of these constraints are capital for
the shared dictionary. On the other hand, patch-based image
modeling has gained a wide popularity in computer vision
and medical images. In particular, the use of image Self-
Similarity (SS) which implies that a patch often has many
similar patches across the image, has significantly improved
the performance many applications. Specifically, SS is used to
approximate each patch, in some way, by other patches and
to indicate how much exactly or approximately patches are
similar to a part of them to evaluate the pairwise relationship.
Particularly, the ability to compare patches has been the basis
of many approaches in computer vision problems. Patches in
medical images are statistically self-similar. For instance, in
[35], learning similarity between cross-spectral patches with a
2-channel convolutional neural network model was proposed.
In [36], a global SS and its advantages over local SS was
explored. In [37], a patch group-based non-local SS prior-
learning scheme to learn explicit nonlocal SS models from
natural images for high-performance de-noising was proposed.
Crus et al. [38] introduced a SS based approach which used
large groups of similar patches extracted from the input image
for image super-resolution. Bustin et al. [39] put forward a
novel isotropic 3D reconstruction scheme from brain imaging

and clinical cardiac MRI that integrated non-local and SS
information from 3D patch neighborhoods. Manjon et al. [40]
proposed a new super-resolution method to reconstruct high-
resolution MR images from the low-resolution images using
SS and image priors. However, these approaches have only
explored within-modality (or within-view) similarity, where
similar patches are identified within the same view, which
overlooks patches similarities across views. In other words,
these overlooked inter-view interactions have been shared, and
complementary information between views can be leveraged
to further boost the target results.

Inspired by such works and to fully exploit SS across views,
we propose a novel Cross-view Self-Similarity LRSDL-based
(CVSS- LRSDL) method, which leverages the complementary
between the source view (axial-MRI) and the target view
(sagittal-MRI) for cervical cancer staging using LRSDL-based
dictionary learning trained on SS cross-view patches. Specif-
ically, given a patch in the source view (axial T2w-MRI),
we extract its SS patches within a fixed neighborhood in the
target view (sagittal T2w-MRI), thereby defining a unidirec-
tional cross-view information transfer. Since the sagittal T2-w
image is more reliable to stage cervical cancer and contains
more spatial information such as tumor size and extension to
neighborhood organs, we fixed it as the target view where
more relevant information is extracted via locally retrieving
many similarity patches. The axial T2-w image (source view)
remains the basic MRI view for the detection of parametrial
invasion in cervical cancer. This disentangles the features
that are shared across tumor grades as well as grade-specific
features using LRSDL learning approach. CVSS- LRSDL
can jointly learn the features from cross-view by transferring
sparse feature representations of patches from the source to the
target view to improve cervical cancer staging. Our method
has two major contributions to the state-of-the-art of cervical
cancer staging as well as DL for multi-label classification:

1. CVSS- LRSDL method learns a shared dictionary across
grades as well as grade-specific dictionaries, which allows ex-
plicitly and simultaneously learning a set of common cervical
cancer staging patterns (the tumor size, how far the tumor went
into invading surrounding tissues in and out of the cervix, and
its propagation to distant organs) in addition to identifying
distinct grade-specific features to determine the cervical cancer
stage.

2. CVSS- LRSDL introduces a unidirectional patch-wise
SS from a source towards a target view, which allows captur-
ing shared and complementary information between different
views. The intuition behind selecting a unidirectional SS lies
in the assumption that the target view holds more relevant
information for the target classification task compared with
the source view because for a single source patch many
neighboring self-similar patches are extracted from the target
view. Prior to detailing our framework, we give an overview
of landmark dictionary learning approaches for multi-label
classification.
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Fig. 1: Pipeline of proposed CVSS-LRSDL using both axial (source) and sagittal (target) views for cervical cancer staging.
A- CVSS- LRSDL presents a unidirectional patch-wise SS from a source (axial-T2w) towards a target view (sagittal-T2w),
allowing to better capture shared and complementary information between both views. Specifically, we extract the source
view and the target view sagittal patches. Then, for each input patch in the source view (axial T2w-MRI), we produce its SS
patches within a fixed neighboring patches in the target view (sagittal T2w-MRI) using a weighted exponential decay of the
Minkowski distance. B- We use the LRSDL approach on our training samples and their corresponding grades. Next, we test
it on a new patient to predict the cancer grade. Specifically, the LRSDL approach considers a shared dictionary across grades
and grade-specific dictionaries enabling to explicitly and concurrently learn features of common cervical cancer staging as well
as knowing different grade-specific patterns to predict the target cervical cancer grade.

II. DICTIONARY LEARNING

A. Sparse dictionary learning

SDL has gained popularity in learning parsimonious rep-
resentations of data. It is an essential problem in signal
processing and machine learning. The key idea of sparse
representation methods is to exhibit a test pattern as a linear
combination of samples from the training set. Specifically,
sparsity is revealed as most of non-zeros answer to bases,
whose memberships are identical to the test sample. Conse-
quently, in the ideal case, each target is anticipated to belong
in its proper class subspace, and all class sub-spaces are
nonoverlapping. Given a G cancer grade and a dictionary
learning D = [D1, · · · ,DG] with Dg comprising training
samples from cancer grade g, g = 1, · · · , G, a sample Y from
cancer grade g can be represented as Y ≈ DgX

g . Therefore,
Y ≈ DX = D1 X1 + · · ·+Dg Xg + · · ·+DGXG, then most
of active coefficients of X should be placed in Xg and the
element vector X is expected to be sparse. In a matrix form,

Y = [Y1, · · · ,Yg, · · · ,YG] is the set of samples where Yg

includes those in cancer grade g, and the element matrix X is
sparse. In the ideal case, X is a block diagonal structure.

In addition, D0 is a shared dictionary and D̄= [D D0]
is a total dictionary, X̄ = [XT, (X

0
)T ]T and X̄g =

[(Xg)
T , (X0

g)
T ]T . m,m0,mc are the mean vectors of

X,X0,Xg , respectively. M,M0,Mc are the mean matrices
of X,X0,Xg , respectively.

B. Fisher discrimination dictionary learning
FDDL [34], [23] has been widely used as a method for

learning both dictionary structure and discriminative coeffi-
cients. Especially, the discriminative Dictionary D and the
sparse coefficient matrix X are trained based on minimizing
the subsequent cost function as follows (1).

J(D,X) =
1

2

G∑
g=1

r(Yg,D,Xg) + λ1‖X‖1 +
λ2

2
f(X), (1)



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2902654, IEEE Access

IEEE ACCESS 2019 4

where r(Yg,D,Xg) = ‖Yg−DXg‖2F +‖Yg−DgX
g
g‖2F +∑

i6=g
‖DiX

i
g‖2F ,

G∑
g=1

r(Yg,D,Xg) is the discriminative fidelity term,

f(X) =
G∑
g=1

(‖Xg−Mg‖2F −‖Mg−M‖2F ) + ‖X‖2F is the

Fisher-based discriminative coefficient, (λ1, λ2) are positive
regularization parameters and the l1-norm promises the spar-
sity. The minimization of Equation (1) is achieved otherwise
by optimizing each variable Xg or Dg . This technique has a
heavy convergence process, which might not be feasible for
solving multi-class big-size problems.

C. Separating particularity and commonality dictionary
learning

Even with different classes detaining separate class-specific
features, classes usually share common patterns. This aspect
was clearly overlooked by previous SDL and FDDL methods.
To address this limitation, [30] proposed a dictionary learning
framework by separating the particularity and the commonality
(COPAR). This algorithm can be favorable for optimizing both
sub-problems of updating the common dictionary as well as
the class-specific dictionaries. COPAR is an extended variant
of SDL technique, which considers the shared dictionary
without using the low-rank constraint with the following cost
function defined in Equation (2).

1

2
f1(Y, D̄, X̄) + λ||X̄||1 + η

G∑
g=0

G∑
i6=g
i=0

‖DT
i Dg‖2F , (2)

with f1(Y, D̄, X̄) =
G∑
g=1

r1(Y, D̄, X̄g), r1(Y, D̄, X̄g) =

‖Yg −DXg‖2F + ‖Yg −D0X
0
g −DgX

G
g ‖2F ) +

G∑
j 6=g
j=1

‖Xj
g‖2F

and λ1 is a positive regularization parameter.

D. Low-rank shared dictionary learning

Learning step. LRSDL [32], [33] is basically a generalized
FDDL method with the additional capacity to capture the
shared features across classes. It learns both shared and class
specific dictionaries. Particularly, a low-rank constraint is
imposed that the coefficients of the shared dictionary should
be similar and its sub-space should take low dimension. It is
anticipated that Yg , with the presence of the shared dictio-
nary, can be greatly explained by the collaboration between
the particular dictionary Dg and the shared dictionary D0.
Specifically, the discriminative fidelity r(Yg , D, Xg) in (1)
can be extended to r̄(Yg , D̄, X̄g) defined in Equation (3).

||Yc− D̄X̄g||2F + ||Yg−DgX
g
g−D0X

0
g||2F +

∑
i6=g
i=1

||DiX
i
g||2F .

(3)

The Fisher-based discriminative term f(X) is extended to
f̄(X̄) outlined as follows (4).

f̄(X̄) = f(X) + ‖X0 −M0‖2F , (4)

where ‖X0 − M0‖2F constrains the coefficients of the
training samples represented by the shared dictionary to be
equal. For the shared dictionary, rank (D0) is constrained to
be small by using the low-rank constraint using the nuclear
norm ‖D0‖∗. Ultimately, the cost function J̄(D̄, X̄) of the
LRSDL is as in Equation (5).

1

2

G∑
g=1

r̄(yg, D̄, X̄g) + λ1‖X̄‖1 +
λ2

2
f̄(X̄) + η‖D0‖∗, (5)

where (λ1, λ2, η) are positive regularization parameters. By
minimizing this unbiased function, the appropriate dictionaries
can be found. Particularly, if k0 = 0, then D̄, X̄ becomes
D,X, and respectively J̄(D̄, X̄) becomes J(D,X) and the
LRSDL becomes FDDL.

Classification step. As a result of the learning process, we
estimate D̄,mg,m

0. For a new test sample y, we first locate
its coefficient vector x̄ and constrain x0 to be close to m0 as
in Equation (6).

x̄ = argmin
x̄

1

2
‖y − D̄x̄‖22 +

λ2

2
‖x0 −m0‖22 + λ1‖x̄‖1. (6)

Then, we extract the shared dictionary to obtain
ȳ = y −D0x

0. y is estimated by solving Equation (7).

argmin
1≤g≤G

(w‖ȳ −Dgx
g‖22 + (1− w)‖x−mg‖22), (7)

where w ∈ [0, 1] is a preset weight for balancing the contri-
bution of the two terms.

III. PROPOSED CROSS-VIEW SELF-SIMILARITY BASED
DICTIONARY LEARNING FOR TUMOR STAGING

In this section, we detail the steps of our novel CVSS-
LRSDL-based framework. Fig. 1 illustrates the different steps
of the proposed classification framework. First, we extract the
source view (axial T2w-MRI) and the target one (sagittal T2w-
MRI) patches of cervical MR images. Second, for an input
patch in the source view, we generate its SS patches within a
fixed neighborhood in the target view using a weighted expo-
nential decay of the Minkowski distance. Finally, we train our
CVSS-LRSDL on training samples and their corresponding
grades, then test it on a new patient to predict the cancer
grade. We detail in the following the various steps of the
proposed CVSS-LRSDL multi-label classification framework.
Specifically, we use two MRI views including the source view
(axial-T2w) and the target view (sagittal-T2w). Next, we look
for spatial neighbors not in the current view but in the target
view, building a unidirectional cross-view information transfer.
Particularly, for each location x in the source view, we extract
a patch ps(x) of size n×n. Each patch ps(x) centered at x.
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Next, we extract k neighboring patches pt(xi) (i = 1, 2 · · · k)
around location x in the target view.

Then we compute at each location x the similarity patch
between ps(x) in the source view and its k nearest neighbor-
ing intensity patches pt(xi) (i = 1, 2 · · · k) in the target view
using the Minkowski distance M(ps(x),pt(xi)), respectively.
We define the patch-based Minkowski distance as the sum of
the p-order pairwise differences between patches ps(x) and
pt(xi) exponentiated to the power of 1

p as in Equation (8).

M(ps(x),pt(xi)) = (
n∑
j=1

|ps(x)(j)− pt(xi)(j)|p)
1
p . (8)

Finally, at each location x, we propose a weighted SS
using weighted correlation coefficient between each similarity
patch M(ps(x),pt(xi)) and a pixel-wise weight vector wx

of size n × 1 [41]. Specifically, the predefined similarity
patch is calculated using the element-wise weighted distance
between the source patch located at x and its k corresponding
neighboring patches. Exponential decay is used to yield more
reliable and robust dynamic measures to reduce the autocorre-
lation of dynamic correlations while keeping significance and
robustness of the measure [41]. This is the type of weighting
we use in this work, however other kinds can be considered
as well. Weights are therefore defined as follows (9).

wx(j) = w0e
α(j−n),∀j ∈ {1, 2, ..., n} (9)

where α ∈ R, α ≥ 0 denotes is the exponential decay factor
with Equation (10):

α = 2/n, (10)

The weighted correlation coefficients satisfy the following
criteria (11).

wx(j) ≥ 0,

n∑
j=1

wx(j) = 1 (11)

The given w0 in Equation (9) can be set by observing that
w is subject to the constraint outlined in Equation (11).

n∑
t=1

w0e
α(j−n) = 1.

By solving w0, w0(α) = 1
n∑
j=1

eα(j−n)

as
n∑
j=1

eα(j−n) = eα

eα−1 (1− e−αn)

In fact:
n∑
j=1

eα(j−n) = e−αn
n∑
j=1

(eα)j = e−αn( 1−(eα)n+1

1−(eα) − 1)

= e−αn

1−eα (eα − eαn+α

) = eα

eα−1 (1− e−αn).
Subsequently, w0(α) = 1−e−α

1−e−αn . When α is 0 as in Equation
(12), the weights are uniform. When α is large as in Equation
(13), spatially distant pixels become increasingly irrelevant and
neighboring ones become ever more important.

lim
α→0+

w0(α) =
1

n
(12)

lim
α→+∞

w0(α) = 1 (13)

After obtaining the weighted coefficients wx, we compute at
each location x the self-similarity patch Swx(ps(x),pt(xi))
between ps(x) in the source view and its k nearest neighbor-
ing intensity patches pt(xi) (i = 1, 2 · · · k) in the target view
using Pearson weighted correlation [41] as in the following
Equation:

Swx (ps(x),pt(xi)) =
σuv
wx

(ps(x),pt(xi))

σu
wx

(ps(x),pt(xi))σv
wx

(ps(x),pt(xi))
(14)

It is calculated using weighted means, weighted variances and
weighted covariances:

m̄u
wx

(ps(x),pt(xi)) =
n∑
j=1

wx(j)mu(ps(x),pt(xi)), where the

distance mu(ps(x),pt(xi)) represents the uth column vector
of matrix M(ps(x),pt(xi)) and u ∈ {1, . . . n}.

σ
u
wx

(ps(x),pt(xi)) =√√√√√ n∑
j=1

wx(j)[mu(ps(x),pt(xi))− m̄u
wx

(ps(x),pt(xi))]2

σ
uv
wx

(ps(x),pt(xi)) =
n∑
j=1

wx(j)([m
u

(ps(x),pt(xi))

− m̄
u
wx

(ps(x),pt(xi))][m
v

(ps(x),pt(xi))− m̄
v
wx

(ps(x),pt(xi)]).

where σuv
wx

(ps(x),pt(xi)) is the covariance of the two vari-
ables mu(ps(x),pt(xi)) and mv(ps(x),pt(xi)).

Finally, we vectorize all cross-view self-similarity patches
from all training subjects and combine them in column vec-
tors into a similarity matrix to train the dictionary learning
and obtain the final classification result. In practice, given
G cancer grade classes, g = {1, · · · , G} and dictionary
D = [D1, · · · ,DG], each subject is located in its own
subspace, and all class sub-spaces, in the perfect case, are
non-overlapping. Our proposed CVSS-LRSDL classification
framework integrates a unidirectional similarity from a source
to a target view to enhance cervical cancer detection and fur-
ther reduce the tumor grading errors. Specifically, our CVSS-
LRSDL has been trained using all CVSS training samples
and their corresponding stages. In the testing stage, each
CVSS testing sample extracted from the patches (source view)
and their corresponding neighboring patches (target view)
passes through our trained LRSDL to predict the cancer grade
(Fig. 1).

IV. RESULTS & DISCUSSION

A. Evaluation Data and Comparison Methods

Dataset. We evaluated the proposed classification frame-
work using 15 clinical pelvic T2-w MR database with different
stages (3 case stage IB, 5 case stage IIB, 4 case stage IIIB
and 3 case stage IVA) (Fig. 2), acquired between January
2016 and December 2017 diagnosed with cervical cancer.
All 15 patients underwent a regular examination with a 1.5-
T MRI system. Axial and sagittal T2w 2D turbo spin-echo
sequences with voxel size of 0.5×0.5×3 mm were used. All
data sets were analyzed and staged by an expert radiologist.
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Fig. 2: Axial and sagittal T2w views in 15 pelvic MR images with different cancer grades.

We used affine registration to align all training MR images to
a common space. Each testing subject is then affinely aligned
to the training samples. To speed up DL training, we extracted
intensity patches within a bounding box of size 120×120
automatically drawn around the cervix and its neighboring
regions on axial and sagittal views.

Comparison methods. To demonstrate the effectiveness of
integrating CVSS into a single framework, we benchmarked
our method against approaches without CVSS and when only
using SS. Specifically, for evaluation, four types of features
were used to train three dictionary learning strategies using:
(1) the proposed cross-view self-similarity (CVSS), (2) the
weighted SS within the sagittal view (i.e., without cross-view
similarity), (3) SS without weighting and computed within the
sagittal view, and (4) raw intensity patches in the sagittal view.

B. Experiment setup

We used leave-one-out cross-validation to evaluate our
proposed method and its comparison methods. Specifically,
for each training subject, we extracted 2D intensity patches
of size of 21×21 and 23×23 from each axial and sagittal
view for each training subject. For patches of size 21 × 21
centered at location x, we computed a cross-view SS matrix of
size 441 × 81. Particularly, we extracted k = 81 neighboring
patches for each patch center and 441 = 21 × 21 features
for each patch. For patches of size 23×23, we extracted a
learned similarity matrix of size 529 × 100. The classification
accuracy was evaluated using average accuracy (%) computed
as follows (15):

ACC =
TP + TN

TP + FN + TN + FP
(15)

Where TP , TN , FP and FN denotes the number of true
positives, true negatives, false positives and false negatives, re-
spectively. The performance of classification results generated
by different dictionary learning methods was assessed using
the ground truth stage label value (1, 2, 3, 4), (i.e., stage IB,
stage IIB, stage IIIB, stage IVA). The classification stability
was evaluated by reporting the average accuracy of 50 runs of
our algorithm.

C. Performance of proposed method

Fig. 3 displays our learned shared D0 and class-specific
dictionaries D. Samples of different grade of cervical can-
cer are shown in Fig. 3. This figure shows sample learned
bases using LRSDL where the shared bases are extracted
and collected in the shared dictionary. Class-specific elements
and shared elements are nicely decomposed into appropriate
sub-dictionaries due to the low-rank constraint X0 on the
shared dictionary of LRSDL imposing thereafter, the block-
diagonal constraints on X. The classification results are listed
in Table I. We observe that the performance of only using
intensity patches in almost all methods is boosted when
integrating the Minkowski patch difference. We also note that
the weight improves classification results, while the use of
CVSS boosts the performance going up to 7%. This demon-
strates the effectiveness of the proposed weighted CVSS-DL in
improving the performance of baseline DL approaches. Fig. 4
and Fig. 5 show the overall classification results of different
DL methods evaluated on the cervical cancer dataset in terms
of the classification accuracy for patch size equals to 21×21
and 23×23 , respectively. Three dictionary learning methods
with shared features are used. Table I, Fig. 4 and Fig. 5
compare our proposed CVSS with several state-of-the-art dic-
tionary learning algorithms including: CVSS-FDDL, CVSS-
COPAR and CVSS-LRSDL. Overall, all results derived from
comparison methods perform reasonably well on predicting
the stage of the cervical cancer. Our proposed CVSS-LRSDL
framework significantly outperformed all comparison methods
(p<0.05 using paired two tailed t-test) and generated the best
classification accuracy. We note a significant increase in the
classification accuracy from 47.33% using the intensity patch
up to 81.73 % when using the SS using weighted correlation
distance.

D. Sensitivity of parameters

Fig. 6 displays the classification accuracy of three dictionary
learning classification methods (FDDL, COPAR and LRSDL)
using pixel intensity while varying the size of the patch. Fig. 6
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Fig. 3: Visualization of learned shared and grade-specific dictionaries.

TABLE I: Overall accuracy with patch size of 21×21 and 23×23, respectively. Accuracy of different dictionary learning
methods for cervical cancer grading.

Patch size Method Intensity patch (sagittal view)(%) SS (sagittal view)(%) Weighted SS (sagittal view)(%) CVSS (axial + sagittal) views (%)
21*21 FDDL 30.4 58.93 61.33 68.13
21*21 COPAR 41.6 49.6 60.53 60.67
21*21 LRSDL 50.8 53.2 65.07 69.47
23*23 FDDL 29.47 77.47 77.6 77.6
23*23 COPAR 64.93 62.27 67.33 68
23*23 LRSDL 47.33 70.93 81.60 81.73

Fig. 4: Classification accuracy using 21×21 patch size.
FDDL, COPAR and LRSDL are trained using different mea-
sures including (i) raw intensity patches in the sagittal view,
(ii) SS without weighting and computed within the sagittal
view, (iii) the weighted SS within the sagittal view, and (iv)
the proposed cross-view self-similarity (CVSS).

Fig. 5: Classification accuracy using 23×23 patch size.
FDDL, COPAR and LRSDL are trained using different mea-
sures including (i) raw intensity patches in the sagittal view,
(ii) SS without weighting and computed within the sagittal
view, (iii) the weighted SS within the sagittal view, and (iv)
the proposed cross-view self-similarity (CVSS)
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Fig. 6: Classification results with different size of intensity
patch. This graph displays the classification results by three
dictionary learning approaches using five different patch sizes
ranging between 15×15 and 23×23 in the sagittal view.

shows that larger patches produce better results. Thus, we set
the patch size to 21×21 and 23×23.

E. Limitations & future work

Our proposed CVSS- LRSDL framework for cervical cancer
grading has essentially two strengths: (1) a set of common
cervical cancer staging patterns was learned and distinct grade-
specific features due to a shared dictionary across grades as
well as grade-specific dictionaries to decide cervical cancer
stage, and (2) a unidirectional patch-wise SS from a source
towards a target view permits to catch joint and additional
information among different views. However, our method has
a few limitations. First, the multi-scale aspect of the tumor
lesions is overlooked in our framework since the patch size is
fixed. To address this limitation, we will further extend CVSS-
LRSDL by learning scale-specific dictionaries that capture
tumor details at different scales for improving the classifi-
cation accuracy. Second, so far, we have only considered a
unidirectional interaction from a source view to a target view
given that the target view holds more relevant information for
the classification in hand. To generalize our framework in the
case where the views hold equally relevant information that
is complementary, we can define a bidirectional flow across
views in the spirit of [42], [6] where different classifiers are
trained to exchange bidirectional information at multiple scales
to improve learning. Third, up to this point, our framework
can only handle two views. To extend it to multiple views, we
intend to design a cross-multi-view LRSDL framework lever-
aging at the same time the richness and complementary of mul-
tiple MRI views. Specifically, we intend to combine different
similarity patches obtained from different target views. Each
view can also represent an MRI modality such as diffusion
MRI (dMRI) or functional MRI (fMRI). Specifically, dMRI
[43] modality has proved its effectiveness for the classification
of cervical cancer, which could also have a significant impact
on improving the tumor grade identification accuracy.

V. CONCLUSION

Cervical cancer is a recurrent gynecological malignancy and
a communal cause of death. Cervical cancer staging is an
invaluable tool in assessing the spread of the tumor to local and
distant organs from the axial and sagittal views. In this paper,
we proposed the first automated classification framework for
cervical cancer grading. Specifically, we designed a CVSS
dictionary learning framework (CVSS-LRSDL) using multi-
view MR images to benefit from the unidirectional interaction
from a source view to a target one for staging the disease.
The focus of our paper is on the use of the SS patches for DL
training. Our method achieved a significant increase in cancer
grade classification accuracy when using both the advantages
of the shared dictionary and the particular dictionary of the
LRSDL approach. The experimental results, based on our
MRI pelvic dataset, demonstrated the superior classification
performance of our method, especially in determining the
accurate stage. In our future work, we will first generalize
our framework across multiple target MRI views or modalities
such as dMRI or fMRI. Second, to improve learning, we will
specify a bidirectional flow across views trading bidirectional
information at multiple scales.
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