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Abstract—Focused ultrasound (US) is a novel means to 

increase the passage of medication through the wall of the small 

intestine. The purpose of this study was to determine whether US 

and microbubbles (MBs) can facilitate delivery of 

macromolecular therapeutic agents across the intestinal 

epithelium in vitro and in vivo. In vitro experiments involved 

delivery of compounds across a cell monolayer, namely Caco-2 

cells cultured on ThinCert filters. The cells were cultured for a 

minimum of 3 weeks to mimic the polarised intestinal epithelium. 

A suspension of dextran with or without MBs, prepared in 

growth medium, was introduced into the apical chamber of the 

ThinCert with a syringe pump through a channel in the centre of 

a miniature focused US transducer (4 MHz, 1 MPa PNP). Each 

in vivo experiment involved a tethered endoscopic capsule with 

an US transducer and a delivery channel inserted into the small 

intestine of a terminally anaesthetised pig via a surgical stoma. 

The amount of fluorescent dextran delivered across the Caco-2 

monolayer when employing US, MBs and dextran was higher 

than the amount delivered with dextran alone. With this 

approach, fluorescent marking of the wall of the small intestine 

was achieved in vivo by applying US and MBs. Our work 

indicates that US has potential for application in targeted 

treatment of gastrointestinal disease and oral drug delivery.  

Keywords—therapeutic ultrasound; targeted drug delivery; 

microbubbles; capsules; pre-clinical; porcine; animal models;  

I. INTRODUCTION 

 The intestinal mucosa acts as a selective barrier to 
permeation of material. Molecules < 500 Da can usually pass 
the barrier provided they fulfil other physicochemical 
requirements, but macromolecular biotherapeutics cannot cross 
it. This limits the delivery of biologics to injections, which can 
be associated with administration-related injuries and often 
require administration by a healthcare professional. However, 
the oral route is the drug administration route best accepted by 
the patient. Focused ultrasound (US) is under active research as 
a means for enhancing tissue permeability and intestinal 
absorption of macromolecules [1]. An ingestible capsule, 
termed a smart capsule, incorporating an US transducer has the 
potential to offer a method for oral delivery of drugs to the 
small intestine. An US capsule could both protect the drug 
payload against the destructive action of low stomach pH and 
facilitate delivery of a drug once it reaches the intestine.  
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Preliminary data has previously suggested that 
microbubbles (MBs) and US can facilitate the passage of large 
molecules [2]. There are three main mechanisms by which this 
may be possible: transcellularly i.e. through cells; 
paracellularly i.e. through intercellular spaces; and/or by  
sonoporation i.e. through formation of pores in cell membranes 
[3] as illustrated in Fig. 1. Sonoporation can induce bioeffects, 
such as spatiotemporal changes of intracellular calcium 
concentration ([Ca2+]), which can affect endothelial cell tight 
junctions and disrupt cell barrier permeability [4,5].  

The overall aim of the experiments reported here was to 
determine the potential of US and MBs used together as a tool 
for minimally-invasive delivery of macromolecular therapeutic 
agents across an epithelial layer and into the wall of the small 
intestine. The objectives were to determine (1) if delivery of 
model drugs through a cell monolayer in vitro is promoted by 
US and MBs; and (2) whether US and MBs facilitate delivery 
of fluorescent compounds to the porcine small intestine in vivo. 

II. METHODS 

A. In vitro experiments  

To investigate delivery across cell monolayers, FDA 
approved human epithelial colorectal adenocarcinoma cells 
(Caco-2 cells, ATCC, Rockville, USA) seeded on ThinCert 
filters (Greiner Bio-One, Kremunster, Austria) were allowed to 
fully differentiate and polarise for a minimum of 3 weeks; this 
enabled the formation of a monolayer with cellular junctions 
and microvilli similar to small intestine enterocytes [6]. The 
passage number of cells was in the range 50 – 60. All 
monolayers reached a transepithelial electrical resistance 
(TEER) of 800 – 1700 Ω following differentiation. 

On the day of the experiment, cell medium was exchanged 
for Hank’s Balanced Salt Solution (HBSS, Sigma-Aldrich 
Corporation, MO, USA) and the cells were placed in an 
incubator at 38°C for 30 min. They were then incubated at 
room temperature for 1 hour prior to starting the experiments.  

 

 

A suspension of 0.2 mg/ml of 4 kDa dextran fluorescently-
labelled with fluorescein isothiocyanate (FITC, Sigma-Aldrich 
Corporation, MO, USA) +/- 50% MBs (2 – 5 x 108 MBs/ml, 2 
– 8 μm average diameter, SonoVue, Bracco, UK) prepared in 
HBSS was introduced into a multiwell plate divided by the 
ThinCerts carrying cells into apical and basal chambers (Fig. 
2). Dextran and MBs were delivered with a syringe pump (NE-
1000, New Era Pump Systems Inc., USA) through a channel in 
the centre of a miniature focused US transducer (4 MHz, 1 
MPa PNP, 13 mm focal length, 1.79 mm2 cross-sectional focal 
area). US was delivered for 6 min, with the MB suspension 
delivered throughout the middle 2 min (minutes 3 and 4) at 0.1 
ml/min. Fluid in both the apical and baso-lateral chamber was 
sampled and the amount of fluorescent dextran was measured 
with a plate reader. 

Statistical analysis was performed using a paired parametric 
t-test. Statistical significance was defined as P<0.05. 
Calculations were performed in GraphPad Prism 7. The 
number of replicates (n) is provided in the relevant figure 
legend. 

B. In vivo experiments 

To study delivery in vivo, a tethered endoscopic capsule 
with an US transducer and a delivery channel (Fig. 3), as 

 
 

Fig. 1 Enterocytes lining the lumen of the small intestine. Drug molecules 
are considered to cross this layer by means of one or a combination of the 
following routes: transcellular, paracellular or through sonoporation.  

 

 

 
 
 

Fig.2. Focused US was applied to a cell monolayer using a bespoke 
ultrasonic transducer with a central delivery channel. The apical 
chamber’s initial volume was 1.2 ml, whereas the baso-lateral chamber’s 
initial volume was 1.5 ml 

 
 

Fig.3. Diagrammatic cross-section of the tethered capsule. The focal 

point of the transducer was 1 cm away from the wall of the capsule. 

 



previously reported [7], was inserted through a surgical stoma 
into the small intestines of four terminally anaesthetised 
Landrace X female pigs. The pigs were 3 - 6 months old and 
their weights were in the range 40 – 50 kg. Each pig was fasted 
for 12 hours prior to stoma creation and its small intestine was 
cleaned by flushing saline through the stoma. Pig models were 
used because of the similarity of their GI tract to the human GI 
tract in terms of physiology and histological structure [8]. This 
study was conducted under the Home Office (UK) Procedure 
Project Licence PF5151DAF in accordance with the Animal 
(Scientific Procedures) Act 1986.   

5% CdSeS/ZnS quantum dots (QDs, 6 nm average 
diameter,  Sigma, UK) were delivered under the protocol 
described above. QD retention in excised tissue was verified 
with UV imaging at 365 nm.  

III. RESULTS 

A. Effect of insonation on dextran permeability in vitro 

Although the fluorescence intensity values were low, 
insonation and MBs promoted delivery of fluorescent dextran 
across a Caco-2 monolayer in 5 out of 6 cases and did so more 
significantly than when dextran alone was applied to the apical 
chamber (0.007 and 0.005 μg/ml respectively), Fig. 4). 
Although this trend is encouraging, the average difference 
between the two situations was small and not significant 
(paired parametric t-test comparing the effect of application of 
dextran alone to dextran with US and MBs (t=2.2, df=10, 
P=0.067), Fig. 4 (a)) and more experiments are required to 
validate this finding.  In addition, initial dextran concentration 
values were lower in samples containing dextran alone (Fig. 4), 
than in those receiving dextran, US and MBs. This variation 
further illustrates the need for additional experiments. 

B. Effect of insonation on QDs permeability in vivo 

Seven separate sample were obtained from four different 
pigs. Two of these samples were obtained from a pig where, 
upon removal of the capsule, debris was found lodged in the 
delivery channel of the transducer. This created a physical 
blockage, blocking any transport from the capsule. Hence, the 
corresponding two sample were excluded from the analysis. 
Results showed that US alone and QDs alone did not mark the 
lumen of the small intestine with fluorescence. However, a 
combination of US, MBs and QDs facilitated visible retention 
of QDs in the intestinal wall, Fig. 5. US with MBs marked the 
small intestine in 4 out of 5 samples, corresponding to 80% of 
cases. In the unsuccessful sample no QD marking was 
observed. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper reports preliminary results for use of US as a 
method for targeted drug delivery in the small intestine. We 
found that US successfully enhanced the delivery of 
fluorescent model drugs with different molecular weights in 
vitro and in vivo. The results suggest that focused US and MBs 
could enhance epithelial translocation of macromolecules. We 
also showed that a capsule, of a size that allows ingestion, with 
a focused US transducer can mark tissue fluorescently in vivo. 
[9] used a similar setup and reported US and MBs enhance 
QDs marking of the intestinal wall ex vivo. Our work indicates 
potential applications in targeted treatment of gastrointestinal 
disease and oral drug delivery.  

Future work will examine the range of molecular weights 
and quantity of fluorescent agents that US can successfully 
facilitate to cross the intestinal epithelium and where the agents 
reside. Furthermore, improvements in US transducer 
miniaturisation will allow the encapsulation of plane 
transducers with larger active areas, thus exposing a larger part 
of the lumen to US, with the potential to enhance drug 
delivery. 

 

 

 
 

Fig.4. (a) US + MBs facilitates delivery of dextran through a Caco-2 
monolayer (P=0.067; two-tailed paired parametric t-test). Box-and-

whisker plots show the median values (center line), the 25-75th 
percentiles (box) and the minimum and maximum values (whiskers), for 

all data points; n = 6.  (b,c) Interleaved bars show the increase in dextran 

concentration in each sample, suggesting an increase in all but one 

cases. Dext = Dextran. 

 
 

Fig.5. (a) Fluorescent QDs did not lodge into tissue (a) when they were 

released in the absence or (b) presence of US alone, but (c) they were 
retained when delivered combined with insonation and MBs. 
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