

University of Dundee

Two-phase incremental kernel PCA for learning massive or online datasets

Zhao, Feng ; Rekik, Islem; Lee, Seong-Whan; Liu, Jing ; Zhang, Junying ; Shen, Dinggang

DOI:
10.1155/2019/5937274

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Zhao, F., Rekik, I., Lee, S-W., Liu, J., Zhang, J., & Shen, D. (2019). Two-phase incremental kernel PCA for
learning massive or online datasets. 2019, [5937274]. https://doi.org/10.1155/2019/5937274

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1155/2019/5937274
https://discovery.dundee.ac.uk/en/publications/b3060198-c86a-4efe-851c-9b57605038ef

Research Article
Two-Phase Incremental Kernel PCA for Learning
Massive or Online Datasets

Feng Zhao ,1,2 Islem Rekik ,3,4 Seong-Whan Lee ,5 Jing Liu ,6

Junying Zhang ,7 and Dinggang Shen 5,8

1School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
2Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
3BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey
4School of Science and Engineering, Computing, University of Dundee, UK
5Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
6School of Electronic Engineering, Xian University of Posts and Telecommunications, Xi’an, China
7School of Computer Science and Engineering, Xidian University, Xi’an, China
8Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Correspondence should be addressed to Dinggang Shen; dgshen@med.unc.edu

Received 2 October 2018; Revised 17 December 2018; Accepted 8 January 2019; Published 11 February 2019

Guest Editor: Jose Garcia-Rodriguez

Copyright © 2019 Feng Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a powerful nonlinear feature extractor, kernel principal component analysis (KPCA) has been widely adopted in many machine
learning applications. However, KPCA is usually performed in a batch mode, leading to some potential problems when handling
massive or online datasets. To overcome this drawback of KPCA, in this paper, we propose a two-phase incremental KPCA
(TP-IKPCA) algorithm which can incorporate data into KPCA in an incremental fashion. In the first phase, an incremental
algorithm is developed to explicitly express the data in the kernel space. In the second phase, we extend an incremental principal
component analysis (IPCA) to estimate the kernel principal components. Extensive experimental results on both synthesized and
real datasets showed that the proposed TP-IKPCA produces similar principal components as conventional batch-based KPCA but
is computationally faster than KPCA and its several incremental variants. Therefore, our algorithm can be applied to massive or
online datasets where the batch method is not available.

1. Introduction

As a conventional linear subspace analysis method, principal
component analysis (PCA) can only produce linear subspace
feature extractors [1], which are unsuitable for highly complex
and nonlinear data distributions. In contrast, as a nonlin-
ear extension of PCA, kernel principal component analysis
(KPCA) [2] can capture the higher-order statistical informa-
tion contained in data, thus producing nonlinear subspaces
for better feature extraction performance. This has propelled
the use of KPCA in a wide range of applications such as
pattern recognition, statistical analysis, image processing,
and so on [3–8]. Basically, KPCA firstly projects all samples
from the input space into a kernel space using nonlinear
mapping and then extracts the principal components (PCs)

in the kernel space. In practice, such nonlinear mapping
is performed implicitly via the “kernel trick”, where an
appropriately chosen kernel function is used to evaluate the
dot products of mapped samples without having to explicitly
carry out the mapping. As a result, the extracted kernel
principal component (KPC) of the mapped data is nonlinear
with respect to the original input space.

Standard KPCA has some drawbacks which limit its
practical applications when handling big or online datasets.
Firstly, in the training stage, KPCA needs to store and
compute the eigenvectors of a 𝑁 × 𝑁 kernel matrix, where𝑁 is the total number of samples. This computation results
in a space complexity of 𝑂(𝑁2) and a time complexity of𝑂(𝑁3), thus rendering the evaluation of KPCA on large-
scale datasets very time-consuming. Secondly, in the testing

Hindawi
Complexity
Volume 2019, Article ID 5937274, 17 pages
https://doi.org/10.1155/2019/5937274

http://orcid.org/0000-0003-2410-435X
http://orcid.org/0000-0001-5595-6673
http://orcid.org/0000-0002-6249-4996
http://orcid.org/0000-0002-3960-6902
http://orcid.org/0000-0002-0147-7578
http://orcid.org/0000-0002-7934-5698
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5937274

2 Complexity

stage, the resulting kernel principal components have to be
defined implicitly by the linear expression of the training
data, and thus all the training data must be saved after
training. For a massive dataset, this translates into high
costs for storage resources and increases the computational
burden during the utilization of kernel principal components
(KPCs). Furthermore, KPCA is impractical for many real-
world applications where online samples are progressively
collected since it is used in a batch manner. This implies that
each time new data arrive, KPCA has to be conducted from
scratch.

To overcome these limitations, many promising methods
have been proposed in the past few years. These methods
can be grouped into two classes. The first class is the batch-
based modeling method, which requires that all training
data is available for estimating KPCs. Rosipal and Girolami
proposed an EM algorithm for reducing the computational
cost of KPCA [9]. However, the convergence behavior of
the EM algorithm to KPCA cannot be guaranteed in theory.
In [6], the kernel Hebbian algorithm (KHA) was proposed
as an iterative variant of KPCA algorithm. By kernelizing
the generalized Hebbian algorithm (GHA), KHA computes
KPCA without storing the kernel matrix, such that large-
scale datasets with high dimensionality can be processed.
Nonetheless, KHA has a scalar gain parameter which is either
held constant or decreased according to a predetermined
annealing schedule, leading to slow convergence during
the training stage. To improve the convergence of KHA,
gain adaptation methods were developed by providing a
separate gain for each eigenvector estimate [10]. An improved
version of KPCA was proposed based on the eigenvalue
decomposition of a symmetric matrix [11], where datasets
are divided into multiple subsets, each of which is processed
separately. One of the major drawbacks of this approach is
that it requires storing the kernel matrix, which means that
the space complexity could be extremely large for large-scale
dataset. Another variant of conventional KPCA is greedy
KPCA [12, 13], which was employed to approximate the
KPCs by a prior filtering of the training data. However,
prior filtering of the training data could be computationally
expensive. Overall, compared with standard KPCA, these
batch-based modeling methods can potentially reduce the
time or space complexity to some degree. Unfortunately, such
methods cannot handle online data.

The second class is incremental methods, which can
compute KPCs incrementally to handle online data process-
ing. Chin and Suter proposed an incremental version of
KPCA [14, 15], which is called IKPCA-RS for the notational
simplicity. In IKPCA-RS, singular value decomposition is
used to update an eigenfeature space incrementally for
incoming data. However, IKPCA-RS may lead to high time
complexity especially when dealing with high-dimensional
data. In [16, 17], an incremental KPCA was presented based
on the empirical kernel map. It is more efficient in memory
requirement than the standard KPCA. However, it is only
an approximate method and only suitable for polynomial
kernel function. Inspired by the incremental PCA algorithm
proposed by Hall et al. [18], Kimura et al. presented an
incremental KPCA algorithm [19] in which an incremental

updating algorithm for eigenaxes is derived based on a set
of linearly independent data. Subsequently, some modified
versions are proposed by Ozawa and Takeuchi et al. [20,
21]. Furthermore, in order to incrementally deal with data
streams which are given in a chunk of multiple samples at
one time, other extensions of KPCA were also successively
presented [22–24]. Hallgren and Northrop [25] proposed
an incremental KPCA (INKPCA) by applying rank one
updates to the eigendecomposition of kernel matrix. How-
ever, INKPCA needs to store the whole data when evaluated
on a new sample. Notably, incremental methods have the
capacity of integrating new data, initially unavailable, in some
way that maintains nonincreasing memory. However, to the
best of our knowledge, most of these methods operate in the
kernel space where all the samples are implicitly represented.
This has two key limitations. First, a number of incremental
methods may suffer from high computational cost. Second,
the others can only capture the approximate KPCs rather
than the accurate ones, which may affect the accuracy of its
subsequent process.

Before continuing, a note on mathematical notations
is given as follows. We use lower case and upper case
letters (e.g., 𝑖, 𝑗, 𝑙, 𝑁) to denote scalars, lower case letters
with the subscript (e.g., 𝑘𝑖𝑗, 𝛼𝑖) to denote an element from
a matrix or a vector, lower case bold letters (e.g., 𝑥,𝑦,𝛼,𝛽)
to denote vectors, and upper case bold letters (e.g., 𝐴,𝐶,𝑀)
to denote matrices. We use 𝑥𝑇 (𝐶T) to denote the transpose
of a vector (matrix) and ‖ ⋅ ‖ to denote the L2-norm of
a vector. Furthermore, we adopt {𝑥𝑖}Ni=1 to denote a set,[𝑥1,𝑥2, . . . ,𝑥𝑁] to denote a matrix with 𝑁 column vectors
and [𝑘𝑖𝑗]1≤𝑖≤𝑀,1≤𝑗≤𝑁 to denote a 𝑀 × 𝑁 matrix composed
of the corresponding element 𝑘𝑖𝑗. In this paper, 𝑥𝑖 always
denotes a column vector and the inner product between 𝑥𝑖
and 𝑥𝑗 is expressed as 𝑥𝑇𝑖 𝑥𝑗. The lower case bold letter 𝜑
denotes a nonlinear mapping. The mapped sample 𝜑(𝑥) of
the input sample 𝑥 is a column vector.

To address these limitations, we propose a two-phase
incremental KPCA (TP-IKPCA), where the mapped data is
represented in an explicit form and KPCs are updated in an
explicit space. The computational cost of the whole process
is very low and the accuracy of KPCs can be theoretically
guaranteed. An overview of TP-IKPCA is briefly illustrated
in Figure 1. In this figure, {𝑥𝑖}Ni=1 denotes the sample set in a
d-dimensional input space and𝑁 denotes the total number of
available samples. Let 𝜑 denote the nonlinear mapping which
maps the sample set {𝑥𝑖}𝑁𝑖=1 into an h-dimensional implicit
kernel space, resulting in the mapped sample set {𝜑(𝑥𝑖)}𝑁𝑖=1.
Here, h may be very large or even infinite, depending on the
specific mapping. The TP-IKPCA includes two phases. In the
first phase, we develop an incremental algorithm to capture
standard orthogonal basis {𝛽𝑗}𝑟𝑗=1 of the subspace spanned
by {𝜑(𝑥𝑖)}𝑁𝑖=1 and then explicitly obtain the projection vectors{𝑦𝑖}𝑁𝑖=1 of {𝜑(𝑥𝑖)}𝑁𝑖=1 by

𝑦𝑖 = [𝛽1,𝛽2, . . . ,𝛽𝑟]𝑇 𝜑 (𝑥𝑖) , (1)

where 𝑟 denotes the number of a standard orthogonal basis{𝛽𝑗}𝑟𝑗=1. In the second phase, the existing incremental method

Complexity 3

Input space
(Explicit form)

Kernel space
(Implicit form)

First phase

KPCs

Second phase

Projection space
(Explicit form)

IPCA{i}
N
i=1 ⊆ Rd { (i)}

N
i=1 ⊆ Rℎ

{j}
r

j=1

{i}
N
i=1 ⊆ Rr

Figure 1: Overview of TP-IKPCA.

of PCA is employed to capture KPCs based on the explicit
data {𝑦𝑖}𝑁𝑖=1 in the projection space. In the following sections,
we will detail how to incrementally express the implicit
mapped data {𝜑(𝑥𝑖)}𝑁𝑖=1 using an explicit form. We will
also theoretically verify that performing PCA based on the
implicitly mapped samples {𝜑(𝑥𝑖)}𝑁𝑖=1 is equivalent to that of
based on the explicit projection vectors {𝑦𝑖}𝑁𝑖=1.

Here, we should clarify the relationship among some
important quantities, including d, h, r (see Figure 1). In
the case of KPCA or TP-IKPCA, the sample set {𝑥𝑖}𝑁𝑖=1 in
a d-dimensional input space is firstly mapped into an h-
dimensional kernel space by a nonlinear mapping 𝜑 and
then a linear PCA is performed based on the mapped set{𝜑(𝑥𝑖)}𝑁𝑖=1. Usually, h may be very large or even infinite,
depending on the specific mapping 𝜑. So, we usually have𝑑 ≤ ℎ, which implies that the dimension of each mapped
sample 𝜑(𝑥𝑖) is larger than its original dimension 𝑑. In the
case of TP-IKPCA, {𝛽𝑗}𝑟𝑗=1 denote an orthonormal basis
of the subspace spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1, and {𝑦𝑖}𝑁𝑖=1 is the
corresponding projection vectors of themapped set {𝜑(𝑥𝑖)}𝑁𝑖=1
on the basis {𝛽𝑗}𝑟𝑗=1, which means that 𝑟 is the dimension of
the subspace spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1 and equals the dimension
of each projected vector 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑁). Generally, since
the mapped data {𝜑(𝑥𝑖)}𝑁𝑖=1 have strong linear correlation
in the h-dimensional kernel space, we have 𝑟 ≤ ℎ, which
means that a few components generally suffice to capture
the nonlinear distribution of the data. Furthermore, if the
dimension 𝑟 of the subspace spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1 is high,
r may be larger than the dimension 𝑑 of the input space.
However, if the mapped data {𝜑(𝑥𝑖)}𝑁𝑖=1 have strong linear
correlation, which means 𝑟 may be low and the dimension𝑑 of the input space is very high, we may get the contrast
conclusion.

The main contributions of our work are fourfold: (1)
Presenting an algorithm to express the mapped data in
an explicit form. This will help for better understanding
the distribution of the mapped data in the implicit kernel
space. (2) Endowing KPCA with the capacity of handling
dynamic dataset. (3) Compared to the standard KPCA, the
computational complexity of TP-IKPCA is reduced from𝑂(𝑁3) to 𝑂(𝑟3) and the storage complexity from 𝑂(𝑁2) to𝑂(𝑟2), where 𝑁 denotes the number of training samples
and 𝑟 is the number of bases of the subspace spanned by
nonlinear mapped samples. Usually the assumption that 𝑟 ≪𝑁 is valid, which makes TP-IKPCA very convenient for

processing large-scale datasets [26]. (4) In the testing stage,
the feature extraction from one sample is faster than that of
the batch KPCA, since TP-IKPCA only needs to calculate
the kernel functions between the new sample and 𝑟 selected
training samples which forms the orthonormal basis.

The rest of the paper is organized as follows. Section 2
briefly introduces KPCA. In Section 3, we provide a the-
oretical analysis of the proposed TP-IKPCA method and
elucidate the concrete steps for incrementally capturingKPCs
based on the projection vectors in an explicit space. The
effectiveness of TP-IKPCA is demonstrated in Section 4.
Finally, the conclusions of our study are given in Section 5.

2. Kernel Principal Component
Analysis (KPCA)

In this section, we briefly outline the standard procedure of
KPCA. As mentioned above, in KPCA, the input sample set{𝑥𝑖}𝑁𝑖=1 is mapped into a kernel space by a nonlinear mapping
𝜑 and then a linear PCA is performed based on {𝜑(𝑥𝑖)}𝑁𝑖=1 in
the kernel space.

To obtain the eigenvectors in the kernel space, the
covariance matrix is defined as

𝐶 = 1𝑁
𝑁∑
𝑖=1

(𝜑 (𝑥𝑖) − 𝑐)) (𝜑 (𝑥𝑖) − 𝑐))𝑇 , (2)

where 𝑐 = (1/𝑁)∑𝑁𝑖=1 𝜑(𝑥𝑖). However, the eigendecomposi-
tion of 𝐶 is hindered by the fact that the mapping function
𝜑 is implicit. To avoid the explicit calculation in the kernel
space, a𝑁×𝑁 kernel matrix𝐾 is defined, whose elements 𝑘𝑖𝑗
are determined by the virtue of the following kernel trick:

𝑘𝑖𝑗 = 𝜑 (𝑥𝑖)𝑇 𝜑 (𝑥𝑖) = 𝑘 (𝑥𝑖,𝑥𝑗) 𝑖, 𝑗 = 1, 2, . . . , 𝑁. (3)

where 𝑘(⋅, ⋅) is a kernel function that allows us to compute
inner products in the kernel space [2].

Combining (2) and (3), Schölkopf et al. [2] derived the
equivalent eigenvalue problem as follows:

𝐾𝛼 = 𝑁𝜆𝛼, (4)

where 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑁)𝑇 denotes the column vector such
that the orthogonal eigenvector ^ of the covariance matrix 𝐶
satisfies

𝑣 = 𝑁∑
𝑖=1

𝛼𝑖𝜑 (𝑥𝑖) . (5)

4 Complexity

Let 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑘 > 0 (𝑘 ≤ 𝑁) denote
the first 𝑘 nonzero eigenvalues of 𝐾 and 𝛼1,𝛼2, . . . ,𝛼𝑘 the
corresponding complete set of eigenvectors (see (4)). We
can obtain the corresponding eigenvectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 of 𝐶
using (5).

Considering 𝑣1, 𝑣2, . . . , 𝑣𝑘 need to be normalized,
𝛼1,𝛼2, . . . ,𝛼𝑘 need to satisfy

𝜆𝑙 (𝛼𝑙)𝑇 (𝛼𝑙) = 1 𝑙 = 1, 2, . . . , 𝑘. (6)

For a test sample 𝑥, the projection of 𝜑(𝑥) on the l-th
nonlinear principal component can be computed by

𝑑𝑙 (𝑥) = (𝑣𝑙)𝑇 𝜑 (𝑥) = 𝑁∑
𝑖=1

𝛼𝑙𝑖 (𝜑 (𝑥𝑖))𝑇 𝜑 (𝑥)
= 𝑁∑
𝑖=1

𝛼𝑙𝑖𝑘 (𝑥𝑖,𝑥) .
(7)

where 𝛼𝑙𝑖 is the ith element of 𝛼𝑙; in other words, 𝛼𝑙 =[𝛼𝑙1, 𝛼𝑙2, . . . , 𝛼𝑙𝑁]𝑇.
For the sake of simplicity, we assume that themapped data

𝜑(𝑥𝑖) (𝑖 = 1, 2, . . . , 𝑁) is zero-centered (see (2)). The detailed
description of the centering processing is given in [2].

Of note, for KPCA, the kernel matrix 𝐾 needs to be
predefined before performing eigendecompositions. Since
the size of𝐾 scales with𝑁2, a largememory space is required
for a massive dataset. Additionally, the eigendecomposition
of 𝐾 involves a time complexity of 𝑂(𝑁3). This can severely
handicap the computation of KPCA on large datasets. In
online processing applications, the arrival of a new sample
requires adding a new row and a new column in𝐾, and eigen-
decomposition has to be constantly reevaluated for an ever-
growing kernelmatrix to update the kernel subspaces. Hence,
the batch KPCA is not convenient for such applications.

3. Explicit Representation of the Mapped Data

At present, there have been many incremental algorithms
for PCA [27–34]. However, it is difficult to directly extend
them to KPCA because all mapped samples {𝜑(𝑥𝑖)}𝑁𝑖=1 are
expressed implicitly in the kernel space. Obviously, once{𝜑(𝑥𝑖)}𝑁𝑖=1 can be expressed using an explicit form, it will be
straightforward to extend incremental PCA to KPCA. In fact,
the geometrical structure of {𝜑(𝑥𝑖)}𝑁𝑖=1 can be captured by
using a standard orthogonal basis of the subspace spanned
by all the samples {𝜑(𝑥𝑖)}𝑁𝑖=1 [26]. Hence, we aim to explicitly
express {𝜑(𝑥𝑖)}𝑁𝑖=1using an indirect way. This motivation
comes from the following property shown inTheorem 1.

Let {𝛽𝑗}𝑟𝑗=1 denote an orthonormal basis of the subspace
spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1, and {𝑦𝑖}𝑁𝑖=1 is the corresponding pro-
jection vectors of {𝜑(𝑥𝑖)}𝑁𝑖=1 under {𝛽𝑗}𝑟𝑗=1 (see (1)).Theorem 1
is established as follows.

Theorem 1. If linear PCA is performed based on {𝜑(𝑥𝑖)}𝑁𝑖=1
and {𝑦𝑖}𝑁𝑖=1, respectively, then their covariance matrices have

the same nonzero eigenvalues, and those corresponding eigen-
vectors satisfy the following relationship:

𝑣𝑙 = [𝛽1,𝛽2, . . . ,𝛽𝑟] 𝑢𝑙, (8)

where 𝑣𝑙 is the l-th eigenvector of the covariance matrix of{𝜑(𝑥𝑖)}𝑁𝑖=1 and𝑢𝑙 is the l-th eigenvector of the covariancematrix
of {𝑦𝑖}𝑁𝑖=1. The proof is given in Appendix A.

Based on Theorem 1, linear PCA based on {𝜑(𝑥𝑖)}𝑁𝑖=1 can
be converted into a linear PCA based on {𝑦𝑖}𝑁𝑖=1. So, if we
can write {𝑦𝑖}𝑁𝑖=1 in an explicit form, then it will be easy
to further extend KPCA using existing linear incremental
algorithms. To incrementally obtain the orthonormal basis{𝛽𝑗}𝑟𝑗=1 and the projection vectors {𝑦𝑖}𝑁𝑖=1, we firstly introduce
two correlative lemmas.

Lemma 2. Let {𝜑(𝑥𝑏𝑗)}𝑟𝑗=1 denote a basis of the subspace
spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1, then the orthonormal basis {𝛽𝑗}𝑟𝑗=1 can
be determined using

[𝛽1,𝛽2, . . . ,𝛽𝑟] = [𝜑 (𝑥𝑏1) ,𝜑 (𝑥𝑏2) , . . . ,𝜑 (𝑥𝑏𝑟)]𝐷, (9)

where D = [𝛾1/√𝜀1, 𝛾2/√𝜀2, . . . , 𝛾𝑟/√𝜀𝑟]. 𝛾𝑗 (𝑗 = 1, 2, . . . ,𝑟) is the eigenvector of the kernel matrix 𝐾𝑟𝑟 = [𝜑(𝑥𝑏1),
𝜑(𝑥𝑏2), . . . ,𝜑(𝑥𝑏𝑟)]𝑇[𝜑(𝑥𝑏1),𝜑(𝑥𝑏2), . . . ,𝜑(𝑥𝑏𝑟)], scilicet 𝐾𝑟𝑟
= [𝑘(𝑥𝑏𝑠,𝑥𝑏𝑡)]1≤𝑠,𝑡≤𝑟. 𝜀𝑗 (𝑗 = 1, 2, . . . , 𝑟) is the corresponding
eigenvalue of 𝛾𝑗. The proof is given in Appendix B.

Based on Lemma 2, for any mapped sample 𝜑(𝑥) ∈{𝜑(𝑥𝑖)}𝑁𝑖=1, we can explicitly define its projection vector 𝑦
under the orthonormal basis {𝛽𝑗}𝑟𝑗=1 as

𝑦 = [𝛽1,𝛽2, . . . ,𝛽𝑟]𝑇 𝜑 (𝑥)
= 𝐷𝑇 [𝜑 (𝑥𝑏1) ,𝜑 (𝑥𝑏2) , . . . ,𝜑 (𝑥𝑏𝑟)]𝑇 𝜑 (𝑥)
= 𝐷𝑇𝑘𝑏𝑥,

(10)

where 𝑘𝑏𝑥 = [𝑘(𝑥𝑏1,𝑥), 𝑘(𝑥𝑏2,𝑥), . . . , 𝑘(𝑥𝑏𝑟,𝑥)]𝑇. Obviously,
using the kernel function 𝑘(⋅, ⋅) can complete the computation
of 𝑦.

However, the orthogonalization process using Lemma 2
is a batch-based method. Subsequently, when samples are
added one by one, its computational cost is still very expen-
sive. So, inspired by the Gram-Schmidt orthogonalization
process [35], we designed an online algorithm for incre-
mentally finding the orthonormal basis and the projection
vectors.

Lemma 3. Let {𝜑(𝑥𝑏𝑗)}𝑟𝑗=1 denote a basis of the subspace
spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1 and {𝛽𝑗}𝑟𝑗=1 is the orthonormal basis
obtained by (9). Suppose 𝑥𝑁+1 denotes a new sample we
have just included into our dataset. We derive the following
properties.

(1) If 𝛿 = 𝑘𝑁+1 − 𝑘𝑇𝑏(𝑁+1)𝐷𝐷𝑇𝑘𝑏(𝑁+1) = 0, then {𝛽𝑗}𝑟𝑗=1 is
the orthonormal basis of the subspace spanned by {𝜑(𝑥𝑖)}𝑁+1𝑖=1

Complexity 5

and the projection vector 𝑦𝑁+1 of 𝜑(𝑥𝑁+1) can be com-
puted using (10). Here, 𝑘𝑁+1 = 𝑘(𝑥𝑁+1,𝑥𝑁+1) and 𝑘𝑏(𝑁+1) =[𝑘(𝑥𝑏1,𝑥𝑁+1), 𝑘(𝑥𝑏2,𝑥𝑁+1), . . . , 𝑘(𝑥𝑏𝑟,𝑥𝑁+1)]𝑇.

(2) If 𝛿 = 𝑘𝑁+1 − 𝑘𝑇𝑏(𝑁+1)𝐷𝐷𝑇𝑘𝑏(𝑁+1) ̸= 0, then the ortho-
normal basis {𝛽𝑗}𝑟+1𝑗=1 of the subspace spanned by {𝜑(𝑥𝑖)}𝑁+1𝑖=1 can
be obtained by

[𝛽1,𝛽2, . . . ,𝛽𝑟,𝛽𝑟+1]
= [𝜑 (𝑥𝑏1) ,𝜑 (𝑥𝑏2) , . . . ,𝜑 (𝑥𝑏𝑟) ,𝜑 (𝑥𝑏(𝑟+1))]

⋅ [[[[
[
𝐷

−𝐷𝐷𝑇𝑘𝑏(𝑁+1)√|𝛿|0 1√|𝛿|
]]]]
]
,

(11)

where 𝑥𝑏(𝑟+1) = 𝑥𝑁+1. The projection vector 𝑦𝑁+1 of 𝜑(𝑥𝑁+1)
can be computed by

𝑦𝑁+1 = [𝑘𝑇𝑏(𝑁+1)𝐷, √𝛿]𝑇 . (12)

Obviously, based on Lemma 3, it is straightforward to
incrementally estimate the projection vector. Notably, the
dimensionality of 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑁) is smaller than that of
𝑦𝑁+1 in the case of 𝛿 ̸= 0. In fact, based on the Gram-Schmidt
orthogonalization process, let 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑁) denote the
projection vector of 𝜑(𝑥𝑖) on the orthonormal basis {𝛽𝑗}𝑟+1𝑗=1,
then 𝑦𝑖 = [𝑦𝑇𝑖 , 0]𝑇. The proof of Lemma 3 is provided in
Appendix C.

Combining both Lemmas 2 and 3, we summarize the
online algorithm, which incrementally finds the orthonormal
basis and the projection vectors as follows.

Algorithm 4. An online algorithm for incrementally finding
the orthonormal basis and the projection vectors.

Step 0 (initialization). For the time N=1, we found a sample
𝑥1. We suppose 𝑘(𝑥1,𝑥1) ̸= 0. Let the set 𝑆 = {𝑥1}, 𝐷 =1/√𝑘(𝑥1,𝑥1), and 𝑦1 = √𝑘(𝑥1,𝑥1).
Step 1. Calculate 𝛿 for a new sample 𝑥𝑁+1 according to

𝛿 = 𝑘𝑁+1 − 𝑘𝑇𝑏(𝑁+1)𝐷𝐷𝑇𝑘𝑏(𝑁+1), (13)

where 𝑘𝑁+1,𝐷 and 𝑘𝑏(𝑁+1) have the same definition as in
Lemma 3.

Step 2. If 𝛿 = 0, then 𝑦𝑁+1 = 𝐷𝑇𝑘𝑏(𝑁+1) and return to Step 1.

Step 3. If 𝛿 ̸= 0, then 𝑆 = 𝑆 ∪ {𝑥𝑁+1} and update 𝑦𝑁+1 using
(12). Finally, update𝐷 using (14) and return to Step 1.

𝐷 = [[[[
[
𝐷

−𝐷𝐷𝑇𝑘𝑏(𝑁+1)√|𝛿|0 1√|𝛿|
]]]]
]
. (14)

Obviously, if we map all the samples of 𝑆 into the kernel
space and get the dataset {𝜑(𝑥𝑏𝑗) | 𝑥𝑏𝑗 ∈ 𝑆}, then the

mapped samples {𝜑(𝑥𝑏𝑗) | 𝑥𝑏𝑗 ∈ 𝑆} are linearly independent.
Furthermore, we can get an orthonormal basis based on{𝜑(𝑥𝑏𝑗) | 𝑥𝑏𝑗 ∈ 𝑆} and 𝐷 (see (9) or (11)). In fact, taking
into account the actual calculation error, we usually use a very
small threshold value 𝜃 to decide performing Step 2 or Step 3
in Algorithm 4. In other words, if 𝛿 < 𝜃, we perform step 2;
otherwise, we perform Step 3.

4. Incremental Learning of KPCA

In this section, we will outline the incremental learning
method of KPCA based on the incremental version of PCA
(IPCA) proposed by Hall et al. [18]. The key difference
between our method and Hall et al.’s method is that the
dimensionality of the projection vector 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑁)
in our case is not constant; hence we further adapt IPCA to
our aim and address this limitation.

4.1. Description of IKPCA. Given a sample set {𝜑(𝑥𝑖)}𝑁𝑖=1
and its corresponding projection vector set {𝑦𝑖}𝑁𝑖=1 (see the
Section 3), we assume we have already built a set of eigenvec-
tors {𝑢𝑙}𝑝𝑙=1 and its corresponding matrix𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑝]
with the {𝑦𝑖}𝑁𝑖=1 set as an input. Note that we have 𝑝 ≤𝑟 where 𝑟 denotes the dimension of 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑁).
Let Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑝) denote the corresponding
matrix of eigenvalues and 𝑦 the mean vector. Incremental
building requires updating these eigenvectors when a new
input sample 𝑦𝑁+1 is obtained, which is the projection vector
of 𝜑(𝑥𝑁+1). Obviously, the dimensionality of 𝑦𝑁+1 may be
larger than that of 𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑁) (see (12)). When their
dimensionalities are identical, we denote 𝑟𝑁+1 = 𝑟, otherwise,𝑟𝑁+1 ̸= 𝑟. Firstly, we update the mean:

𝑦 =
{{{{{{{{{

1𝑁 + 1 (𝑁𝑦 + 𝑦𝑁+1) 𝑟𝑁+1 = 𝑟
1𝑁 + 1 (𝑁(𝑦

0
) + 𝑦𝑁+1) 𝑟𝑁+1 ̸= 𝑟, (15)

where (𝑦, 0)𝑇 means adding one zero to the original vector
𝑦. Then we update the set of eigenvectors {𝑢𝑙}𝑝𝑙=1by adding
a new vector 𝑦𝑁+1 and applying a rotational transformation.
In order to do this, we first compute the orthogonal residual
vector:

ℎ𝑁+1 =
{{{{{{{{{

(𝑈𝜂𝑁+1 + 𝑦) − 𝑦𝑁+1 𝑟𝑁+1 = 𝑟
([
[
𝑈

0
]
] 𝜂𝑁+1 + 𝑦) − 𝑦𝑁+1 𝑟𝑁+1 ̸= 𝑟, (16)

where 𝜂𝑁+1 is computed by

𝜂𝑁+1 =
{{{{{{{{{{{

𝑈𝑇 (𝑦𝑁+1 − 𝑦) 𝑟𝑁+1 = 𝑟
[
[
𝑈

0]]
𝑇

(𝑦𝑁+1 − 𝑦) 𝑟𝑁+1 ̸= 𝑟. (17)

6 Complexity

(1) Update
(2) Update

{i}
N
i=1 ⊆ Rd { (i)}

N
i=1 ⊆ Rℎ {i}

N
i=1 ⊆ Rr {l}

p

l=1
⊆ Rr

{j}
r

j=1
⊆ Rℎ

N+1 ∈ Rd
(N+1) ∈ Rℎ

N+1 ⊆ Rr

Figure 2: Flowchart of TP-IKPCA.

Subsequently, we normalize ℎ𝑁+1 to obtain ℎ̂𝑁+1 = ℎ𝑁+1/‖ℎ𝑁+1‖ for ‖ℎ𝑁+1‖ > 0 and ℎ̂𝑁+1 = 0 otherwise. The new
matrix of eigenvectors𝑈 is computed by

𝑈 =
{{{{{{{{{

[𝑈, ℎ̂𝑁+1]𝑇 𝑟𝑁+1 = 𝑟𝑁
[
[
[
[
𝑈

0]] , ℎ̂𝑁+1]]𝑇 𝑟𝑁+1 ̸= 𝑟𝑁, (18)

where 𝑇 ∈ 𝑅(𝑝+1)×(𝑝+1) is a rotation matrix with dimension
p+1. 𝑇 is the solution of the eigenproblem of the following
form [18, 36]:

𝐻𝑇 = 𝑇Λ. (19)

We compose𝐻 ∈ R(𝑝+1)×(𝑝+1) as

𝐻 = 𝑁𝑁 + 1 [Λ 0
0𝑇 0] + 𝑁(𝑁 + 1)2 [

𝜂𝜂𝑇 𝜏𝜂

𝜏𝜂𝑇 𝜏2
] . (20)

where 𝜏 = ℎ̂
𝑇

𝑁+1(𝑦𝑁+1 − 𝑦) and 𝜂 = 𝜂𝑁+1.
Broadly, the procedure of our incremental method is

similar to IPCA presented by Hall et al. [18]. Only under the
condition 𝑟𝑁+1 ̸= 𝑟𝑁, we add one zero (zero vector) to the
corresponding variant (matrix).

Oncewedetermined the principal direction set {𝑢𝑙}𝑝𝑙=1, for
a test sample 𝑥, the projection of 𝜑(𝑥) onto the l-th nonlinear
principal direction 𝑣𝑙 can be obtained using the formulas in
(8) and (10):

𝑑𝑙 (𝑥) = (𝑣𝑙)𝑇 𝜑 (𝑥) = (𝑢𝑙)𝑇 (𝛽1,𝛽2, . . . ,𝛽𝑟)𝑇 𝜑 (𝑥)
= (𝑢𝑙)𝑇𝐷𝑇𝑘𝑏𝑥 = (𝑢𝑙)𝑇 𝑦. (21)

4.2. Framework of TP-IKPCA. Based on the analysis in
Section 3 and in Section 4.1, we present the flowchart of TP-
IKPCA in Figure 2. Here, {𝑥𝑖}𝑁𝑖=1denotes the input sample set
and {𝜑(𝑥𝑖)}𝑁𝑖=1 represents its corresponding mapped set by an
implicit nonlinear mapping 𝜑. Firstly, an orthonormal basis{𝛽𝑗}𝑟𝑗=1 of the subspace spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1 (see (9) or (11))
and the corresponding projection vectors set {𝑦𝑖}𝑁𝑖=1 (see (10))

are obtained. Subsequently, a set of eigenvectors {𝑢𝑙}𝑝𝑙=1 of{𝑦𝑖}𝑁𝑖=1 are built. Then, for a new coming sample 𝑥𝑁+1, its
mapped sample 𝜑(𝑥𝑁+1) is used to update the orthonormal
basis {𝛽𝑗}𝑟𝑗=1 and its projection vector 𝑦𝑁+1 is computed
using Algorithm 4. Finally, based on the IKPCA described in
Section 4.1, the eigenvector set {𝑢𝑙}𝑝𝑙=1 is updated using 𝑦𝑁+1.
It can be seen from Figure 2 that TP-IKPCA includes two
main steps. The first step is based on incremental learning
algorithm that represents the mapped data using an explicit
form (see Algorithm 4). The second step incrementally com-
putes the principal components of {𝑦𝑖}𝑁+1𝑖=1 using IKPCA (see
Section 4.1).

The dimensions 𝑑,ℎ, and 𝑟 of the input, kernel, and
projection spaces, respectively, generally satisfy the following
inequalities: 𝑑 ≤ ℎ and 𝑟 ≤ ℎ (see Section 1). Here, we
need to focus on the meaning of 𝑝. In this paper, p denotes
the number of the eigenvectors derived from the covariance
matrix of the projection vector set {𝑦𝑖}𝑁𝑖=1. In other words, p is
the number of the principal components of {𝑦𝑖}𝑁+1𝑖=1 . We note
that the number of the principal components, that is p, should
be also smaller than the dimension 𝑟 of the projection space.
In summary, we have 𝑝 ≤ 𝑟 ≤ ℎ.
4.3. Complexity Analysis of TP-IKPCA. Suppose that given
the current sample set {𝑥𝑖}𝑁𝑖=1, the dimension of the sub-
space spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1 is 𝑟. When a new sample
𝑥𝑁+1 arrives, TP-IKPCA first conducts Algorithm 4 where
the most time-consuming step is to compute 𝐷𝑇𝑘𝑏(𝑁+1)
appearing in (11)-(14). The time complexity for this step
is 𝑂(𝑟2) since 𝐷 is an 𝑟 × 𝑟 orthogonal transformation
matrix and 𝑘𝑏(𝑁+1) is an N-dimensional vector. Then, TP-
IKPCA incrementally computes the principal components
using IKPCA (see Section 4.1). In this step, the computation
of the eigendecomposition of matrix𝐻 ∈ 𝑅(𝑝+1)×(𝑝+1) in (20)
is most time-consuming. We can define the upper bound
for its time complexity as 𝑂(𝑝3) ≤ 𝑂(𝑟3) since we have𝑝 ≤ 𝑟. Considering the above two steps, the overall time
complexity of TP-IKPCA in worst case can be estimated as𝑂(𝑟3). In fact, 𝑟 ≪ 𝑁 is usually tenable [26, 37], which
makes TP-IKPCA convenient for processing large-scale or
online datasets. Meanwhile, TP-IKPCA requires storing an

Complexity 7

𝑟 × 𝑟 orthogonal transformation matrix 𝐷 (see (9)), which
only involves a space complexity of 𝑂(𝑟2). Especially in the
testing stage, obtaining the principal component of a new
sample only needs to calculate the kernel functions between
the new sample and the 𝑟 old training samples that compose
the orthonormal basis (see (21)), which results in improving
the computing speed.

5. Experiments

We evaluated and compared the performance of TP-IKPCA
on synthetic and real datasets with several typical KPCA-
based approaches in terms of accuracy and time complexity.
The comparison methods include (1) conventional batch
mode KPCA, (2) incremental KPCA [14, 15] with reduced-
set (IKPCA-RS), and (3) the recently developed incremental
KPCA [25] based on rank one updates to the eigendecompo-
sition of kernel matrix (INKPCA). The time complexity can
be captured by two aspects: (1) time required for learning
the training data; (2) r, i.e., the number of orthonormal
basis elements of the subspace spanned by the mapping
training data. Usually, a smaller 𝑟 indicates a reduced time
complexity of TP-IKPCA (see Section 4.3). At the same time,
we also used two different measures to evaluate the accuracy
of TP-IKPCA. The first one is the correlation coefficient
between two corresponding principal components (PCs) of
TP-IKPCA and KPCA. Since KPCA is performed using all
training data in a batch learning model, the PCs of KPCA
are the target that TP-IKPCA needs to capture. Ideally,
the PCs of TP-IKPCA should be identical with those of
KPCA. Therefore, the correlation coefficient between two
corresponding PCs is evaluated to show how accurate is TP-
IKPCA in comparison to batch KPCA. Specifically, let 𝑣𝑙
denote the l-th PCofKPCAafter learning all of the𝑁 samples
and 𝑣𝑇𝑃𝑙 (𝑖) is the l-th PC of TP-IKPCA after learning 𝑖 (𝑖 ≤ 𝑁)
samples, we define the correlation coefficient (corr) by

𝑐𝑜𝑟𝑟 (𝑣𝑙, 𝑣𝑇𝑃𝑙 (𝑖)) = (𝑣𝑙)𝑇 𝑣𝑇𝑃𝑙 (𝑖)𝑣𝑙 𝑣𝑇𝑃𝑙 (𝑖) , (22)

The specific computation in (22) can be deduced from (5) and
(8).The secondmeasure is to compare the effectiveness of TP-
IKPCA and KPCA. Here, for two-dimensional synthesized
datasets, we adopt the contour lines of PCs as an evaluation
measure. For real datasets, we adopt the practical denoising
effect.

5.1. Synthesized Data. In this experiment, we use two-
dimensional nonlinear synthetized data to evaluate the
accuracy and memory space efficiency of KPCA, IKPCA-
RS, INKPCA, and our proposed TP-IKPCA. The data is
generated by:

𝑦 = (𝑥22 + 1) + 0.2𝜉, 𝜉 ∼ 𝑁 (0, 1) , 𝑥 ∼ 𝑈 [0, 1] , (23)

where 𝑁(0, 1) denotes the standard Gaussian distribution
and 𝑈[0, 1] is the uniform distribution in [0, 1]. In this

Table 1: Learning time (sec) for proposed and comparisonmethods.

Training stage Testing stage
KPCA 1.067 ± 0.03 0.203 ± 0.006
IKPCA-RS 0.201 ± 0.0032 0.007 ± 0.0003
INKPCA 0.145 ± 0.0041 0.201 ± 0.004
TP-IKPCA 0.087 ± 0.0026 0.004 ± 0.0002

Notice The training number N=500 and the basis
number r=9 in TP-IKPCA.

experiment, the kernel function is the polynomial kernel
form, namely, 𝑘(𝑥𝑖,𝑥𝑗) = (𝑥𝑇𝑖 𝑥𝑗)𝑚. Here, the parameterm=2.

The contour lines of the first three PCs obtained by
each method for N=500 training samples are illustrated in
Figure 3 (Top to bottom: KPCA, TP-IKPCA, IKPCA-RS,
and INKPCA), where red dots represent samples and green
lines represent the contour lines of the corresponding PCs.𝜆𝑖 (𝑖 = 1, 2, 3) denotes the eigenvalue of the correspond-
ing PC. Figure 3 shows no visually discernible differences
between ourmethod and the 3 comparisonmethods. In other
words, their contour lines are very similar. Furthermore, the
differences in eigenvalues 𝜆𝑖 are also very small. Therefore,
it can be concluded that all of the results derived from the
three incremental algorithms: IKPCA-RS, INKPCA, and our
proposed TP-IKPCA, follow the ground truth results closely.

Figure 4 shows the evolution curves of the correlation
coefficients between the first three PCs obtained by TP-
IKPCA, IKPCA-RS, INKPCA, and their corresponding PCs
obtained by KPCA when increasing the number of training
samples. Figure 4 shows for different incremental algorithms
that the resulting correlation coefficient gradually converges
to 1 as the number of training samples increases. It indi-
cates that the PCs obtained by TP-IKPCA, IKPCA-RS, and
INKPCA gradually approximate those obtained by batch
mode KPCA with high accuracy.

Table 1 shows the average training time for learning
from 500 training samples and testing time for extracting
features from 100 testing samples (in seconds). We repeated
this procedure 20 times and reported the averaged training
and testing times as well as the corresponding standard
deviations.

From Table 1, we can clearly see that when using the
synthesized data, all of the three incremental KPCA algo-
rithms have faster training speed than KPCA due to low-
dimensional features as well as simple distribution of this
data. Among these incremental variants, our proposed TP-
IKPCA leads to fastest training speed. From the perspective of
testing speed, ourmethod can perform prediction in the least
time. This can be explained by the fact that the learning time
of TP-IKPCAdepends on the size of orthonormal basis r (=9)
while KPCA and INKPCA both depend on the total number
of training samples (=500 in our case). IKPCA-RS also leads
to fast testing speed since it uses a reduced set. However,
it performs slower than our method in training speed since
seeking a set of approximate preimages when new samples
arrive using certain optimization techniques or fixed-point
iteration is time-consuming.

8 Complexity

x

KP
CA y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

y
−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

x

y

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

TP
-I

KP
CA

IK
PC

A-
RS

IN
KP

CA

1=0.5802 2=0.3421 3=0.0777

1=0.5805 2=0.3418 3=0.0777

1=0.5795 2=0.3435 3=0.0770

1=0.5801 2=0.3425 3=0.0776

Figure 3: Synthesized data including 500 samples and the contours of the first three principal components drawn using a polynomial kernel.
The first row is from KPCA, the second row is from TP-IKPCA, the third row is from IKPCA-RS, and the forth row is from INKPCA. Data
points are represented by red dots “∗” and the green lines are the contour lines of constant value of the first three principal components.

Complexity 9

1st PC
2nd PC
3rd PC

100 200 300 400 5000
The number of training samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Th
e v

al
ue

 o
f t

he
 co

rr
el

at
io

n
co

effi
ci

en
ts

(a) TP-IKPCA

Th
e v

al
ue

 o
f t

he
 co

rr
el

at
io

n
co

effi
ci

en
ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st PC
2nd PC
3rd PC

100 200 300 400 5000
The number of training samples

(b) IKPCA-RS

1st PC
2nd PC
3rd PC

100 200 300 400 5000
The number of training samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Th
e v

al
ue

 o
f t

he
 co

rr
el

at
io

n
co

effi
ci

en
ts

(c) INKPCA

Figure 4: Evolution of the correlation coefficients between the first three PCs of three incremental algorithms and KPCA when increasing
the number of training samples.

In what follows, we design two experiments to investigate
the behavior of our algorithm when the number of training
samples increases. Firstly, in Figure 5, we plot the variation
curve of the number of basis, i.e., r, against the number of
training samples (N). From this result, we notice that in the
beginning, r gradually increases with𝑁. However, after𝑁 ≥21, r stops increasing. This shows that the mapped data have
strong linear correlation in the kernel space. Hence, although
the number of training samples continues to increase, the
number of basis remains stable. More importantly, the
computational complexity of TP-IKPCA becomes a constant𝑂(93) when𝑁 ≥ 21, which is a significant improvement over
standard KPCA (in the order of𝑁3) —particularly when the
number of training samples becomes very large.

Then, we compute the acceleration ratio which represents
the ratio of the time consumed by KPCA to extract features
from 100 test samples to the time consumed by TP-IKPCA.
The resulting variation of acceleration ratio for testing speed
with respect to the number of training samples is shown in
Figure 6. Obviously, a larger ratio indicates a faster test speed
of TP-IKPCA comparedwith KPCA. Figure 6 also shows that
the larger the number of training samples, the larger the ratio,
implying that TP-IKPCA can significantly improve test speed
compared with KPCA.

5.2. MNIST Data. In this section, we consider an image
processing applicationwherewe process theMNIST database
of handwritten digits (http://yann.lecun.com/exdb/mnist/).
The database consists of handwritten digits from 0 to 9. Each

1

2

3

4

5

6

7

8

9

10

Th
e n

um
be

r o
f t

he
 b

as
is

(r
)

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 5000

The number of of the training samples (N)

Figure 5: Variation of the number of basis (𝑟) with respect to the
number of training samples (𝑁).

digit set includes training set and testing set. Each digit is
represented by a 28-by-28 image. In order to evaluate the
performance of different approaches, we carried out image
denoising experiment to the even number. Firstly, for each
digit, we randomly select 500 training samples and 100 testing
samples and then add the Gaussian noise and the salt-
and-pepper noise, respectively, to the testing images. The
mean and variance for the Gaussian noise are 0 and 0.2,
respectively, while the level of the salt-and-pepper noise is
0.3. Next, we estimate the first sixteen principal components
using KPCA, IKPCA-RS, INKPCA, and our proposed TP-
IKPCA, respectively. Finally, we perform denoising exper-
iments on all corrupted testing samples and reconstruct

http://yann.lecun.com/exdb/mnist/

10 Complexity

Th
e r

at
io

 o
f t

he
 te

st
in

g
sp

ee
d

0
5

10
15
20
25
30
35
40
45
50

100 200 300 400 5000
The number of the training samples (N)

Figure 6: Changes of the ratio of the test speed with respect to the training sample numbers (𝑁).

O
ri

g.

Gaussian noise Salt&Pepper noise

N
oi

se
K

PC
A

TP
−I

K
PC

A
IK

PC
A

−R
S

IN
K

PC
A

Figure 7: Restoration results by TP-IKPCA, IKPCA-RS, INKPCA, and KPCA.

them using the reconstructive scheme presented in [38]. In
the experiment, we use the Gaussian function 𝑘(𝑥𝑖,𝑥𝑗) =
exp(−‖𝑥𝑖 − 𝑥𝑗‖2/𝜎2) as the kernel function in each method
and set the bandwidth 𝜎 = 0.2.

Figure 7 shows some restoration results from the cor-
rupted images by conducting KPCA, TP-IKPCA, IKPCA-
RS and INKPCA, respectively. It can be seen from these
figures that all of these methods can eliminate noise and
reconstruct the images well. Therefore, we can draw the
conclusion that different incremental KPCA algorithms can
closely approximate batch mode KPCA in reconstruction
performance with high accuracy.

Figure 8 shows the evolution curves of the correlation
coefficients between the first three PCs by TP-IKPCA,
IKPCA-RS, INKPCA, and their corresponding ones by
KPCAwhen the number of training samples increases, where
the horizontal axis denotes the number of training samples
and the vertical axis is the correlation coefficient computed
by (22). Figure 8 shows that all incremental KPCA algorithms
lead to good approximation accuracies for the first three PCs

since the correlation coefficients gradually converge to 1 as
the number of training samples increases.The results indicate
that incremental KPCAalgorithms can gradually capture PCs
in real high-dimensional datasets with good approximation
accuracy.

We also display in Table 2 the average training and testing
times (in seconds) for training 500 samples and extracting
features from 100 testing samples, respectively. We repeated
this process 20 times and reported the average values and the
corresponding standard deviations.

Firstly, we analyze the training results shown in Table 2.
We can derive the following observations: (1) IKPCA-RS
consumesmuchmore time in training than other approaches,
including batch model KPCA.These results differ from those
obtained when using the synthesized data where IKPCA-RS
ran faster than batch mode KPCA. Through inspecting the
experiments, we found that IKPCA-RS iterates reduced-set
expansions many times when computing the preimages for
compression. As a result, when handling data with a large
number of features (=784 in our case), the calculation of

Complexity 11

0 500400300200100

digital "0"

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

digital "2" digital "4" digital "6" digital "8"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) TP-IKPCA

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

digital "0" digital "2" digital "4" digital "6" digital "8"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) IKPCA-RS

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

0 500400300200100

1st PC
2nd PC
3rd PC

digital"0" digital"2" digital"4" digital"6" digitla"8"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) INKPCA

Figure 8: Evolution curves of the correlation coefficients between the first three PCs of (a) TP-IKPCA, (b) IKPCA-RS, (c) INKPCA, and
KPCA as the number of training samples increases (x-axis).

12 Complexity

Ta
bl
e
2:
Ex

pe
rim

en
ta
lr
es
ul
ts
of

le
ar
ni
ng

tim
eo

n
di
ffe
re
nt

di
gi
t(
se
c)
.

Tr
ai
ni
ng

sta
ge

Te
st
in
g
sta

ge
“0
”

“2
”

“4
”

“6
”

“8
”

“0
”

“2
”

“4
”

“6
”

“8
”

KP
CA

1.7
5
±0.0

55
1.7
4
±0.0

18
1.7
4
±0.0

21
1.7

6
±0.0

36
1.7
4
±0.0

30
0.
35
8
±0.0

22
0.
35
1±0

.0
13

0.
35
7
±0.0

12
0.
35
2
±0.0

11
0.
35
4
±0.0

11
IK

PC
A-

RS
43
.6
8
±0.0

49
41
.32

±0.0
38

43
.2
1±0

.0
68

44
.7
5
±0.0

74
42
.8
7
±0.0

59
0.
22
1±0

.0
09

0.
24

3
±0.0

11
0.
20
8
±0.0

14
0.
16
9
±0.0

17
0.
21
4
±0.0

08
IN

KP
CA

23
.6
7
±0.0

32
22
.13

±0.0
38

23
.9
1±0

.0
41

23
.10

±0.0
47

22
.13

±0.0
35

0.
36
0
±0.0

23
0.
35
8
±0.0

14
0.
35
3
±0.0

12
0.
35
5
±0.0

12
0.
35
2
±0.0

11
TP

-I
KP

CA
1.8

9
±0.0

19
3.
06

±0.0
17

1.6
7
±0.0

43
1.4

0
±0.0

24
2.
27

±0.0
31

0.
18
1±0

.0
12

0.
25
1±0

.0
08

0.
16
2
±0.0

16
0.
14
4
±0.0

13
0.
19
9
±0.0

10
r

24
2

35
1

21
9

19
0

28
2

24
2

35
1

21
9

19
0

28
2

Complexity 13

preimages increases the computational load.This observation
is in line with the conclusion drawn in [15]. (2) INKPCA
needs to apply rank one update to iteratively calculate
eigenvalues and eigenvectors associated with kernel matrix
when new data arrive. Although INKPCA consumes more
time than batch mode KPCA, it does not need to store the
whole kernel matrix in memory and has the advantage of
better handling massive data where KPCA rapidly becomes
infeasible. (3) As for our proposed TP-IKPCA, it runs much
faster than other incremental algorithms, including IKPCA-
RS and INKPCA, excluding a few cases where our algorithm
may be slower than batchmode KPCA.This can be explained
by the computational complexity of TP-IKPCA of the order
of 𝑟3. In this experiment, the linear correlation between
the mapped digital images is very weak, which results in a
very large 𝑟 and even approximates the number of training
samples.

From the testing results shown in Table 2, we can con-
clude the following: (1) The testing speeds of KPCA and
INKPCA are similar since INKPCA cannot select a few
yet important samples from the whole data but still makes
use of all available samples when calculating the projections
of new data. Therefore, their speed is proportional to the
total number of the training samples. (2) Regardless of
specific digit, the testing speed of IKPCA-RS and TP-IKPCA
are much faster than that of KPCA and INKPCA since
both methods are able to reduce the number of samples
used for kernel evaluation although they adopt different
strategies. The testing time of TP-IKPCA is proportional to
the size of basis 𝑟. In this experiment, the size of basis 𝑟 is
smaller than the number of training samples, thus leading
to an improvement in the test speed compared with KPCA.
Considering the training time, our proposed TP-IKPCA is
obviously preferred over IKPCA-RS.

In what follows, we gradually increase the number of
training samples and summarize the training and testing time
required by TP-IKPCA and standard KPCA. We find from
extensive experiments that the computational superiority
of TP-IKPCA over KPCA increases with the number of
training samples. Taking the experiments on digit “0” as an
example, we repeated this evaluation 20 times and recorded
the resulting training and testing time (in seconds) required
by TP-IKPCA andKPCAunder different training sample size𝑁. Finally, the averaged time and the standard deviation are
shown in Table 3 where the training ratio in Table 3 denotes
the ratio of training time of KPCA to that of TP-IKPCA, given
a total number of𝑁 samples. In a similar way, the testing ratio
represents the ratio of testing time of KPCA to that of TP-
IKPCA when extracting features from 100 test samples.

Based on Table 3, we can make the following observa-
tions: (1) As the number of training samples continues to
increase, the number of basis 𝑟 tends to increase as well.
However, the increasing speed of 𝑟 gradually decreases, which
indicates that the larger the size of the training set, the
stronger the correlation between the samples. (2) With the
increasing of the training set sizeN, the training time of both
KPCA and TP-IKPCA also increases gradually. However,
the increasing speed of TP-IKPCA is much slower than
that of KPCA. The reason lies in that the time complexity

of TP-IKPCA has a close relationship with the number of
basis 𝑟 while that of KPCA depends on the total number
of training samples 𝑁. As N increases, the increasing speed
of 𝑟 progressively decreases since most of the correlation
structure among data has been revealed. We also derive a
similar conclusion from the ratio’s evolution in the training
stage with respect to the changes of the number of training
samples, where the ratio gradually increases with 𝑁 in
the training stage. (3) As 𝑁 increases, the testing time of
KPCA and TP-IKPCA both increase gradually. However, the
increasing speed of TP-IKPCA is much slower than that of
KPCA, which is also reflected by the ratio’s evolution in the
testing stage. The reason is that the test speed of TP-IKPCA
is closely related to the number of basis 𝑟 and the increasing
speed of 𝑟 gradually becomes slower with the increasing of𝑁. Based on the above analysis, we conclude that TP-IKPCA
does significantly improve the computational complexity of
KPCA. Moreover, TP-IKPCA can deal with dynamic dataset
due to its “incremental” nature.

6. Conclusion

In this paper, we proposed a novel incremental feature
extraction method termed as TP-IKPCA which endowed
KPCA with the capability of handling dynamic or large-scale
datasets. The proposed TP-IKPCA differs from the existing
incremental approaches in providing an explicit form of
the mapped data and the updating process of KPCs is also
performed in an explicit space. Specifically, TP-IKPCA is
implemented in two phases. First, an incremental algorithm
is given to explicitly project the mapped samples in the
kernel space. Second, we employed the existing incremental
method of PCA to capture KPCs based on the explicit data
in the projection space. The computational complexity of
TP-IKPCA has a close relationship with the size of basis 𝑟
of the subspace spanned by the mapped training samples.
Usually, r is much smaller than the number of training
samples N, and thus TP-IKPCA can greatly improve the
computational complexity of KPCA. In the case of large-
scale or online dataset, the computational superiority of
our approach is remarkable. Experimental results on syn-
thetic and real datasets demonstrate that TP-IKPCA can
significantly improve the time complexity of KPCA while
preserving a high accuracy as standardKPCA. In comparison
with two incremental KPCA algorithms, TP-IKPCA also
illustrates superiority in terms of training and testing speed.

TP-IKPCA can be utilized in any application where
KPCA needs to be conducted, especially when training data
is of large scale, or can only be collected one by one, where the
conventional batch-based KPCA cannot be applied. The idea
of this study can be extended to other kernel-based methods,
such as Kernel Fisher discriminant analysis (KFDA), Kernel
independent component analysis (KICA), and so on.

Appendix

A. The Proof of Theorem 1

Let {𝛽𝑗}𝑟𝑗=1 denote an orthonormal basis of the subspace
spanned by {𝜑(𝑥𝑖)}𝑁𝑖=1. Equation (1) can be written as

14 Complexity

Ta
bl
e
3:
Tr
ai
ni
ng

an
d
te
st
in
g
tim

e(
se
c)
on

di
gi
t“
0”

w
he
n
in
cr
ea
sin

g
th
en

um
be
ro

ft
ra
in
in
g
sa
m
pl
es

fro
m

50
0
to

50
00
.

𝑁
50
0

10
00

15
00

20
00

30
00

40
00

50
00

r
24
2

36
6

45
3

51
4

60
5

67
0

73
5

N
/r

2.
07

2.
73

3.
31

3.
89

4.
96

5.
97

6.
80

tr
ai
ni
ng

sta
ge

KP
CA

1.7
5
±0.0

55
6.
98

±0.0
66

18
.7
2
±0.1

40
35
.4
6
±0.1

85
79
.9
7
±0.5

70
15
4.
65

±0.6
87

25
5.
01

±2.0
83

TP
-I
KP

CA
1.8

9
±0.0

19
5.
34

±0.0
64

9.8
6
±0.0

85
14
.9
2
±0.0

78
25
.4
0
±0.0

15
37
.4
6
±0.0

31
50
.4
3
±0.4

11
ra
tio

0.
93

1.3
1

1.9
0

2.
38

3.
15

4.
13

5.
06

te
sti
ng

sta
ge

KP
CA

0.
35
8
±0.0

22
0.
65
0
±0.0

13
1.1
31

±0.0
18

1.6
00

±0.0
26

2.
40

6
±0.0

70
3.
65
7
±0.1

70
5.
23
4
±0.2

93
TP

-I
KP

CA
0.
18
1±0

.0
12

0.
26
6
±0.0

14
0.
32
3
±0.0

17
0.
37
1±0

.0
16

0.
42
9
±0.4

29
0.
46
5
±0.0

11
0.
51
1±0

.0
10

ra
tio

1.9
8

2.
44

4.
06

4.
31

5.
61

8.
02

10
.2
4

Complexity 15

𝑌 = 𝐵𝑇𝜑 (𝑋) , (A.1)

where 𝑌 = [𝑦1,𝑦2, . . . ,𝑦𝑁] is the projection matrix, Β =[𝛽1,𝛽2, . . . ,𝛽𝑟] denotes the orthonormal basis matrix, and
𝜑(𝑋) = [𝜑(𝑥1),𝜑(𝑥2), . . . ,𝜑(𝑥𝑁)] is the mapped sample
matrix. The covariance matrix 𝐶 of {𝜑(𝑥𝑖)}𝑁𝑖=1 (see (2)) can
be expressed using the following formula:

𝐶 = 𝜑 (𝑋)𝐻𝑁𝐻𝑇𝑁𝜑 (𝑋)𝑇, (A.2)

where𝐻𝑁 is a𝑁×𝑁matrix and its element ℎ𝑖𝑗 can be written
as

ℎ𝑖𝑗 = {{{{{
(𝑁 − 1)𝑁 𝑖 = 𝑗−1𝑁 𝑖 ̸= 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁) . (A.3)

Combining (A.1) and (A.2), we have

𝐶 = 𝐵 (𝑌𝐻𝑁𝐻𝑇𝑁𝑌𝑇)𝐵𝑇. (A.4)

Let 𝐶 = 𝑌𝐻𝑁𝐻
𝑇
𝑁𝑌
𝑇, then 𝐶 is the covariance matrix of

𝑌. We have

𝐶 = 𝐵𝐶𝐵𝑇. (A.5)

For the relationship of the eigenvalues and the corre-
sponding eigenvector between 𝐶 and 𝐶, we give a derivation
as follows.

Lemma A.1. Let 𝜆𝑙 ̸= 0 be the l-th nonzero eigenvalue of 𝐶
and 𝑣𝑙 be the eigenvector, then 𝑢𝑙 = 𝐵𝑇𝑣𝑙 is the eigenvector of
𝐶 and its eigenvalue is 𝜆𝑙. Scilicet, 𝐶𝑢𝑙 = 𝜆𝑙𝑢𝑙.
Proof. Based on the above definitions, we have 𝐶𝑣𝑙 = 𝜆𝑙𝑣𝑙
and𝑣𝑙 = 𝐵𝑢𝑙. On the other hand,𝐶 = 𝐵𝐶𝐵𝑇 is established. So,
𝐵𝐶𝐵𝑇𝐵𝑢𝑙 = 𝜆𝑙𝐵𝑢𝑙, thus, 𝐵𝐶𝑢𝑙 = 𝜆𝑙𝐵𝑢𝑙. Hence, 𝐵𝑇𝐵𝐶𝑢𝑙 =𝜆𝑙𝐵𝑇𝐵𝑢𝑙, Scilicet, 𝐶𝑢𝑙 = 𝜆𝑙𝑢𝑙.
Lemma A.2. Let 𝜆𝑙 ̸= 0 be the l-th nonzero eigenvalue of 𝐶
and 𝑢𝑙 be the corresponding eigenvector, then 𝑣𝑙 = 𝐵𝑢𝑙 is the
eigenvector of 𝐶 and its eigenvalue is 𝜆𝑙. Scilicet, 𝐶𝑣𝑙 = 𝜆𝑙𝑣𝑙.
Proof.

𝐶𝑣𝑙 = 𝐵𝐶𝐵𝑇𝐵𝑢𝑙 = 𝐵𝐶𝑢𝑙 = 𝐵𝜆𝑙𝑢𝑙 = 𝜆𝑙𝑣𝑙. (A.6)

Based on Lemmas A.1 and A.2, we know the nonzero
eigenvalue of𝐶 is the samewith that of𝐶and the correspond-
ing eigenvector satisfies 𝑣𝑙 = 𝐵𝑢𝑙. Hence, the eigendecompo-
sition of 𝐶 can be converted into the corresponding process
of 𝐶. And because 𝑣𝑙/‖𝑣𝑙‖ = 𝐵𝑢𝑙/‖𝐵𝑢𝑙‖ = 𝐵𝑢𝑙/‖𝑢𝑙‖, so (8)
still holds after the eigenvector is unitized. So, Theorem 1 is
proven.

B. The Proof of Lemma 2

Let Γ = [𝛾1, 𝛾2, . . . , 𝛾𝑟] and Λ = diag(𝜀1, 𝜀2, . . . , 𝜀𝑟) be
the corresponding matrix which are, respectively, from the

eigenvector and the eigenvalue of the kernel matrix 𝐾𝑟𝑟 =[𝑘(𝑥𝑏𝑠,𝑥𝑏𝑡)]1≤𝑠,𝑡≤𝑟. We have Γ𝑇𝐾𝑟𝑟Γ = Λ. Let 𝐵 =[𝛽1,𝛽2, . . . ,𝛽𝑟] and Δ = diag(1/√𝜀1, 1/√𝜀2, . . . , 1/√𝜀𝑟); we
have𝐷 = ΓΔ.Thus𝐵𝑇𝐵 = 𝐷𝑇𝐾𝑟𝑟𝐷=Δ𝑇Γ𝑇𝐾𝑟𝑟ΓΔ=Δ𝑇ΛΔ =
𝐼. So, Lemma 2 is proven.

C. The Proof of Lemma 3

If {𝛽𝑗}𝑟𝑗=1 is the orthonormal basis of the subspace spanned
by {𝜑(𝑥𝑖)}𝑁+1𝑖=1 , then 𝜑(𝑥𝑁+1) = [𝛽1,𝛽2, . . . ,𝛽𝑟][𝛽1,𝛽2, . . . ,
𝛽𝑟]𝑇𝜑(𝑥𝑁+1). Based (9), we have

𝜑 (𝑥𝑁+1) = [𝜑 (𝑥𝑏1) ,𝜑 (𝑥𝑏2) , . . . ,𝜑 (𝑥𝑏𝑟)]
⋅𝐷𝐷𝑇𝑘𝑏(𝑁+1) ⇐⇒

𝜑 (𝑥𝑁+1)
− [𝜑 (𝑥𝑏1) ,𝜑 (𝑥𝑏2) , . . . ,𝜑 (𝑥𝑏𝑟)]𝐷𝐷𝑇𝑘𝑏(𝑁+1)

= 0 ⇐⇒

𝑘𝑁+1 − 𝑘𝑇𝑏(𝑁+1)𝐷𝐷𝑇𝑘𝑏(𝑁+1) = 0.

(C.1)

So, conclusion (1) in Lemma 3 is proven. Subsequently,
if 𝛿 = 𝑘𝑁+1 − 𝑘𝑇𝑏(𝑁+1)𝐷𝐷𝑇𝑘𝑏(𝑁+1) ̸= 0, this means 𝜑(𝑥𝑁+1)
cannot be linearly expressed by {𝛽𝑗}𝑟𝑗=1. Based the Gram-
Schmidt orthogonalization process, 𝛽𝑟+1 can be determined
using the following formula:

𝛽𝑟+1

= 𝜑 (𝑥𝑁+1) − [𝛽1,𝛽2, . . . ,𝛽𝑟] [𝛽1,𝛽2, . . . ,𝛽𝑟]𝑇 𝜑 (𝑥𝑁+1)𝜑 (𝑥𝑁+1) − [𝛽1,𝛽2, . . . ,𝛽𝑟] [𝛽1,𝛽2, . . . ,𝛽𝑟]𝑇 𝜑 (𝑥𝑁+1)
. (C.2)

Combined with (9) and kernel function, (C.2) can be
written using the following formula:

𝛽𝑟+1 = [𝜑 (𝑥1) ,𝜑 (𝑥2) , . . . ,𝜑 (𝑥𝑁) ,𝜑 (𝑥𝑁+1)]

⋅ [[[[
[

−𝐷𝐷𝑇𝑘𝑏(𝑁+1)√|𝛿|1√|𝛿|
]]]]
]
. (C.3)

Then, we can obtain (11) and (12). So Lemma 2 is proven.

Data Availability

In our manuscript, we used two datasets to support the
findings of our study. One dataset is the synthetic toy data,
which can be generated by the following way: 𝑦 = (𝑥 2 2
+ 1) +0.2𝜉, 𝜉 ∼ 𝑁(0,1), 𝑥 ∼ 𝑈[0, 1] (1) where 𝑁(0, 1)
denotes the standard Gaussian distribution and 𝑈[0, 1] is
the uniform distribution in [0, 1]. The second data set is the
MNIST database of handwritten digits, which are available on
this site: http://yann.lecun.com/exdb/mnist.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

http://yann.lecun.com/exdb/mnist

16 Complexity

Acknowledgments

This work was supported in part by National Natural Science
Foundation of China (Grants nos. 61773244, 61373079, and
61572344), National Institutes of Health in USA (AG041721,
MH107815, EB006733, EB008374, and EB009634), and
Provincial Natural Science Foundation of Shanxi in China
(2018JM4018).

References

[1] I. T. Jolliffe, Principal Component Analysis, Springer-Verlag,
New York, NY, USA, 1986.

[2] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear compo-
nent analysis as a kernel eigenvalue problem,”Neural Computa-
tion, vol. 10, no. 5, pp. 1299–1319, 1998.

[3] B. Chen, J. Yang, B. Jeon, and X. Zhang, “Kernel quaternion
principal component analysis and its application in RGB-D
object recognition,” Neurocomputing, vol. 266, pp. 293–303,
2017.

[4] X. Deng and L. Wang, “Modified kernel principal component
analysis using double-weighted local outlier factor and its appli-
cation to nonlinear processmonitoring,” ISATransactions�, vol.
72, pp. 218–228, 2018.

[5] Y. Yang, W. Sheng, Y. Han, and X. Ma, “Multi-beam pattern
synthesis algorithm based on kernel principal component
analysis and semi-definite relaxation,” IET Communications,
vol. 12, no. 1, pp. 82–95, 2018.

[6] K. I. Kim, M. O. Franz, and B. Schölkopf, “Iterative kernel
principal component analysis for imagemodeling,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 27, no.
9, pp. 1351–1366, 2005.

[7] A. R. Teixeira, A. M. Tomé, K. Stadlthanner, and E. W. Lang,
“KPCA denoising and the pre-image problem revisited,”Digital
Signal Processing, vol. 18, no. 4, pp. 568–580, 2008.

[8] W. Soh, H. Kim, and B.-J. Yum, “Application of kernel principal
component analysis to multi-characteristic parameter design
problems,” Annals of Operations Research, vol. 263, no. 1-2, pp.
69–91, 2018.

[9] R. Rosipal and M. Girolami, “An expectation-maximization
approach to nonlinear component analysis,” Neural Computa-
tion, vol. 13, no. 3, pp. 505–510, 2001.

[10] G. Simon, N. S. Nicol, and S. V. N. Vishwanathan, “Fast itera-
tive kernel principal component analysis,” Journal of Machine
Learning Research (JMLR), vol. 8, no. 4, pp. 1893–1918, 2007.

[11] W. Zheng, C. Zou, and L. Zhao, “An improved algorithm for
kernel principal component analysis,”Neural Processing Letters,
vol. 22, no. 1, pp. 49–56, 2005.

[12] F. Vojtěch and H. Václav, “Greedy algorithm for a training set
reduction in the kernel methods,” in Proceedings of the 10th
International Conference on Computer Analysis of Image and
Patterns, vol. 2756 of Lecture Notes in Comput. Sci., pp. 426–433,
Springer, Groningen, Netherlands, August 2003.

[13] F. Vojtech, Optimization Algorithms for Kernel Methods [Ph.D.
Dissertation], Center for Machine Perception, Czech Technical
University, Prague, Czech Republic, 2005.

[14] T. Chin and D. Suter, “Incremental kernel PCA for efficient
non-linear feature extraction,” in Proceedings of the 17th British
Machine Vision Conference, pp. 4–7, Edinburgh, Scotland,
September 2006.

[15] T.-J. Chin and D. Suter, “Incremental kernel principal compo-
nent analysis,” IEEE Transactions on Image Processing, vol. 16,
no. 6, pp. 1662–1674, 2007.

[16] B. J. Kim and I. K. Kim, “Incremental nonlinear PCA for
classification,” in Proceedings of the European Conference on
Knowledge Discovery in Databases (PKDD), vol. 3202 of Lecture
Notes in Computer Science, pp. 291–300, Springer, 2004.

[17] B.-J. Kim, “Active visual learning and recognition using incre-
mental kernel PCA,” in Proceedings of the 18th Australian Joint
Conference on Advances in Artificial Intelligence AI’05, vol. 3809
of Lecture Notes in Comput. Sci., pp. 585–592, Springer, 2005.

[18] P. M. Hall, D. Marshall, and R. R. Martin, “Incremental
eigenanalysis for classification,” in Proceedings of the British
Machine Vision Conference, pp. 286–295, 1998.

[19] S. Kimura, S. Ozawa, and S. Abe, “Incremental Kernel PCA
for online learning of feature space,” in Proceedings of the
2005 International Conference on Computational Intelligence for
Modelling, Control and Automation, vol. 1, pp. 595–600, Vienna,
Austria, November 2005.

[20] Y. Takeuchi, S. Ozawa, and S. Abe, “An efficient incremental ker-
nel principal component analysis for online feature selection,” in
Proceedings of the 2007 International Joint Conference on Neural
Networks, pp. 2346–2351, Orlando, FL, USA, August 2007.

[21] O. Seiichi, Y. Takeuchi, andA. Shigeo, “A fast incremental kernel
principal component analysis for online feature extraction,”
in Proceedings of the Pacific Rim International Conference on
Trends in Artificial Intelligence, vol. 6230 of Lecture Notes in
Computer Science, pp. 487–497, Springer, 2010.

[22] T. Takaomi and O. Seiichi, “A fast incremental kernel principal
component analysis for learning stream of data chunks,” in
Proceedings of the 2011 International Joint Conference on Neural
Networks (IJCNN 2011 - San Jose), pp. 2881–2888, San Jose, CA,
USA, July 2011.

[23] A. A. Joseph and S. Ozawa, “A fast incremental kernel principal
component analysis for data streams,” in Proceedings of the 2014
International Joint Conference on Neural Networks (IJCNN),
Beijing, China, July 2014.

[24] A. A. Joseph, T. Tokumoto, and S. Ozawa, “Online feature
extraction based on accelerated kernel principal component
analysis for data stream,”Evolving Systems, vol. 7, no. 1, pp. 15–27,
2016.

[25] H. Fredrik and N. Paul, “Incremental kernel PCA and the
Nyström method,” 2018, https://arxiv.org/abs/1802.00043.

[26] G. Baudat and F. Anouar, “Kernel-based methods and func-
tion approximation,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN’01), pp. 1244–1249,
Washington, DC, USA, July 2001.

[27] H. Zhao, P. C. Yuen, and J. T. Kwok, “A novel incremental princi-
pal component analysis and its application for face recognition,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 36, no. 4, pp. 873–886, 2006.

[28] J. Weng, Y. Zhang, and W. Hwang, “Candid covariance-free
incremental principal component analysis,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp.
1034–1040, 2003.

[29] S. Nicole, “Feedforward neural networks for principal compo-
nents extraction,”Computational Statistics &Data Analysis, vol.
33, no. 4, pp. 425–437, 2000.

[30] T. D. Sanger, “Optimal unsupervised learning in a single-layer
linear feedforward neural network,”Neural Networks, vol. 2, no.
6, pp. 459–473, 1989.

https://arxiv.org/abs/1802.00043

Complexity 17

[31] E. Oja, “A simplified neuron model as a principal component
analyzer,” Journal ofMathematical Biology, vol. 15, no. 3, pp. 267–
273, 1982.

[32] Y. Li, “On incremental and robust subspace learning,” Pattern
Recognition, vol. 37, no. 7, pp. 1509–1518, 2004.

[33] M. Artac, M. Jogan, and A. Leonardis, “Incremental PCA for
on-line visual learning and recognition,” in Proceedings of the
16th International Conference on Pattern Recognition, pp. 781–
784, Quebec City, Canada, 2002.

[34] O. Seiichi, P. Shaoning, and K. Nikola, “A modified incremental
principal component analysis for on-line learning of feature
space and classifier,” in Proceedings of the 8th Pacific Rim
International Conference on Artificial Intelligence, pp. 231–240,
Auckland, New Zealand, 2004.

[35] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, New York, NY, USA, 2013.

[36] S. Ling, X. Cheng, and T. Jiang, “An algorithm for coneigenval-
ues and coneigenvectors of quaternion matrices,” Advances in
Applied Clifford Algebras (AACA), vol. 25, no. 2, pp. 377–384,
2015.

[37] C. Han, Y. Wang, and G. He, “On the convergence of asyn-
chronous parallel algorithm for large-scale linearly constrained
minimization problem,” Applied Mathematics and Computa-
tion, vol. 211, no. 2, pp. 434–441, 2009.

[38] S. B. Mike, B. Scholkopf, and A. J. Smola, “Kernel PCA and
denoising in feature space,” in Advances in Neural Information
Processing System, pp. 524–536, MTI press, Cambridge, UK,
1999.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

