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Abstract 

Holliday junction (HJ) resolution by its resolving enzymes is essential for chromosome 

segregation and recombination-mediated DNA repair. HJs undergo two types of 

structural dynamics that determine the outcome of recombination: conformer exchange 

between two isoforms and branch migration. However, it is unknown how the preferred 
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branch-point and conformer are achieved between enzyme binding and HJ resolution 

given the extensive binding interactions seen in static crystal structures. Single molecule 

fluorescence resonance energy transfer analysis of resolving-enzymes from 

bacteriophages (T7 endonuclease I), bacteria (RuvC), fungi (GEN1) and humans 

(hMus81-Eme1) showed that both types of HJ dynamics still occur after enzyme binding. 

These dimeric enzymes use their multivalent interactions to achieve this, going through a 

partially-dissociated intermediate in which the HJ undergoes nearly unencumbered 

dynamics.  This evolutionarily conserved property of HJ resolving-enzymes provides 

previously unappreciated insight on how junction resolution, conformer exchange and 

branch migration may be coordinated.  
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Introduction 

Holliday junctions (HJs) are structural intermediates in homologous recombination, a 

ubiquitous DNA metabolic process that is essential both for DNA repair and genetic 

variation in all forms of life1,2. Once the HJ is formed by the exchange of DNA strands, 

branch migration extends the heteroduplex, followed by resolution into two duplex DNA 

molecules by junction resolving enzymes, a group of structure-specific endonucleases3-5. 

A deficiency in junction resolution leads to impaired DNA replication and repair, 

chromosome instability and dysfunctional mitoses6.  

 

HJs are highly dynamic DNA structures: the branch point of a junction can migrate 

spontaneously or through the catalytic function of branch migration enzymes7,8; at a 

given branch point, HJs also undergo spontaneous conformer exchange between two 

structural isoforms9-11. Both types of dynamics influence the outcome of HJ resolution. 

Branch migration extends or shortens the length of DNA heteroduplex and hence 

determines the length of gene conversion. The two structural isoforms, or conformers, are 

correlated with the two alternative orientations of HJ cleavage, which dictate whether the 

HJ resolution results in gene conversion events either with (cross-overs) or without (non-

cross-overs) the exchange of flanking parental DNA sequences. However, it is puzzling 

how the required branch point and isoform are chosen for HJ cleavage because binding of 

a resolving enzyme to a junction as seen in their static crystal structures4,12-16 would not 

allow conformer exchange or branch migration, and it is unclear whether there is 

coordination between HJ resolution and these HJ dynamics. 

 

In this work, we use single molecule Fluorescence Resonance Energy Transfer 

(smFRET)17 to investigate the HJ dynamics upon binding of a resolving enzyme from 

diverse organisms, including  bacteriophages, bacteria, fungi and humans. We show that 

initial binding of a resolving enzyme captures the instantaneous structural conformer and 

branch point at the moment of binding. The resolving enzyme binding does not prevent 

conformer exchange nor branch migration, and these dimeric enzymes use their 

multivalency18 to achieve a short-lived partially dissociated intermediate where the HJ 

can undergo nearly unencumbered dynamics.   
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Results 

Endo I permits conformer exchange of Holliday junction 

In the absence of added divalent metal ions, HJs adopt a 4-fold symmetric square 

structure (open state O; Fig. 1a)19.  In the presence of Mg2+, HJs fold into two 

alternatively stacked conformers19 (U1 and U2; here ‘U’ stands for ‘unbound’ as opposed 

to ‘B’ for protein ‘bound’).  A single HJ can undergo conformer exchange between U1 

and U2 and the exchange rate decreases with increased Mg2+  concentration9-11. The O 

state, although too short-lived to be detected directly in Mg2+, is considered to be a shared 

intermediate for both conformer exchange and branch migration8. 

  

To study resolving enzyme binding to HJ using smFRET, we first used Junction 7 (J7)9-

11, the sequence of which does not allow branch migration (Fig. 1a). We attached Cy3 

(donor) and Cy5 (acceptor) to the ends of two adjacent arms such that conformer 

exchange can be detected as two-state fluctuation in FRET efficiency (EFRET) 
2,9,11. To 

prevent junction cleavage, we replaced Mg2+ with Ca2+. J7 exhibited similar dynamic 

properties in Ca2+ (Fig. 1b) to those in Mg2+ 9-11. The open state O of HJ in EDTA 

maintained a steady EFRET of 0.3. With 10 mM Ca2+, we observed exchanges between U1 

(EFRET = 0.15) and U2 (EFRET = 0.6) with rates kU1→U2 = 2.1 ± 0.2 s-1 and kU2→U1 = 3.5 ± 

0.3 s-1. 

 

We first studied endonuclease I from bacteriophage T72,14,20-22 (termed ‘Endo I’ here) 

(Fig. 1a and Supplementary Fig. 1a). Endo I cleaved surface-immobilized HJs in Mg2+ 

but not in Ca2+ (Supplementary Fig. 1b, c), confirming that the enzyme is active under 

our experimental conditions. In general, the junction resolving enzymes bind in dimeric 

form with high affinity (Kd  ~ 1 nM)4. Endo I binding induces either of the two alternative 

complexes (termed B1 and B2) that differ in coaxial pairing of arms12,14.After incubating 

10 nM Endo I with surface-immobilized J7 in Ca2+, we flushed out the unbound proteins 

so that all subsequently observed dynamics can be attributed to the pre-formed complex 

rather than protein dissociation and binding (Supplementary Fig. 1a; referred to as “flush 

condition”). The resulting EFRET histogram determined from ~10,000 molecules 
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contained two peaks at EFRET = 0.15 and 0.35, assigned to B1 and B2, respectively, based 

on structural considerations 12,14 (Fig. 1c). In the flush condition, most molecules were 

bound with proteins, as is evident by the nearly complete disappearance of U2 

population. The smFRET-time traces showed slow exchanges between B1 and B2 (Fig. 

1d) at rates kB1→B2 = (1.1 ± 0.4)×10-4 s-1 and kB2→B1 = (1.0 ± 0.4)×10-4 s-1. Interestingly, 

~30 % of such transitions showed a short-lived intermediate (Fig. 1d and Supplementary 

Fig. 2) which we will discuss in the next section. 

 

After observing the complexes in Ca2+, we flushed the sample chamber with buffer 

containing EDTA. A broad peak was observed in the EFRET histogram (Fig. 1c), and 

correlation analysis23 revealed that the time traces contained anti-correlated fluctuations 

of donor and acceptor intensities (ID and IA) with the time scale of 0.11 ± 0.02 s 

(Supplementary Fig. 3), likely due to fast exchange between B1 and B2 previously 

hypothesized to occur in EDTA14. When Ca2+ buffer was reintroduced, the relative 

populations of B1 and B2 were different from those prior to the EDTA pulse. This 

redistribution probably occurs because the U1/U2 equilibrium is different from that of 

B1/B2. It is likely that the initial Endo I binding captures the U1/U2 equilibrium which 

only later relaxes to the B1/B2 equilibrium. Indeed, single molecule time traces capturing 

the moment of Endo I binding showed that for J7 molecules that were locked into B2, 

93% had been in U2 (E0.6), and only 7% had started from U1 (E0.15) (Fig. 1e and 

Supplementary Fig. 4a).   

 

Population redistribution after EDTA pulse was also observed (Supplementary Fig. 5) for 

three mutants of Endo I12,20,24: 1) EndoΔ, lacking the 16 amino-acids N-terminal tail and 

possessing slower HJ cleavage, 2) K67A, a catalytically-impaired mutant, and 3) K67AΔ, 

combining both mutations. All three showed increased exchange rates between B1 and 

B2 (Fig. 1f) with K67AΔ having the highest rate, suggesting that their bound states are 

less stable than the wild type. 

 

Endo I permits branch migration through an intermediate 
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To investigate branch migration we used two previously described HJ constructs 7: J5m 

contains a central 5-bp homologous sequence so it can migrate over six branch points, 

and J0m is an otherwise identical junction that lacks homology so its branch point cannot 

migrate (Fig. 2a). We attached the fluorophores to the diametrically-opposed arms so that 

EFRET is sensitive to the branch point movement but not to conformer exchange (Fig. 2a 

and Supplementary Fig.6). Any EFRET dynamics seen in J5m but not in J0m can be 

attributed to branch migration. smFRET data for J0m by itself confirmed that labeling 

configuration is insensitive to conformer exchange because O, U1 and U2 merged into 

one degenerate state (EFRET=0.3 or E0.3) (Fig. 2b, c).  

 

Upon Endo I binding, J0m exhibited an E0.45 state which represents a degenerate mixture 

of B1 and B2 (Fig. 2c) but also underwent brief excursions to an E0.3 state (Fig. 2b; blue-

shaded regions). The brief excursions to E0.3 are unlikely due to complete dissociation 

and binding of another Endo I molecule because unbound proteins were washed out. E0.3 

excursions occurred more frequently with the Endo I mutants (Fig. 2d and Supplementary 

Fig. 5c, e). Such enhanced transition rates for Endo I mutants were also observed for the 

B1B2 conformer exchange of Endo I-bound J7 (Fig. 1f) where a short-lived state with 

a EFRET=0.6 value was often observed as an intermediate (Fig. 1d and Supplementary Fig. 

2), indicating this intermediate represents a loosely bound mode. Therefore, we assigned 

E0.45 to the fully bound (B) state of J0m and E0.3 to a partially-dissociated (PD) state 

through which conformer exchange occurs.  

  

Unlike J0m which showed a constant EFRET value with Ca2+, J5m showed fluctuations in a 

broad range of 0.1-0.7, likely due to branch migration7 (Fig. 2e). Upon Endo I binding, 

the EFRET peak shifted toward higher values while maintaining a broad range of 0.2-0.8, 

probably reflecting instantaneous branchpoint positions trapped by Endo I binding (Fig. 

2c and Supplementary Fig. 4b and 5d). Most time traces (Fig. 2e and Supplementary Fig. 

7a, b) comprised constant EFRET values, but with occasional episodes, which we attribute 

to PD, of EFRET fluctuations similar to what were observed for bare J5m. Consistent with 

this assignment, kB→PD rates were higher for the mutant proteins (Fig. 2d), sharing the 

trend of kB→PD observed for enzyme-bound J0m. Similar smFRET time traces containing 
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PD could also be observed in Mg2+ with the catalytically-impaired Endo I (K67A) 

(Supplementary Fig. 8). kPD→B did not change even in the presence of saturating (100 nM) 

Endo I, further ruling out the possibility that BPD transitions were due to full 

dissociation and binding of the enzyme (Supplementary Fig. 7c). 

 

We could directly observe branch migration as an abrupt change between two different 

steady EFRET values via PD (black arrows, Fig. 2e and Supplementary Fig. 7e-g), showing 

that PD is indeed an intermediate for branch migration. An EDTA pulse redistributed the 

EFRET populations (Fig.2c and Supplementary Fig. 5), suggesting that an Endo I-bound 

junction can undergo extensive branch migration in EDTA. Endo I-bound J5m could also 

undergo slow branch migration in Ca2+ (Supplementary Fig. 7d).  

 

Taken together, our data suggest the following model. PD serves as an intermediate that 

allows a resolving-enzyme-bound junction to undergo both branch migration and 

conformer exchange. Immediately after binding to a HJ, the enzyme fixes the 

instantaneous branch position and conformer. The equilibrium population distribution for 

branch position and conformer is different with and without the enzyme, and the enzyme-

bound junction approaches the new equilibrium over time. Indeed, we found direct 

evidence in smFRET time traces that PD acts as an intermediate for branch migration 

(black arrows, Fig. 2e and Supplementary Fig. 7e-g) and conformer exchange (Fig. 1d 

and Supplementary Fig. 2a). 

 

RuvC permits both types of HJ dynamics through PD 

To test whether cellular (i.e. non-phage) HJ resolving enzymes exhibit similar behaviour, 

we investigated E. coli RuvC25-27.  Unlike Endo I which is in the restriction endonuclease 

superfamily, RuvC belongs to the integrase superfamily28.  Junction resolving enzymes of 

the integrase superfamily exhibit marked sequence specificity for cleavage 

(Supplementary Fig. 1c) though they can bind equally well to HJs of any sequence3,29. 

RuvC binding induces a 2-fold symmetrical X-shaped HJ structure with two alternative 

conformers15,30 (Fig. 3a). Indeed, we observed two populations for RuvC-bound J7 (Fig. 

3b; EFRET = 0.15 for B1 and 0.35 for B2) with a strong preference for B1.  Time traces for 
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RuvC-bound J7 exhibited B1B2 exchanges through PD. PD is relatively long-lived 

and had imbedded within it rapid exchange between U1 (E0.15) and U2 (E0.6) (Fig. 3c and 

Supplementary Fig. 9a), with rates similar to those of protein-free J7 (Fig. 3d). Therefore, 

upon partial dissociation of RuvC, J7 undergoes conformer exchange nearly 

unencumbered by the still bound RuvC. PD was also observed in a flipped experimental 

scheme where RuvC was immobilized (Supplementary Fig. 9b), and the addition of 

saturating concentration (500 nM) of RuvC did not significantly change its average 

lifetime (τPD) (Fig. 3e, Supplementary Fig. 9c, d), confirming that PD does not represent 

full dissociation.  

 

The cross-correlation analysis suggests anti-correlated fluctuations between IA and ID 

with two time components 0.15 ± 0.01 and 3.5 ± 0.2 s (Fig. 3e).  The faster component is 

likely related to the conformer exchange of J7 within PD, and the slower component to 

the transitions between PD and B. From the real time traces, we could also deduce that 

when RuvC-bound J7 enters and exits a B state, it does so while maintaining coaxial 

partners. For example, 86% of PD→B2→PD events occurred as U2→B2→U2 (red 

circles, Fig. 3f).  

 

We further examined the possibility for branch migration proceeding within a RuvC-

bound junction. RuvC binding only slightly reduced EFRET for both J5m and J0m 

(Supplementary Fig. 10), but unlike the control J0m, RuvC-bound J5m exhibited anti-

correlated fluctuations between IA and ID, with two time components 0.21 ± 0.01 and 4.2 

± 0.1 s (Fig. 3c, e, and Supplementary Fig. 11), consistent with branch migration. The 

fast component is likely related to the branch migration rate within PD and is slightly 

slower than that obtained from protein-free J5m, indicating that branch migration persists 

in PD but with a slower rate. The slow component is likely due to the BPD transitions, 

and is indeed similar to the slow component observed in RuvC-bound J7.  In addition, 

because our junctions do not contain the consensus RuvC cleavage sequence, making HJ 

cleavage in Mg2+ inefficient29,31 (Supplementary Fig. 1c), we could further show that 

RuvC-bound junction in Mg2+ also undergoes conformer exchange and branch migration 

via PD (Supplementary Fig. 9d, e and Supplementary Fig. 11b, c). The observed rates for 
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these processes were 100-fold higher for RuvC compared to wild type Endo I as a result 

of more frequent visits to PD. The greater tendency to visit PD may help RuvC in the 

search for its consensus cleavage sequence. 

 

Next, we examined the BPD transitions for a HJ construct containing one RuvC 

cleavage site 5’-(A/T)TT↓(G/C)-3’32 and labelled to report on conformer exchange as in 

J7 (referred to as RCUNC1). RCUNC1 can be cleaved by RuvC, but more slowly than 

with both cleavage sites as previously reported32 (Supplementary Figs. 12a, b). At 10 mM 

Ca2+, RuvC-bound RCUNC1 showed single molecule behaviours similar to those 

obtained for RuvC-bound J7 (Fig. 3c and Supplementary Fig. 12c, d). Therefore, 

introducing a cleavage site does not change the overall behaviour except for small 

differences in the rates of visiting PD (Supplementary Fig. 12e).  

 

Increasing ionic strength makes PD more frequent  

Because many DNA-protein interactions can be weakened by increases in ionic strength, 

we investigated the ionic strength dependence of BPD transitions.  For Endo I (K67A)-

bound J5m, kB→PD was at the minimum at 10 mM Ca2+, and increased as [Ca2+] was 

further increased (Supplementary Fig. 13a). This [Ca2+] dependence is well aligned with 

the [Ca2+] dependence measured by gel shift assays: in the low concentration range (<1 

mM), Ca2+ stabilizes the Endo I binding, whereas in the higher concentration range (≥ 10 

mM), increasing [Ca2+] decreases the binding stability (Supplementary Fig. 14). 

Similarly, for RuvC-bound J7, kB1→PD was at the minimum at 1 mM Ca2+, and increased 

as [Ca2+] increased above 1 mM (Supplementary Fig. 13b and Supplementary Fig. 9f, g). 

When [Ca2+] was kept at 10 mM, increasing [NaCl] also increased kB1→PD (Supplementary 

Fig. 13c). Overall, PD is more frequently visited at increased ionic strengths and 

therefore should correspond to a binding mode with lower binding stability compared to 

the B states.  

 

GEN1 binding permits conformer exchange 
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To test if our observations can be generalized to a eukaryotically conserved junction 

resolving enzyme GEN15, we examined GEN1 from a thermophilic fungus. The current 

structural model of GEN1-bound HJ is that one pair of opposite arms of the HJ are 

coaxially aligned, while the other pair are rotated toward each other around the axis of the 

coaxial arms to include an angle of close to 90°16. This structural model predicts that B1 

and B2 would be merged into one degenerate EFRET state when Cy3 and Cy5 are attached 

to the ends of two adjacent HJ arms, making J7 a suitable HJ construct to monitor the 

transitions between B and PD.  Because GEN1 binding requires junctions with longer 

arms16, we extended the arms of J7 from 11 to 20 bp to create J7E (Fig. 4a and 

Supplementary Fig. 9h).  

 

At 10 mM Ca2+, the unbound J7E exhibited transitions between U1 (E0.05) and U2 (E0.4) 

(Supplementary Fig. 15a). GEN1 binding induced a dominant peak at E0.1, representing 

the degenerate mixture of B1 and B2 (and U1), and a small peak at E0.4 (U2). Time traces 

showed that the bound J7E transited from the bound state (E0.1) to the PD mode 

exhibiting U1U2 transitions (Fig. 4b), similar to the behaviour of RuvC-bound J7.  The 

PD lifetime (τPD) was 3.6 ± 0.3 s (Supplementary Fig. 15b) and kB→PD was 0.034 ± 0.003 

s-1, both similar to those observed for RuvC-bound J7. Furthermore, the U1U2 

transitions had similar rates to those obtained with protein-free J7E (Fig. 4c), indicating 

that the conformer exchange is unencumbered in PD of GEN1-bound junction.  

 

hMus81-Eme1 permits conformer exchange and branch migration 

We next investigated the human heterodimeric endonuclease hMus81-Eme1. This 

enzyme acts cooperatively with other endonucleases by preferentially cleaving the 

junctions that have already been nicked by other endonucleases such as SLX1-SLX433-35. 

Because hMus81-Eme1 binding also requires junctions with longer arms36, we used J7E 

(Fig. 4a). EFRET histograms of hMus81-Eme1-bound J7E (Supplementary Fig. 15c) were 

similar to those of GEN1-bound J7E (Supplementary Fig. 15a) and RuvC-bound J7 (Fig. 

3b). Time traces of unbound J7E exhibited EFRET fluctuations due to conformer exchange, 

and these fluctuations persisted in hMus81-Eme1 bound complexes (Fig. 4d and 

Supplementary Fig. 16), indicating that exchange occurs without full protein dissociation. 
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EFRET fluctuations appear to involve more than two states, suggesting the existence of a 

PD intermediate between B1 and B2 (Fig. 4d). To test if hMus81-Eme1 binding still 

allows branch migration, we used J5m and a variant that contains a nick within the 

homologous region (n-J5m; Fig. 4a and Supplementary Fig. 15d). It has been shown that 

a nick does not prevent branch migration37. hMus81-Eme1 efficiently cleaved n-J5m but 

not J5m (Supplementary Fig. 1c), consistent with its role in junction resolution after the 

first unilateral cleavage33,36. hMus81-Eme1-bound n-J5m and J5m exhibited EFRET 

fluctuations with similar rates, but not the control J0m, indicating that hMus81-Eme1 

permits branch migration (Fig. 4e and Supplementary Figs. 17 and 18).    

 

Multivalent interactions between junctions and resolving enzymes 

Since junctions in PD behave like their unbound counterparts in conformer exchange and 

branch migration, a significant amount of bonds at the DNA-protein interface must be 

broken. Because most resolving enzymes function as dimers, it is possible that one 

subunit within the dimer, or even more interactions at the binding interface, has been 

disengaged in PD, exposing the protein for competitive binding by additional DNA. 

Indeed, adding either unlabelled junction or duplex DNA as competitors to RuvC-bound 

J7 accelerated RuvC dissociation by at least 20-fold. (Supplementary Fig. 19).  smFRET-

time traces obtained immediately after adding DNA competitors typically exhibited an 

irreversible transition from the steady B1 state to a mode with rapid U1U2 transitions 

(Supplementary Fig. 19f). This is consistent with a model in which these molecules 

transit from the B state to the unbound state through PD, although it is impossible to 

identify the exact time point for the transition from PD to the unbound state. Junction and 

duplex DNA were equally competitive for Endo I and for Mus81-Mms4, the budding 

yeast homolog of hMus81-Eme138,39.  Faster dissociation induced by competitor DNA 

suggests that in PD a significant fraction of the interactions between the resolving 

enzyme and the junction are lost, and the dissociated portion is available to interact with 

DNA competitors.  

  

Discussion 
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Our study of four contrasting junction-resolving enzymes from bacteriophage, bacteria, 

fungi and humans suggests that they share similar properties whereby the dynamic 

processes of conformer exchange and branch migration can proceed without full 

dissociation. This is achieved via an intermediate termed PD in which the junction may 

freely sample U1, U2 and O states just like unbound junctions, and which serves as the 

intermediate for exchange between the B1 and B2 complexes, and for branch migration 

(Fig. 5a). Previous structural analyses could not detect PD due to its transient nature, and 

neither conformer exchange nor branch migration could occur within the constraints of a 

crystal lattice. 

 

Several biochemical studies have shown that the enzymes facilitating branch migration 

interact specifically with their cognate resolving enzymes and stimulate their cleavage 

activity, implying possible coordination between junction branch migration and 

resolution26,27,40-43. The PD mode discovered in this study provides a potential molecular 

mechanism for such coordination of branch migration and resolution. The branch 

migration enzyme and resolving enzyme bind together to the HJ to form a ternary 

complex, and the ternary complex formation may lock or bias the HJ in the PD mode to 

allow the branch migration enzyme to actively drive branch migration without full 

dissociation of the resolving enzyme; once the junction reaches its desired cleavage site, 

the resolving enzyme switches from the PD mode to the fully bound mode to achieve 

junction resolution (Fig. 5b). A structural model for such a ternary RuvABC-junction 

complex has been previously hypothesized where the HJ lies sandwiched between RuvA 

and RuvC, and the RuvA-RuvC-junction complex is flanked on two sides by RuvB27 

although this RuvABC mode of action and its potential conservation in eukaryotes have 

not been demonstrated. 

 

It should be noted that the rates of dynamics measured in vitro for the HJs bound by 

junction resolving enzymes can be slower than the actual rates in vivo as these rates may 

be affected by multiple factors: 1) The presence of the homologous sequence in the HJ 

core region could increase the frequency of PD. For example, the B→PD transition rates 

of J5m determined for all the four Endo I variants were 3-5 fold higher than those 
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obtained for J0m. 2) Branch migration enzymes apply an active mechanical force (~25 

pN for RuvAB44) to drive branch migration in one direction, which may significantly 

increase the tendency of visiting PD for the resolving enzyme-bound HJ. 3) The 

interaction strength between the resolving enzyme and HJ controls the frequency of PD, 

which differs among different resolving enzymes and at different ionic strengths. Both 

conformer exchange and branch migration for RuvC-bound and GEN1-bound HJs occur 

much faster than for Endo I-bound HJs. And the dynamics of hMus81-Eme1-bound HJs 

are even faster. In addition, high ionic strength (Na+ or divalent ion concentration) could 

increase the frequency of PD.  

 

While the interactions of HJ and resolving enzymes have been extensively described in 

the literature, our results reveal their dynamic nature. Although their exact binding 

interface in PD awaits further investigation, a significant amount of protein-DNA 

interactions seen in the ground state of the complex, likely at least one of the two 

subunits, must have been lost to allow the observed HJ dynamics in PD with little to 

moderate levels of hindrance. Our data may have implications on other DNA-protein 

interactions that are multivalent and  can be broken little by little or one at a time to 

facilitate the recruitment of other proteins to the same DNA molecule18. 
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Figure Legends 

Figure 1: Endo I binding to Holliday junctions captures the instantaneous junction 

conformer and permits exchange between two isoforms (B1 and B2).  

a, Schematic of junction structural dynamics before and after Endo I binding. Junction 7 

(J7) comprises four arms of 11 bp. b, smFRET-time traces for unbound J7 obtained at 0 

or 10 mM Ca2+. c, EFRET histograms of unbound J7 at 0 or 10 mM Ca2+ (top) and of Endo 

I-bound J7 obtained in the Ca2+-EDTA-Ca2+ buffer exchange experiments (bottom). d, 

smFRET-time traces of Endo I-bound J7 at 10 mM Ca2+, showing the transitions between 

B1 and B2. Partial dissociation (PD) was observed as an intermediate (blue-shaded 

region) for ~30% of the transitions between B1 and B2 (right). e, Single molecule time 

traces of J7 showing an Endo I binding event. The blue dashed line indicates the time 

when 10 nM Endo I were added. The percentages were analyzed from 1,000 HJ 

molecules. f, Conformer exchange rates kB1→B2 and kB2→B1 for the four variants of Endo I 

obtained at 10 mM Ca2+. Data are means ± s.e.m of n = 1,000 HJ molecules. Error bars 

represent bootstrap estimates of s.e.m..  

 

Figure 2: Endo I binding captures the instantaneous branch position and permits 

branch migration through a partially dissociated intermediate. 

a, Schematic of J0m exhibiting different EFRET states before and after Endo I binding. b, 

smFRET-time traces of unbound and Endo I-bound J0m in 10 mM Ca2+. Partial 

dissociation (PD) of Endo I was observed as transient reduction in EFRET (blue-shaded 

region). c, smFRET histograms of unbound J0m or J5m obtained at 0 or 10 mM Ca2+ 

(top), and of Endo I-bound J0m or J5m obtained in the Ca2+-EDTA-Ca2+ buffer exchange 

experiments (bottom). d, kB→PD and kPD→B for four variants of Endo I obtained at 10 mM 

Ca2+. Data are means ± s.e.m. of n = 1,000 HJ molecules. Error bars represent bootstrap 

estimates of s.e.m.. e, smFRET-time traces of unbound and Endo I-bound J5m in 10 mM 

Ca2+. Visits to PD were observed as transient reduction in EFRET (blue-shaded regions). A 

representative branch migration event is marked (black arrow).  

 

Figure 3: RuvC binding permits conformer exchange and branch migration through 

PD.  

18



 

 

a, Schematic of HJ structural dynamics for RuvC-bound J7. b, EFRET  histograms of J7, 

with and without RuvC bound, at 10 mM Ca2+. c, smFRET-time traces of RuvC-bound 

J7, RCUNC1, J0m and J5m at 10 mM Ca2+. Partial dissociation of RuvC was observed as 

an intermediate (blue-shaded region) between B1 and B2. d, The conformer exchange 

rates between U1 and U2 for bare J7 and for RuvC-bound J7 within PD. Data are 

means ± s.e.m. of n = 1,000 HJ molecules. Error bars represent bootstrap estimates of 

s.e.m.. e, Cross-correlations of ID and IA for J7E, J0m, J5m and n-J5m, with and without 

RuvC bound, are fit to single (for free HJs) or double (for RuvC-bound HJs) exponential 

functions (see also Supplementary Table 1). Means ± s.e.m are indicated (n = 1,000 HJ 

molecules).  f, smFRET-time traces of RuvC-bound J7 with different types of PD→ 

B2→ PD transitions. 86% of PD→ B2→ PD events occur as U2→ B2→ U2 (red 

circles). The percentages were analyzed from 1,000 HJ molecules.   

 

Figure 4: GEN1 and hMus81-Eme1 binding both permit conformer exchange and 

hMus81-Eme1 binding also permits branch migration.  

a, Schematics of J7E and n-J5m. b, smFRET- time traces of unbound and GEN1-bound 

J7E at 10 mM Ca2+. c, The conformer exchange rates between U1 and U2 for bare J7 and 

for GEN1-bound J7 within PD. Data are means ± s.e.m. of n = 1,000 HJ molecules. Error 

bars represent bootstrap estimates of s.e.m. d, smFRET-time traces of bare or hMus81-

Eme1-bound J7E, J5m and n-J5m at 1 mM Ca2+. e, Cross-correlations of ID and IA for 

J7E, J0m, J5m and n-J5m, with and without hMus81-Eme1 bound, were fitted to single 

(for unbound HJs) or double (for hMus81-Eme1-bound HJs) exponential functions (see 

also Supplementary Table 1). Means ± s.e.m are indicated (n = 1,000 HJ molecules).   

 

Figure 5: Proposed models for the coordination of junction resolution, conformer 

exchange and branch migration. a, Schematic of a kinetic model deduced to describe 

the dynamics of resolving-enzyme-bound HJs. PD serves as an intermediate that allows a 

resolving-enzyme-bound junction to undergo both branch migration and conformer 

exchange. b, Schematic of the speculative ternary complex containing the branch 

migration-facilitating enzyme, the junction resolving enzyme and Holliday junction for 

the coordination of branch migration and junction resolution.  
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Online Methods 

Statistics and Reproducibility 

All the experiments shown in this study were repeated at least three times 

independently with similar results. 

 

DNA sequences and annealing procedures 

DNA sequences for making the DNA constructs used in this study can be found in 

Supplementary Table 2. DNA oligonucleotides were purchased from Integrated DNA 

Technologies (Coralville, IA). J7, unlabeled J7 and J7E were annealed by mixing the four 

strands with the molar ratio 1:1:1:1 (final concentration ~10 μM each) in 10 mM 

Tris:HCl (pH 8.0) and 50 mM NaCl followed by slow cooling from 90°C to room 

temperature for ~ 2 hours. J3 was prepared by mixing equimolar amounts of the four 

component oligonucleotides in PNK buffer (New England Biolabs), labelling them with 

-32P-dATP (Perkin Elmer) and T7 polynucleotide kinase (New England Biolabs) 

followed by slow cooling from 90°C to room temperature for ~ 2 hours. 22-bp dsDNA 

was annealed by mixing the two strands with the molar ratio 1:1 (final concentration ~10 

μM each) in 10 mM Tris:HCl (pH 8.0) and 50 mM NaCl followed by slow cooling from 

90°C to room temperature for ~ 2 hours. J5m, n-J5m and J0m were constructed as 

previously described 7,37,45. When J5m undergoes spontaneous branch migration, there are 

six possible donor-acceptor separations of 10, 12, 14, 16, 18, 20 bp for different branch 

positions. The donor-acceptor separation for J0m is 16 bp. 

 

Protein expression and purification 

Wild-type Endo I and Endo I mutants were expressed and purified as previously 

described12,20,24,46. E. coli RuvC was purchased from Abcam (Cambridge, MA). C. 

thermophilum GEN1 was expressed and purified as previously described16. Full length 

human (h)Mus81-Eme1 was expressed and purified as previously described 36. All 

protein concentrations cited in the text refer to protein dimers. Purified proteins migrated 

as a single band on a polyacrylamide gel in the presence of SDS (Supplementary Fig. 20). 

 

Single molecule imaging and data acquisition 
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All smFRET experiments were performed with a total internal reflection fluorescence 

(TIRF) microscope47 at RT (22 ± 1°C) in imaging buffer composed of 20 mM Tris (pH 

8.0 for Endo I and RuvC, pH7.5 for hMus81-Eme1 and GEN1), 10 mM NaCl, 0.1 mg/ml 

BSA, 1 mM DTT, oxygen scavenging system (0.5% wt/vol glucose, 3 mM Trolox, 165 

U/ml glucose oxidase band 2170 U/ml catalase), with 5 mM EDTA or the desired 

concentrations of CaCl2/MgCl2. 5% (vol/vol) glycerol was included in the imaging buffer 

for hMus81-Eme1 and GEN1 measurements. 50-100 pM of Cy3-Cy5 labeled HJ 

molecules were immobilized on a quartz slide surface coated with polyethyleneglycol 

(mPEG-SC, Laysan Bio) in order to eliminate nonspecific surface adsorption of proteins 

47,48. Surface immobilization was mediated by biotin-neutravidin binding between 

biotinylated HJs, neutravidin (Pierce), and biotinylated polymer (Bio-PEG-SC, Laysan 

Bio). After incubating HJ resolving enzymes (10 nM Endo I/K67A/EndoΔ/K67AΔ, 50 

nM RuvC, 70 nM hMus81-Eme1, or 100 nM GEN1) with the surface-immobilized HJs 

for 5 min in imaging buffer containing 1 or 10 mM Ca2+, excess unbound proteins were 

flushed out of the sample chamber using five chamber volumes of imaging buffer and 

Cy3/Cy5 intensities from single HJs were recorded using an electron-

multiplying CCD camera with time resolution of 0.03 s. These protein concentrations 

resulted in a bound fraction of almost 100%, and the protein binding was stable for a long 

period of time (for example, at least 1 hr for Endo I and RuvC) after flushing out the 

unbound proteins.  EFRET histograms were generated by averaging for the time period of 

0.15 s from ~10,000 HJ molecules each. smFRET data were excluded only if there was 

only Cy3 signal and lack of Cy5 signal for that single molecule, or if the intensity-time 

trace obtained for Cy3 or Cy5 exhibited multiple photo-bleaching steps.  

 

For measuring the cleavage of Holliday junction resolving enzymes under single 

molecule conditions, 100 pM of Cy3/Cy5-labeled HJ (J5m or n-J5m) were immobilized 

on the PEG surface. Junction resolving enzymes (10 nM EndoΔ, 50 nM RuvC, or 70 nM 

hMus81-Eme1) were incubated with the surface-immobilized HJ for 5 min in 1 mM Ca2+ 

and the excess unbound proteins were flushed out using buffer containing 1 mM Ca2+. 1 

mM Mg2+ was then introduced to the sample chamber to trigger the cleavage reaction at 

room temperature. For both of the two possible cleavage orientations, the cleavage 
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released the part of HJ that contains Cy3. Therefore, the fraction of uncleaved J5m (or n-

J5m) can be monitored by determining the mean Cy3 spot count per imaging area (~ 

2,500 µm2) as a function of reaction time. For RuvC cleavage, RCUNC1 and J7E were 

also used following the same protocol except that 10 mM instead of 1 mM Mg2+ was 

introduced to the sample chamber to trigger the cleavage reaction and prism holder, and 

that sample stage, and objective were connected to a Thermo NESLAB RTE-7 

circulating bath using custom parts to maintain sample temperature at 37 °C. 

 

For the Ca2+-EDTA-Ca2+ buffer exchange experiments, 10 nM of wild type Endo I or 

Endo I mutant (K67A, EndoΔ, or K67AΔ) was incubated with the surface-immobilized 

HJs (J7, J0m or J5m) in 10 mM Ca2+ for 10 min. The first EFRET histogram was obtained 

10 min after flushing out unbound proteins using buffer containing 10 mM Ca2+. The 

second EFRET histogram was obtained 10 min after the first buffer exchange to buffer 

containing 5 mM EDTA. Finally, the third EFRET histogram was obtained 5 min after the 

second buffer exchange to buffer containing 10 mM Ca2+. For the resolving enzyme 

cleavage assay, imaging buffer containing 1 mM Mg2+ was introduced to the sample 

chamber to trigger the cleavage reaction, after incubating and flushing HJ resolving 

enzymes in imaging buffer containing 1 mM Ca2+. Mean Cy3 spot count per image (each 

imaging area is ~2,500 μm2) was determined from images taken from 5-10 different slide 

regions at different time points after introducing the Mg2+ buffer. For the competition 

binding assay, unlabeled competitor DNA (J7 or 22-bp DNA duplex) was introduced to 

the sample chamber, after incubating and flushing RuvC proteins in buffer containing 10 

mM Ca2+.  EFRET histograms were obtained at different times after introducing competitor 

DNA. 

 

Transition rate determination 

The transition rate from the fully bound (B) state to the partially dissociated (PD) state, 

kPD→B, was determined from the single exponential fit to the histogram of the dwell times 

of the PD state. The reverse transition rate, kB→PD, was defined as the total number of 

B→PD transitions observed, divided by the total time that all the molecules spent in the 

B state. The total time here is the cumulative time not only from those molecules showing 
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the B→PD transition, but also from the molecules that did not show such transitions but 

stayed in the B state throughout the observation time window, which is limited by the 

photobleaching life time of Cy dyes and typically ranges from 20 to 300 s under our 

experimental conditions. Because the B→PD transition occurs with a relatively low 

frequency, Cy3 or Cy5 can be photobleached before a B→PD transition can occur, 

making it not so meaningful to determine the percentage of molecules showing the 

B→PD transitions. Nonetheless, we determined such percentage values for Endo I-bound 

HJs, and found that these values vary a lot among the four Endo I variants and also 

depend on the DNA substrate (J0m or J5m): For J0m, it is 23% for Endo I, 42% for 

K67A, 45% for EndoΔ, and 91% for K67AΔ; For J5m, it is 51% for Endo I, 90% for 

K67A, 92% for EndoΔ, and 98% for K67AΔ. It is worth noting that the actual 

percentages of molecules that have the capability to show B→PD transitions are likely 

much more than those numbers have indicated due to the limited observation time 

window described above. The transition rates between U1 and U2 at 10 mM Ca2+ were 

determined using hidden Markov models as previously described49. It is worth noting that 

when the U1 or U2 dwell times are shorter than our experimental time resolution (0.03 s), 

those dwell times would not show up in the time traces and hence were missed from our 

analysis.  Given that U1/U2 dwell times have a single exponential distribution and the 

average U1 (or U2) dwell time is ~ 0.4 s, we can further estimate the portion of these 

undetectable U1 (or U2) dwell times to be ~ 7%. In the time traces showing initial 

binding of Endo I to J7 which locked the J7 molecules into B2 (Fig. 1f), we detected that 

93% had been in U2, and only 7% had started from U1. Given that our detection would 

miss 7% of U2 dwell times, 93% could actually mean that almost 100% of J7 molecules 

that got locked in B2 had been in U2. 

 

FRET efficiency calculation.  

Apparent FRET efficiency (EFRET) was calculated from the fluorescence intensities of the 

donor (ID) and acceptor (IA) using the formula EFRET = IA / (IA + ID). The background and 

the cross-talk between the donor and acceptor were considered as previously described47. 

 

Cross-correlation analysis 
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The cross-correlation analysis was performed as previously described23,50. The cross-

correlation functions were calculated between donor and acceptor time traces for each HJ 

molecule, and all the cross-correlations presented in figures are cross-correlations 

averaged among >200 HJ molecules. We found the cross-correlations for bare J7, J7E, 

J5m and n-J5m can be fit to a single exponential function, while those for resolving-

enzyme-bound J7, J7E, J5m and n-J5m can be fit to a bi-exponential function, yielding 

one time component for bare HJs and two time components for resolving-enzyme-bound 

HJs.   

 

Gel electrophoresis 

To detect RuvC cleavage, 10 µl of each cleavage reaction was prepared as a mixture of 

10 nM DNA substrate (J7E or RCUNC1), 10 nM RuvC, 50 mM Tris-HCl (pH 8.0), 5 

mM MgCl2, 1 mM DTT, 100 µg/mL BSA. For control experiments, RuvC was not 

included in the mixture. Samples were incubated at RT or 37 °C for 15 min, then stopped 

by addition of 2 µl of 5x stop buffer (125 mM EDTA, 2.5% SDS, and 50% glycerol). 

Samples were then run on 10% polyacrylamide gel in 1x TBE buffer.  

 

To determine the [Ca2+] dependence of Endo I binding to HJ, 0.2 nM 5’-32P-labelled 

four-way DNA junction J3 was incubated with serial two-fold dilutions of endonuclease I 

(from 1 µM to 15.3 pM) for 10 min at 22 °C in 20 mM Tris-HCl (pH 8.0), 50 mM NaCl, 

0.1 mg/ml BSA and the specified concentration of either EDTA (1 mM) or CaCl2 (0.2, 1, 

5, 10, 15 or 20 mM). These samples were then mixed with loading buffer (0.25% 

bromophenol blue, 0.25% xylene cyanol FF and 2.5% Ficoll type 400), loaded onto 8% 

polyacrylamide gels and electrophoresed in TB buffer containing the specified 

concentration of either EDTA or CaCl2. Dried gels were exposed to storage phosphor 

screens (BAS-IP MP 2040), and quantified using a BAS- 1500 phosphorimager (Fuji) 

and Image Gauge V4.0 software. Data were analyzed as the fraction of DNA bound 

(fbound) versus the concentration of protein and were fit to a two-state model:  

𝑓𝑏𝑜𝑢𝑛𝑑 =
𝐾𝐷 + 𝑃0+𝐷0 −√(𝐾𝐷 + 𝑃0+𝐷0)

2 − 4𝑃0𝐷0
2𝐷0
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where total protein and DNA concentrations are P0 and D0 respectively and KD is the 

dissociation constant (i.e., the inverse of the binding affinity constant KA). 

 

Code availability 

All custom software and codes are available from T.H. (tjha@jhu.edu) or R.Z. 

(ruobozhou@fas.harvard.edu) upon request or can be downloaded from the Ha Research 

Group website at http://ha.med.jhmi.edu/resources/. 

 

Data availability 

The data that support the findings of this study are available from T.H. (tjha@jhu.edu) or 

R.Z. (ruobozhou@fas.harvard.edu) upon reasonable request. A Life Sciences Reporting 

Summary for this study is available. 
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