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Abstract
Parkinson's is a heterogeneous, complex condition. Stratification of Parkinson's sub-
types will be essential to identify those that will benefit most from a cell replacement 
therapy. Foetal mesencephalic grafts can alleviate motor symptoms in some 
Parkinson's patients. However, on-going synucleinopathy results in the grafts even-
tually developing Lewy bodies, and they begin to fail. We propose that Parkinson's 
patients with PARKIN mutations may benefit most from a cell replacement therapy 
because (a) they often lack synucleinopathy, and (b) their neurodegeneration is often 
confined to the nigrostriatal pathway. While patients with PARKIN mutations exhibit 
clinical signs of Parkinson's, post-mortem studies to date indicate the majority lack 
Lewy bodies suggesting the nigral dopaminergic neurons are lost in a cell autono-
mous manner independent of α-synuclein mechanisms. Furthermore, these patients 
are usually younger, slow progressing and typically do not suffer from complex non-
nigral symptoms that are unlikely to be ameliorated by a cell replacement therapy. 
Transplantation of dopaminergic cells into the putamen of these patients will provide 
neurons with wild-type PARKIN expression to re-innervate the striatum. The focal 
nature of PARKIN-mediated neurodegeneration and lack of active synucleinopathy 
in most young-onset cases makes these patients ideal candidates for a dopaminergic 
cell replacement therapy. Strategies to improve the outcome of cell replacement ther-
apies for sporadic Parkinson's include the use of adjunct therapeutics that target 
α-synuclein spreading and the use of genetically engineered grafts that are resistant 
to synucleinopathy.
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1  |   INTRODUCTION

Parkinson's disease (PD) is a common and complex neuro-
degenerative condition that has multiple underlying patholo-
gies ultimately leading to disruption of the basal ganglia due 
to loss of dopaminergic innervation of the striatum from the 
substantia nigra. For over 30 years, transplantation of human 
foetal mesencephalic tissue into the striatum by stereotactic 
surgery has been attempted with mixed success (Lindvall 
et al., 1990, 1994; Olanow et al., 2003; Piccini et al., 2005). 
In some cases, the grafts restored dopamine transmission to 
near normal levels, reversed motor dysfunction and reduced 
dependence on dopaminergic medicines for at least 15 years 
(Barker, Barrett, Mason, & Björklund, 2013; Kefalopoulou 
et al., 2014). However, troublesome graft-induced dyskine-
sias were common with up to 50% of patients experiencing 
this unexpected side-effect (Hagell et al., 2002). This was 
caused in part by undesired serotonergic neurons present in 
the graft (Hagell et al., 2002; Politis et al., 2010). The prob-
lem of graft heterogeneity and unwanted cell types can be 
addressed by producing midbrain dopaminergic (mDA) neu-
rons from human pluripotent stem cells that are highly pure 
and devoid of any serotonergic neurons (Kriks et al., 2011). 
The progress towards clinical trials for cell replacement ther-
apies for Parkinson's is very advanced now (Barker, Parmar, 
Studer, & Takahashi, 2017), with the first Parkinson's patient 
transplanted in Japan in October 2018 (Cyranoski, 2018).

The pathological hallmark of PD, the Lewy body, is 
made up of aggregated proteins of which a major compo-
nent is α-synuclein (Spillantini et al., 1997). The pattern of 
Lewy body formation in distinct anatomical regions during 
disease progression has led to a prion-like spreading hy-
pothesis for PD with α-synuclein proposed to be the prion-
like molecule (Braak, Ghebremedhin, Rüb, Bratzke, & Del 
Tredici, 2004). Further support for this hypothesis came 
when PD patients who had received foetal ventral mes-
encephalic grafts came to autopsy. The majority of grafts 
that were 10 years or older had clear signs of Lewy body 
formation and were exhibiting signs of decline, such as re-
duced dopamine transporter (DAT) expression (Kordower, 
Chu, Hauser, Freeman, & Olanow, 2008; Kordower, Chu, 
Hauser, Olanow, & Freeman, 2008; Li et al., 2008; Mendez 
et al., 2008). Foetal grafts that were 18 months or 4 years 
old showed little evidence of synucleinopathy, which sug-
gests that if there is a host-to-graft transfer of Lewy pathol-
ogy it is not particularly rapid (Chu & Kordower, 2010). 
Experimental evidence in support of this possible mecha-
nism came from various models, including the stereotac-
tic injection of recombinant pre-formed fibrils (PFFs) of 
α-synuclein into wild-type mice (Luk et al., 2012). A time-
dependent spreading of Lewy-like pathology was observed 
over 18 months, and this was dependent on the presence of 
the endogenous mouse Snca gene (Luk et al., 2012).

Although PD is usually sporadic, a significant number 
of cases (>10%) are familial (Hardy, Cai, Cookson, Gwinn-
Hardy, & Singleton, 2006). Point mutations in the SNCA 
gene encoding for α-synuclein are a known cause of famil-
ial PD (Kiely et al., 2013; Krüger et al., 1998; Lesage et al., 
2013; Pasanen et al., 2014; Polymeropoulos et al., 1997; 
Zarranz et al., 2004). Multiplications of the wild-type SNCA 
gene are also an autosomal dominant cause of PD (Chartier-
Harlin et al., 2004; Ibáñez et al., 2004; Singleton et al., 
2003). Genome-wide association studies have also identified 
polymorphisms around the SNCA locus to be the most sig-
nificant genetic risk factors for sporadic PD (Satake et al., 
2009; Simón-Sánchez et al., 2009). The most common mu-
tations known to cause familial PD are autosomal dominant 
mutations in the LRRK2 gene (Zimprich et al., 2004). The 
prevalence of the G2019S mutation of LRRK2 in PD patient 
populations varies greatly, and has been found to be as high 
as 41% in the North African Berber sporadic PD population 
(Lesage et al., 2006). Most LRRK2 patients have Lewy body 
pathology that is similar, if not identical, to sporadic PD 
(Santpere & Ferrer, 2009; Zimprich et al., 2004). However, 
there are accumulating reports of LRRK2 patients with clin-
ical PD and nigral degeneration, but without any evidence 
of Lewy body pathology (Gaig et al., 2007; Takanashi et al., 
2018; Wszolek et al., 2004).

2  |   PURE NIGROPATHY 
PARKINSON'S DISEASE

Cases of Parkinson's without Lewy bodies began to appear in 
the literature in the early 1990s (Dwork et al., 1993). The pa-
tients were usually early-onset (<40 years), slow progressing 
and showed a good response to Levodopa. This condition, 
distinct from sporadic PD, was often referred to as autosomal 
recessive juvenile Parkinson's (AR-JP) and is prevalent in 
Japan (Yamamura, Sobue, Ando, Iida, & Yanagi, 1973). The 
underlying mutation found to cause AR-JP was identified 
in the PARKIN gene (Kitada et al., 1998). Since this report, 
multiple families from across the world have been identified 
with diverse mutations in PARKIN (Cornejo-Olivas et al., 
2015; Farrer et al., 2001; Gouider-Khouja et al., 2003; van de 
Warrenburg et al., 2001). The prevalence of PARKIN muta-
tions in the young-onset (<45 years) sporadic PD population 
has been estimated to be about 15% (Periquet et al., 2003), 
and this increases to almost 50% for familial young-onset 
cases with a recessive pattern of inheritance (Bonifati, 2012; 
Lücking et al., 2000). Prior to the identification of PARKIN 
mutations, post-mortem brain studies of Japanese patients 
who died with AR-JP exhibited a striking lack of Lewy 
body pathology and very little neurodegeneration beyond the 
substantia nigra (Matsumine et al., 1997; Mori et al., 1998; 
Takahashi et al., 1994; Yamamura et al., 1998). Since these 
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T A B L E   1   Lewy body presence or absence in PD patients with PARKIN mutations

Sex
Age of 
onset

Age of 
death PARKIN alleles

Lewy 
bodies?

Distribution of neuronal 
loss Notes References

F NA 67 PARK2 No Substantia nigra, locus 
coeruleus

Japanese, Family 
556

Takahashi et al. 
(1994)PARK2

F 20 52 PARK2 No Substantia nigra Japanese, Family M, 
patient M-2, no 
dementia

Yamamura et al. 
(1998)PARK2

M 24 62 Exon 4: deletion No Substantia nigra, locus 
coeruleus

Japanese, neurofi-
brillary tangles 
present

Mori et al. (1998)

Exon 4: deletion

M 32 70 Exon 4: deletion No Substantia nigra, locus 
coeruleus

Japanese, patient 
III-4, no evidence 
of dementia

Hayashi et al. 
(2000)Exon 4: deletion

M 18 75 Exon 3: deletion No Substantia nigra Dutch, patient II-3, 
tau pathology

van de Warrenburg 
et al. (2001)Exon 6: Lys211Asn

M 34 47 Exon 2: 2-bp deletion No Substantia nigra, locus 
coeruleus

Tunisian, patient 
IV-I

Gouider-Khouja 
et al. (2003)Exon 2: 2-bp deletion

F 36 86 Exon 6: deletion No Substantia nigra British, no evidence 
of dementia

Doherty et al. 
(2013)Exon 7: Arg275Trp

F 25 62 Exon 3: 40-bp 
deletion

No Substantia nigra British, no evidence 
of dementia

Doherty et al. 
(2013)

Exon 7: Arg275Trp

M 32 68 Exon 3: 40-bp 
deletion

No Substantia nigra, locus 
coeruleus

Irish, no evidence of 
dementia

Doherty et al. 
(2013)

Exon 12: Gly430Asp

M 16 60 Intron 5: IVS5-1G>A No Substantia nigra Peruvian, patient 
II-2

Cornejo-Olivas 
et al. (2015)Exon 7: deletion

M 20 79 Exon 3–4: deletion No Substantia nigra Norwegian, no 
evidence of 
dementia

Johansen, Torp, 
Farrer, Gustavsson, 
and Aasly (2018)

Exon 3–4: deletion

M 41 52 Exon 3: 40-bp 
deletion

Yes Substantia nigra, locus 
coeruleus

North American, 
patient Pw3

Farrer et al. (2001)

Exon 7: Arg275Trp

F 33 70 Exon 3: deletion Yes Substantia nigra, locus 
coeruleus

Japanese, young 
onset, LBs in 
pedunculopontine 
nucleus

Sasaki et al. (2004)

Exon 3: deletion

M 49 73 Exon 7: deletion Yes Substantia nigra, locus 
coeruleus

Italian, patient 
IV.33, late onset

Pramstaller et al. 
(2005)Exon 9: 1-bp deletion

F 33 60 Exon 7: Arg275Trp Yes Substantia nigra, locus 
coeruleus

Irish, young onset, 
sparse cortical LBs

Doherty et al. 
(2013)Exon 12: Gly430Asp

M 46 82 Exon 6: deletion Yes Substantia nigra, brain stem British, no evidence 
of dementia, brain 
stem LBs

Doherty et al. 
(2013)Exon 7: Arg275Trp

F 61 72 Exon 2–4: deletion Yes SN, LC, dorsal motor 
nucleus of the vagus, 
basal nucleus of Meynert

Japanese, late onset, 
no orthostatic 
hypotension or 
dementia

Miyakawa et al. 
(2013)Exon 2–4: deletion

Note. LBs: Lewy bodies; SN: substantia nigra; LC: locus coeruleus.
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first reports, several PARKIN patients have been reported 
with α-synuclein-positive Lewy bodies, but they were often 
of older age at onset or had a heterozygous PARKIN muta-
tion (Mori et al., 1998; Sharp et al., 2014). Patients harbour-
ing compound heterozygous mutations of PARKIN where 
one allele was a point mutation were also more likely to 
have Lewy bodies than patients with homozygous exonic 
deletions (Doherty et al., 2013). Table 1 gives a summary 
of PARKIN PD patient autopsy data segregated by the pres-
ence or absence of Lewy body pathology. Patients without 
evidence of Lewy bodies were all diagnosed before the age 
of 40, and none had shown signs of dementia. As with most 
early-onset PARKIN patients they were very responsive to 
Levodopa therapy, had a slow disease progression and did 
not suffer from autonomic dysfunction (Doherty & Hardy, 
2013). Pathologically, all PARKIN patients without Lewy 
pathology had severe hypopigmentation of the substantia 
nigra and significant loss of dopaminergic neurons from this 
region. Several patients also had neuronal loss in the locus 
coeruleus, but other regions such as the amygdala, olfactory 
bulb, hippocampus and cortex were unaffected (Doherty & 
Hardy, 2013). The ascending cholinergic neurons of the pe-
dunculopontine nucleus are frequently affected in sporadic 
PD (Hirsch, Graybiel, Duyckaerts, & Javoy-Agid, 1987; 
Zweig, Jankel, Hedreen, Mayeux, & Price, 1989). However, 
this was rarely observed in PARKIN PD, although one case 
with a homozygous exon 3 PARKIN mutation was reported 
with pathology in this region (Sasaki, Shirata, Yamane, & 
Iwata, 2004). The focal and restricted neuronal loss in the 
majority of PARKIN patients is not typical of sporadic PD, 
where widespread pathology is observed that may in part be 
due to an α-synuclein spreading mechanism (Desplats et al., 
2009; Luk et al., 2012).

As dopaminergic neurons are amongst the most met-
abolically active of all cells in the brain (Guzman et al., 
2010; Matsuda et al., 2009), functional studies of the 
PARKIN protein may provide a mechanism for the highly 
selective neuronal loss observed in this condition. Using 
Drosophila genetics, PARKIN was found to be downstream 
of PINK1, in a common pathway regulating mitochondrial 
function (Clark et al., 2006; Park et al., 2006). Extensive 
cell biology and biochemical analysis have uncovered the 
regulation of PARKIN and demonstrated that upon mito-
chondrial damage, it is recruited to the mitochondrial outer 
membrane (OMM) where it is phosphorylated and activated 
by PINK1 (Harper, Ordureau, & Heo, 2018; McWilliams & 
Muqit, 2017). Active PARKIN ubiquitylates multiple sub-
strates at the OMM that signal the recruitment of autophagy 
machinery to trigger the elimination of mitochondria by au-
tophagy (mitophagy) (Harper et al., 2018; McWilliams & 
Muqit, 2017). Mutations in the PINK1 gene were identified 
to be the second most common cause of familial autoso-
mal recessive PD (Valente et al., 2004). The clinical and 

pathological picture is similar to PARKIN patients with re-
ports of patients with both Lewy and non-Lewy pathology. 
A compound heterozygous PINK1 patient who has come to 
autopsy did show evidence of Lewy pathology in the sub-
stantia nigra, and the nucleus basalis of Meynert, but not the 
locus coeruleus (Samaranch et al., 2010). This patient had 
a deletion of exon 7 on one allele, and a splicing mutation 
on the other, and it is unclear if any functional PINK1 pro-
tein was produced. In contrast, two patients with homozy-
gous missense point mutations in PINK1 at either C388R or 
L347P had an absence of Lewy pathology in the substantia 
nigra (Steele et al., 2015; Takanashi, Li, & Hattori, 2016). 
More recently, PARKIN has been implicated in controlling 
inflammation through its role in mitophagy, and loss of 
PARKIN leads to increased sensitivity to stress-induced 
inflammatory phenotypes that cause neurodegeneration 
(Sliter et al., 2018). Whilst these studies suggest a potential 
mechanism of neuronal death that is independent of Lewy 
pathology, it cannot be ruled out that α-synuclein oligomers 
are formed in PARKIN or PINK1 patients that contribute to 
neurodegeneration without forming mature Lewy bodies or 
Lewy neurites.

3  |   DISTINGUISHING 
SYNUCLEINOPATHY FROM PURE 
NIGROPATHY?

Here, we argue that PARKIN PD patients and other PD pa-
tients (e.g. PINK1) with predominant nigral pathology with-
out active synucleinopathy may be ideal candidates for a cell 
replacement therapy for two major reasons (a) their grafts are 
unlikely to be affected by Lewy pathology, and (b) non-nigral 
systems will remain unaffected as this is the normal course 
for this subtype of PD. PARKIN patients rarely have auto-
nomic problems or cognitive decline, which are less likely 
to be addressed by a dopaminergic cell replacement therapy. 
The grafted neurons will also have wild-type PARKIN pro-
tein and therefore normal mitophagy function. Due to the 
very focal loss of substantia nigra neurons, PARKIN PD is 
considered a pure nigropathy. However, some PARKIN pa-
tients also have Lewy bodies (Table 1), and although a young 
onset and homozygous exon deletions usually indicate a lack 
of Lewy pathology, at least one exception to this rule has 
been reported (Sasaki et al., 2004). Furthermore, a significant 
percentage of LRRK2 and PINK1 patients may also have pure 
nigropathy. It would therefore be valuable to stratify patients 
based on the absence or presence of synucleinopathy using 
definitive criteria.

Sympathetic denervation of the heart and Lewy pathology 
in the cardiac plexus is common in sporadic PD (Iwanaga et al., 
1999). This can be observed non-invasively by scintigraphy 
with [123I]metaiodobenzylguanidine (MIBG), an analogue of 
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norepinephrine (Wieland et al., 1981). Significantly reduced 
cardiac MIBG uptake is associated with sporadic PD and 
pure autonomic failure (Braune, Reinhardt, Schnitzer, Riedel, 
& Lucking, 1999; Kashihara, Ohno, Kawada, & Okumura, 
2006). It was found that decreased cardiac uptake of MIBG 
is a common feature of synucleinopathies. This method could 
thus be used to distinguish PD and dementia with Lewy bod-
ies (DLB) from other neurodegenerative conditions such 
as progressive supranuclear palsy, and Alzheimer's disease 
(Orimo et al., 2007). In contrast to sporadic PD, MIBG scin-
tigraphy of two PARKIN PD patients with homozygous exon 4 
deletions revealed normal cardiac innervation, and they were 
later confirmed to have a complete absence of Lewy bodies 
(Orimo et al., 2005). Furthermore, a C388P PINK1 patient 
that lacked Lewy pathology also had normal cardiac innerva-
tion as determined by an MIBG scan (Takanashi et al., 2016). 
Therefore, combining information from an MIBG scan and 
genetic testing for PARKIN, PINK1, LRRK2 and other PD-
related mutations could have high predictive value for the 
presence or absence of synucleinopathy. However, a more 
definitive test for the presence or absence of synucleinopathy 
could be direct assaying of the cerebrospinal fluid (CSF) for 
the presence of α-synuclein oligomers (Fairfoul et al., 2016; 
Shahnawaz et al., 2017). The RT-QuIC assay of α-synuclein 
oligomer amplification can distinguish PD and DLB from 
other neurodegenerative conditions, although PARKIN PD 
CSF has yet to be tested. The presence or absence of synucle-
inopathy can also be examined in colon, submandibular gland 
or skin (Del Tredici, Hawkes, Ghebremedhin, & Braak, 2010; 
Ikemura et al., 2008; Wakabayashi, Takahashi, Ohama, & 
Ikuta, 1990), and it will be interesting to investigate PARKIN 
PD at these sites for α-synuclein pathology. Applying a com-
bination of criteria, including clinical assessment, genetics, 
DAT-SPECT imaging, MIBG scintigraphy and α-synuclein 
biomarker assays, will make it possible to distinguish indi-
viduals with synucleinopathy from those with pure nigropa-
thy caused by other mechanisms.

4  |   WHAT ABOUT SPORADIC PD?

The majority of PD patients have some form of synu-
cleinopathy, and in some familial forms, such as SNCA 
or GBA mutations, it is highly active (Clark et al., 2009; 
Singleton et al., 2003). What could be the best approach 
to improve the success of a cell replacement therapy and 
to increase its efficacy in these patients? Fortunately, there 
are tremendous efforts to therapeutically target α-synuclein 
disease mechanisms (Brundin, Dave, & Kordower, 2017). 
Passive α-synuclein immunisation with humanised antibod-
ies are promising and clinical trials are on-going (Jankovic 
et al., 2018; Masliah et al., 2011). Clinical trials of modi-
fied anti-sense oligonucleotides (ASOs) have been very 

successful for spinal muscular atrophy (Finkel et al., 2016); 
and a similar approach is being taken for Huntington's and 
Alzheimer's disease, and could be applied to Parkinson's. 
Progress towards reducing SNCA mRNA and α-synuclein 
protein via RNA interference is being made (Cooper et al., 
2014; Zharikov et al., 2015), and novel small molecules, 
such as Anle138b and NPT-100-18A, also have poten-
tial to reduce or eliminate α-synuclein oligomers (Levin 
et al., 2014; Wrasidlo et al., 2016). Excitingly, re-purposed 
drugs like salbutamol and clenbuterol, which reduce SNCA 
mRNA levels, could be used in clinical trials relatively 
quickly (Mittal et al., 2017). If an α-synuclein therapeutic 
is successful in slowing PD, it could be used in combination 
with a cell replacement therapy to slow or stop the spread 
of Lewy pathology into the graft, as well as to other non-
nigral systems.

An alternate solution for a long-lasting dopaminergic 
graft for sporadic PD patients is to provide disease-resistant 
cells that are unable to form Lewy bodies. It has been de-
scribed that neurons susceptible to Lewy pathology express 
an appreciable amount of endogenous α-synuclein (Braak 
et al., 2004). Furthermore, mice that lack the Snca gene are 
completely resistant to the formation of Lewy-like pathol-
ogy triggered by stereotactic administration of recombinant 
α-synuclein pre-formed fibrils (PFFs) (Luk et al., 2012). 
Wild-type mice exhibited α-synuclein inclusions with phos-
phorylation at serine-129, a hallmark of PD, 30 days after 
α-synuclein PFF administration and significant dopaminer-
gic neuronal loss by 180 days, while Snca−/− mice injected 
with PFFs did not show any signs of PD pathology or neuro-
nal loss (Luk et al., 2012). As human pluripotent stem cells 
are replacing foetal tissue as a source of transplantable do-
paminergic cells, it is now possible to genetically manipu-
late the cell product prior to transplantation. Using CRISPR/
Cas9, we have deleted one or two alleles of the SNCA gene 
from human embryonic stem cells (hESCs). Upon differen-
tiating, the modified hESCs into mDA neurons and chal-
lenging them with α-synuclein PFFs, we demonstrated that 
SNCA+/− or SNCA−/− neurons exhibit partial or full resis-
tance to the formation of Lewy-like pathology (Chen et al., 
2018). This strategy works equally well with induced plu-
ripotent stem cells (iPSCs). An alternative approach to de-
leting the SNCA gene is to introduce a point mutation that 
renders the protein unable to form oligomers or fibrils, but 
does not affect its ability to localise to synaptic puncta or 
affect its normal endogenous functions. Based on in vitro 
fibrillation assays, and cellular aggregation assays, promis-
ing candidate residues for mutation include alanine-76 and 
serine-87 (Fiske et al., 2011; Giasson, Murray, Trojanowski, 
& Lee, 2001; Lázaro et al., 2014). Another route to reduce, 
but not eliminate, α-synuclein expression is to over-express 
natural microRNAs (miRNAs) known to target SNCA tran-
scripts. Two such miRNAs are mir-7 and mir-153, which 
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target the 3′ untranslated region of SNCA and mediates its 
degradation (Doxakis, 2010; Junn et al., 2009). Mir-7 is par-
ticularly attractive as it is normally expressed in the substan-
tia nigra and has a role in promoting cell survival (Cheng, 
Byrom, Shelton, & Ford, 2005; Junn et al., 2009).

5  |   CONCLUSION

Dopaminergic cell replacement therapy is rapidly approach-
ing clinical trials for Parkinson's disease (Barker et al., 2017). 
The initial cell therapy efforts using foetal-derived tissue 
have had mixed results for a complex variety of reasons, 
including patient selection (Barker et al., 2013). An unex-
pected outcome of the foetal trials was that the dopaminergic 
grafts acquired Lewy pathology and begin to fail over time 
(Li et al., 2016). We propose that PARKIN PD patients and 
other PD patients with pure nigropathy and lacking synucle-
inopathy would be ideal candidates for first-generation do-
paminergic cell replacement therapies due to their relatively 
focal and cell autonomous neurodegeneration. For sporadic 
PD, and especially PD patients with aggressive synucleinop-
athy, such as GBA PD, we advocate the use of an adjuvant 
therapy against α-synuclein, when they are proven, alongside 
or prior to a cell therapy. Furthermore, second-generation 
cell replacement therapies from hESCs or iPSCs that are ge-
netically engineered to be resistant to Lewy pathology will 
increase the longevity and efficacy of the transplanted dopa-
minergic neurons.
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