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REPORT 

 

 

 

 

 

 

ABSTRACT :     

We have designed structure-based ligands for the guanidine-II riboswitch that bind with enhanced 

affinity, exploiting the twin binding sites created by loop-loop interaction. We synthesized 

diguanidine species, comprising two guanidino groups covalently connected by Cn linkers where n 

= 4 or 5. Calorimetric and fluorescent analysis shows that these ligands bind with a ten-fold higher 

affinity to the riboswitch compared to guanidine. We determined X-ray crystal structures of the 

riboswitch bound to the new ligands, showing that the guanidino groups are bound to both 

nucleobases and backbone within the binding pockets, analogously to guanidine binding. The 

connecting chain passes through side openings in the binding pocket and traverses the minor 

groove of the RNA. The combination of the riboswitch loop-loop interaction and our novel ligands 

have potential applications in chemical biology. 
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INTRODUCTION 

 

RNA provides a versatile scaffold for binding small molecule ligands with high selectivity. This is 

particularly well illustrated by the riboswitches (Roth and Breaker, 2009; Serganov and Nudler, 

2013), cis-acting regulatory elements that occur in the 5’ non-coding regions of (mostly) bacterial 

mRNA that are widely used to control gene expression. Many classes have now been identified that 

respond to a range of metabolites including coenzymes, amino acids, purines and even ions. 

Atomic resolution structures are available for many riboswitches, and this provides an opportunity 

to carry out ligand engineering to design new species that will bind with elevated affinity. In this 

work we have used a structure-guided approach that uses a unique feature of a guanidine riboswitch 

to create a novel ligand. 

 

The ykkC riboswitches comprise a group of three structurally-unrelated riboswitches that bind 

guanidine. Breaker and colleagues (Nelson et al., 2017) showed that ligand binding to these 

riboswitches upregulates the expression of a series of genes whose products either chemically 

convert guanidine or export it from the cell. Three ykkC types have been identified, called the 

guanidine-I (Nelson et al., 2017), -II (Sherlock et al., 2017) and -III (Sherlock and Breaker, 2017) 

riboswitches. Crystal structures have been solved for members of each class (Battaglia et al., 2017; 

Huang et al., 2017a; Huang et al., 2017b; Reiss and Strobel, 2017; Reiss et al., 2017). We have 

exploited a novel feature of the guanidine-II riboswitch structure to design a high-affinity ligand. 

 

The guanidine II riboswitch comprises two stem-loops with G+C rich helices and an ACGR (R = A 

or G) tetraloop, connected by a short polynucleotide of ~ 14 nt (Sherlock et al., 2017). Individual 

single stem-loops undergo loop-loop interaction driven by the cooperative binding of guanidine. 

Using X-ray crystallography our laboratory (Huang et al., 2017a) and that of Strobel (Reiss and 

Strobel, 2017) showed that the stem-loops dimerize by loop-loop interaction involving the 

formation of intermolecular base pairs and triples. Formation of the dimer creates identical binding 

sites for two guanidine ligands symmetrically. These are bound by donation of guanidine protons to 

O6 and N7 of a guanine nucleobase (G9 in our usual numbering scheme (Huang et al., 2017a)), and 

to non-bridging oxygen atoms of consecutive phosphate groups. At neutral pH guanidine is 

protonated, thus having six protons and D3h symmetry. Four of these protons are involved in 

specific interactions with the RNA. Protonation confers a positive charge (i.e. it is more properly 

called the guanidinium cation), and the ligand is stacked upon the guanine nucleobase of the loop-

proximal base pair (G6-C11), so that the cation- interaction contributes to the stability of the 

dimer.  
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In this report, we demonstrate how a structure-guided rational approach can be used to re-engineer 

the ligand of the guanidine-II riboswitch, exploiting its unusual creation of two binding sites by 

loop-loop interaction. Sherlock et al (Sherlock et al., 2017) found that some variants of guanidine 

with substitution on one nitrogen atom such as methylguanidine and aminoguanidine bound to the 

guanidine-II riboswitch with affinities that were within a factor of four of guanidine itself. 

Furthermore, even addition of a butylamine sidechain (agmatine) led to retention of binding despite 

a further loss of affinity. Our crystal structure of the Gloeobacter violaceus guanidine-II riboswitch 

(Huang et al., 2017a) revealed that the binding pocket had a side opening that might accommodate 

one or more additional atoms attached to one nitrogen. We diffused these compounds into our 

crystals, and obtained structures of the riboswitch bound to the modified guanidine species (Huang 

et al., 2017a). This revealed that the guanidino moiety was bound in exactly the same way as 

guanidine, and that the additional methyl, amino and butylamine side chains did indeed emerge 

from the side pocket. In the latter case while the electron density for the guanidine was clear, that 

for the longer side chain was poorly defined suggesting that it became progressively more mobile 

as it emerged from the side opening. 

 

The side openings of the two guanidine binding sites in the stem-loop dimer are approximately 7 Å 

apart and oriented towards each other on the minor groove side of the loop-loop interface, so we 

wondered if two guanidino moieties might be covalently linked to create a higher-affinity ligand. 

Molecular modelling based on our structure of guanidine-bound riboswitch suggested that two 

guanidine units linked by C4 or C5 polymethylene chains should bind to the riboswitch. 

 

We therefore set out to synthesize C4 and C5 -linked diguanidine species and examine their binding 

to the G. violaceus guanidine-II riboswitch. We have found that both compounds bind to the 

riboswitch with enhanced affinity and lower stoichiometry. We crystallized the two bound 

complexes and solved their structures, showing that the linked ligands bind in the anticipated 

manner.  

 

 

RESULTS AND DISCUSSION 

 

Synthesis of diguanidine species 

In order to explore the binding properties of linked guanidines we synthesized two forms of 

diguanidine species in which the guanidine moieties are covalently connected by four or five 

carbon atoms (Figure 1). For clarity we term these species diguanidine-C4 (N,N'-(butane-1,4-

diyl)bis guanidinium, also known as arcaine) and diguanidine-C5 (N,N'-(pentane-1,5-diyl)bis 
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guanidinium also known as audouine) respectively. The synthetic procedures are detailed in the 

Material and Methods section. In brief, diguanidine-C4 and diguanidine-C5 were synthesized by 

guanylation of (4-aminobutyl)guanidine (agmatine) and 1,5-diaminopentane (cadaverine) using 1 

and 2 molar equivalents of 1-H-pyrazole-1-carboxamidine hydrochloride (Bernatowicz et al., 1992) 

respectively (Figure S1A). The products were characterised by 1H NMR and mass spectrometry 

(Figure S1B, C), although the crystal structures of the complexes (see below) provide unambiguous 

evidence that these compounds have the required structure. 

 

Calorimetric analysis of binding of guanidine and diguanidine species to the 

guanidine II riboswitch  

We have investigated the binding of guanidine, diguanidine-C4 and diguanidine-C5 to individual 

guanidine-II riboswitch stem-loops and a complete riboswitch using isothermal titration calorimetry 

(ITC) (Figure 2 and Figure S2). First, we have studied the individual P1 and P2 stem-loops derived 

from G. violaceous, for which we have previously determined crystal structures (Huang et al., 

2017a). Titration curves are presented in Figure S2. The binding of guanidine to the P1 and P2 

stem-loops is an exothermic, enthalpy-dominated reaction. Fitting the titration curves gives 

dissociation constants (Kd) for the binding reaction of 68 µM and 66 µM respectively, at molar 

ratios n = 1.9 and 2.2 (Table S1). A stoichiometry of n = 1 is expected for the binding of guanidine 

to the isolated stem-loops, but crystal structures reveal a second guanidine binding site near the top 

of the stem-loop. Reiss and Strobel (2017) observed spermidine and a hydrated magnesium ion 

bound to the same site, which evidently has a tendency to bind cationic ligands, including 

guanidine. The additional binding site may account for the observed molar ratio of n ~ 2, in which 

case it must bind with a similar affinity. Calorimetric titration was repeated for diguanidine-C4 , 

giving values of Kd = 4.7 and 5.9 µM for P1 and P2 respectively, each with a molar ratio of n = 0.4, 

close to the expected stoichiometry of 0.5. Thus linking the guanidine ligands increases the affinity 

by an order of magnitude compared to guanidine.  

 

We have further explored the binding of guanidine, diguanidine-C4 and diguanidine-C5 to a 

complete G. violaceous riboswitch with linked P1 and P2 stem loops using ITC (Figure 2A-C). As 

with the individual stem-loops, all three compounds exhibit exothermic binding, with Kd = 33, 2.2 

and 5.1 µM respectively (Table S1). Binding exhibited molar ratios of n = 2.7, 1.1 and 1.2 

respectively. The binding affinities for each compound is approximately two-fold higher for the 

complete riboswitch compared to the individual stem-loops. Furthermore, as with the individual 

stem-loop structures, the diguanidine species bind an order of magnitude more tightly than 

guanidine and diguanidine-C4 binds with the highest affinity. The results are consistent with the 

binding of multiple molecules of guanidine to the riboswitch and a single molecule of the 
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diguanidine species with ~ ten-fold higher affinity. 

 

Spectroscopic analysis of binding of diguanidine species to the complete 

guanidine II riboswitch 

A feature of the dimerization of the stem-loops observed in the crystal was mutual stacking of the 

A10 nucleobases, i.e. the 3’-terminal nucleotide of the loop. We have exploited this interaction to 

construct a spectroscopic probe of the loop-loop interaction between the stem-loops of the complete 

G. violaceous riboswitch. We synthesized a riboswitch in which A10 of the P2 loop was replaced 

by 2-aminopurine. This nucleobase is fluorescent, but subject to marked static quenching when 

stacked with another nucleobase. We therefore anticipated that the 2-aminopurine fluorescence 

intensity might decrease upon binding guanidine or related ligands that induce loop-loop 

interaction. 

 

The 2-aminopurine-substituted riboswitch was titrated separately with guanidine and diguanidine-

C4, recording the emission spectrum of 2-aminopurine excited at 315 nm. Addition of the ligands 

led to reduced fluorescence.  The fluorescence intensity was integrated between 355 and 375 nm, 

and plotted as a function of ligand concentration (Figure 2D, E). Addition of guanidine leads to a 

three-fold quenching of 2-aminopurine fluorescence, and fitting the observed intensities to a two-

state binding model gives Kd = 53 µM (Figure 2D). 2-aminopurine fluorescence was also quenched 

on addition of diguanidine-C4, and fitting the intensity data led to a calculated affinity of Kd = 1.4 

µM (Figure 2E). The data are consistent with an intramolecular loop-loop interaction in the 

riboswitch, involving stacking of the adenine and 2-aminopurine at the 10 positions leading to 

quenching of the latter.  

 

We have studied the ligand-induced folding of the 2-aminopurine-containing riboswitch in 

response to the addition of guanidine and diguanidine-C4 by ITC (Figure S2F, G). The ligands 

bound with an affinity of Kd = 41 and 6.6 µM, with molar ratios of n = 4.3 and 0.79 respectively.  

 

A crystal structure of the guanidine II riboswitch bound to ethylguanidine  

Ethylguanidine can be regarded as half of diguanidine-C4, just lacking the central C-C bond. The 

compound was soaked into ligand-free crystals of the G. violaceous P1 stem-loop (Table S2), and 

the resulting crystals diffracted to 1.54 Å (Table S3). The structure (PDB ID 6HBX) is shown in 

Figure 3. The structure of the stem-loop is closely similar to that bound to guanidine and 

methylguanidine (Figure 3B) (Huang et al., 2017a). The guanidine moieties are hydrogen bonded in 

the normal manner to O6 and N7 on the Hoogsteen edge of G9, with the remaining guanidine N 

atom donating hydrogen bonds to non-bridging O atoms of successive phosphate groups (Figure 
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3C). The ethyl chains emerge from the same side openings as observed with bound methyl- and 

aminoguanidine and agmatine (Huang et al., 2017a). The terminal C atoms of the side chain are 

separated by 3.3 Å in this structure (Figure 3D). However the electron density is weak for the 

terminal atoms and the barrier to rotation about the N-C bonds to bring them to within bonding 

distance (1.5 Å) should be small.  

 

A crystal structure of the guanidine II riboswitch bound to diguanidine-C4 

Our chemically-synthesized diguanidine-C4 was soaked into the G. violaceous P1 stem-loop 

crystals, and the resulting crystals diffracted to 1.66 Å (Table S3). The structure was solved (PDB 

ID 6HBT; Figure 4) and the position of the diguanidine-C4 ligand is well defined by the electron 

density map. This demonstrates that the two guanine moieties are bound in the usual manner 

(Figure 4B), and are connected by the four-carbon methylene chain just as anticipated. The electron 

density for the C4 linker region is weaker compared to the guanidine groups (Figure 4C). Moreover 

the crystallographic B-factors for these atoms are significantly higher (average value of 57.5) 

compared to those of the guanidino-C atoms (46.2). These data collectively suggest a greater 

flexibility of the C4 chain, most likely in a kind of crankshaft rotation. Figure 4D shows that the 

ligand emerges from the side opening of the binding pocket, traverses the minor groove and enters 

the binding pocket of the second site.  

 

A crystal structure of the guanidine II riboswitch bound to diguanidine-C5 

We also soaked our chemically-synthesized diguanidine-C5 into the G. violaceous P1 stem-loop 

crystals, and the structure was solved to a resolution of 1.41 Å (PDB ID 6HC5; Figure 4; Table S3). 

The position of the two guanidine groups is well defined, bound in the normal manner (Figure 4E). 

Electron density for the guanidines and the first two C atoms of the linker is clear, but that for the 

central C atom cannot be observed at a contour level of  = 1.5 (Figure 4F). The B-factor for the 

central C atom is 86.0, and the mean value for those flanking it is 50.2. The ligand is clearly bound 

in the expected manner, but the longer linker is more mobile. Our calorimetric measurements 

(Table S1) show that lower free energy of binding of diguanidine-C5 compared to diguanidine-C4 is 

entirely due to a greater change in T∆S, consistent with a higher conformational entropy of the 

linker.   

 

In conclusion 

The work described here clearly demonstrates that the two guanidine ligands of the guanidine II 

riboswitch can be covalently linked by a chain of four or five methylene carbon atoms that pass 

through the side openings of the two ligand binding pockets located on the minor groove side of the 

dimeric riboswitch. The diguanidine ligands are hydrogen bonded into the two binding sites in the 
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same manner as guanidine (Huang et al., 2017a), or ethylguanidine, although with subtle changes 

of position (Figure S6). The guanidine groups of diguanidine-C5 and ethylguanidine are within 0.2 

Å, but those of diguanidine-C4 are retracted by 0.4 Å. This indicates that the shorter linker may be 

under some degree of tension. 

 

We have measured the affinity of binding by calorimetry and fluorescence spectroscopy. Although 

there is some variation in the affinities measured using different methods, the diguanidine ligands 

bind with affinities that are consistently one order of magnitude higher than that of guanidine. 

Diguanidine-C4 has a slightly higher affinity than that of diguanidine-C5 , most probably because of 

the greater flexibility of the linking chain in the latter. It is possible that rigidifying the linking 

chain could further increase binding affinity. The stoichiometry of the binding of the diguanidine 

ligands is consistent with binding as a single ligand. Thus the results are entirely consistent with 

our structural understanding of the guanidine II riboswitch, and provide a new class of higher-

affinity ligand. 

 

The work here provides an example of structure-based ligand design using a natural riboswitch. 

The guanidine II riboswitch ACGR stem-loop is one of the smallest riboswitches and so easy to 

combine with other RNA elements. The combination of this with diguanidine ligands has a number 

of potential applications in chemical and synthetic biology and RNA-based nanotechnology. For 

these the diguanidine-C4 has a number of important properties. The compound binds to the 

riboswitch-derived RNA with higher affinity compared to guanidine, and is a non-natural 

compound so chemically orthogonal to cellular metabolism. Importantly, diguanidine-C4 has low 

toxicity in rats (Ceretta et al., 2008), and is much less toxic than guanidine. This specific ligand-

induced RNA interaction could be generally applicable in RNA technology, RNA design and 

perhaps RNA-based therapeutics.  

 

 

MATERIALS AND METHODS 

 

Synthesis and characterization of diguanidine compounds 

Diguanidine compounds were synthesized by guanylation of amines using 1-H-pyrazole-1-

carboxamidine hydrochloride, following procedure B of Bernatowicz et al., (Bernatowicz et al., 

1992) (Figure S1). NMR spectra were recorded using a Bruker Avance DPX 400 spectrometer (1H 

at 400 MHz; 9.4 T) using automatic tuning and matching. Chemical shifts (δ) are expressed in ppm 

recorded using the residual solvent peak at 4.7 ppm as the internal reference in both cases. Signal 

splitting patterns are described as triplet (t), quintet, multiplet (m), or a combination thereof. 

 Cold Spring Harbor Laboratory Press on January 7, 2019 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


_______________________________________________________________________________ 
 Huang … Lilley The RNA journal 069567 Riboswitch ligand design  9  

Coupling constants (J) are quoted to the nearest 0.1 Hz. Fast atom bombardment (FAB) mass 

spectrometry was performed using an Agilent G6470A Triple Quadrupole spectrometer in positive 

mode of detection. A syringe pump was used to deliver methanol solutions of the diguanidine 

compounds (1.0 µg/mL) with a flow rate of 0.5 mL/min. A stainless-steel capillary was held at a 

potential of 3.0 kV. Nitrogen was used as nebulizer gas at a flow-rate of 7.0 L/min, pressure 40 psi 

at 350°C. Reported spectra are the averages of 15 scans using 500 ms accumulation time.  

 

N,N'-(butane-1,4-diyl)bis guanidinium (diguanidine-C4). Agmatine sulfate (85 mg, 370 µmol), 

1-H-pyrazole-1-carboxamidine hydrochloride (55 mg, 370 µmol) and 0.75 mL of 1.0 M Na2CO3 

were stirred overnight at room temperature. The white precipitate was collected and washed three 

times with 1 mL MeOH/H2O (1:l) then dried in vacuo to yield 54 mg (53 %). 1H NMR : 3.13 (4H, 

m, (CH2)2), 1.56 (4H, m, (CH2)2) (Figure S2A). FAB mass spectrometry gave a molecular mass of 

173.10 (calculated 173.25) (Figure S3A). 

N,N'-(pentane-1,5-diyl)bis guanidinium (diguanidine-C5). Cadaverine hydrochloride (100 mg, 

590 µmol), 1-H-pyrazole-1-carboxamidine hydrochloride (170 mg, 1.18 mmol) and 2.4 mL of 1.0 

M Na2CO3 were stirred overnight at room temperature. The white precipitate was collected and 

washed three times with 1 mL MeOH/H2O (1:l) then dried in vacuo to yield 110 mg (74%). 1H 

NMR : 3.10 (4H, t, J 6.3 Hz, (CH2)2), 1.53 (4H, quintet, J 6.9 Hz, (CH2)2), 1.36 – 1.28 (2H, m, 

CH2) (Figure S2B). FAB mass spectrometry gave a molecular mass of 187.10 (calculated 187.25) 

(Figure S3B). 

 

Synthesis of RNA oligonucleotides 

RNA oligonucleotides were synthesized using solid-phase t-BDMS phosphoramidite chemistry 

(Beaucage and Caruthers, 1981) as described in Wilson et al. (Wilson et al., 2001), implemented on 

an Applied Biosystems 394DNA/RNA synthesizer. Oligonucleotides containing 5-bromocytidine 

(ChemGenes) were deprotected in a 25% ethanol/ammonia solution for 36 h at 20°C. The 

oligonucleotide containing 2-aminopurine (Glen Research) was deprotected in 1:1 

ammonia/methylamine solution for 20 min at room temperature followed by 10 min at 65°C. All 

oligoribonucleotides were redissolved in 100 μL of anhydrous DMSO and 125 μL triethylamine 

trihydrofluoride (Aldrich) to remove t-BDMS groups, and agitated at 65°C in the dark for 2.5 h. 

After cooling on ice for 10 min, the RNA was precipitated with 1 mL of butanol, washed twice 

with 70 % ethanol and suspended in double-distilled water.   

 

RNA was purified by gel electrophoresis in polyacrylamide under denaturing conditions in the 

presence of 7 M urea. The full-length RNA product was visualized by UV shadowing. The band 

was excised and electroeluted using an Elutrap Electroelution System (GE Healthcare) into 45 mM 
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Tris-borate (pH 8.5), 5 mM EDTA buffer for 8 h. at 200 V at 4°C. The RNA was precipitated with 

ethanol, washed once with 70 % ethanol and suspended in double-distilled water.  

 

Isothermal titration calorimetry 

ITC titrations were performed at 298 K using an ITC-200 microcalorimeter (GE). RNA solutions 

(30 -60 µM) were prepared by diluting concentrated stocks into the binding buffer containing 40 

mM HEPES (pH 7.2), 100 mM KCl, 10 mM MgCl2. Guanidine and diguanidine compounds were 

prepared in the same binding buffer with a concentration of 0.5-1 mM. Solutions were degassed for 

2–5 min before loading. The sample cell was filled with 200 µL of RNA. Guanidine or diguanidine 

was injected in a volume of 0.4 µL for the first injection and 2 μL for the next 19 injections using a 

computer-controlled 40 µL microsyringe with an injection interval of 120 s. Titration of ligands 

into the binding buffer or titration of the binding buffer into the RNA solution resulted in negligible 

evolution of heat. Integrated heat data were analyzed using a one-set-of-sites model in MicroCal 

Origin following the manufacturer's instructions. The first data point was excluded in analysis. The 

binding parameters ΔH (reaction enthalpy change in cal mol−1), K (binding constant in M−1) 

and n (bound ligands per RNA) were variables in the fit. The binding free energy ΔG and reaction 

entropy ΔS were calculated using the relationships ΔG = −RT ln K , where 

R = 1.987 cal mol−1 K−1, T = 298 K and ΔG = ΔH − TΔS. The dissociation constant Kd was 

calculated as 1/K.   

 

Fluorescence spectroscopy 

Fluorescence spectra were recorded in 10 mM Tris-HCl (pH 8.0), 50 mM NaCl and 10 mM MgCl2 

at 25°C using an SLM-Aminco 8100 fluorimeter. The spectra were corrected for lamp fluctuations 

and instrumental variations, and polarization artifacts were avoided by crossing excitation and 

emission polarizers at 54.7°. Steady-state fluorescence emission spectra were recorded between 330 

nm and 460 nm in 1 nm intervals with excitation at 315 nm. Spectra were integrated between 355 

and 375 nm. 

 

X-ray crystallography 

The G. violaceus P1 stem-loop RNA sequence used for crystallization was (5' to 3') 

GGUGGGGACGACCCCA(BrC)C where BrC is 5-bromocytosine.  A solution of 1 mM RNA in 

5 mM HEPES (pH 7.6), 100 mM KCl was heated to 95 °C for 1 min. The solution was slowly 

cooled to 20°C and MgCl2 added to a final concentration of 2 mM. Ligands were soaked into 

crystals of the ligand-free P1 RNA using the conditions indicated in Table S2.  All the crystals 

were cryoprotected using mother liquid with an additional 25-30% glycerol. 
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Diffraction data were collected on beamlines I04 and I03 of Diamond Light Source (Harwell, UK). 

Data were processed by XIA2 (Winter et al., 2018). The resolution cutoff for the data was 

determined by examining by CC1/2 and density map as described previously (Karplus and 

Diederichs, 2012). Initial phase information were acquired from the SAD data by locating the 

bromine atoms with Autosol in the PHENIX suite. Models were adjusted manually using Coot 

(Emsley et al., 2010) and subjected to several rounds of adjustment and optimization using Coot, 

phenix.refine and PDB_REDO (Joosten et al., 2014). Model geometry and the fit to the electron 

density maps were monitored with MOLPROBITY (Chen et al., 2010) and the validation tools in 

Coot. The unbiased electron density maps were generated through Br-SAD phasing and density 

modification by Phenix AutoSol. Details of data collection and refinement statistics for the 

crystallographic data are shown in Table S3. 

 

 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes three figures and three tables and can be found with this article 

online at http:// … 
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FIGURE LEGENDS 

 

Figure 1. Chemical structures of guanidine, modified guanidine species and diguanidine species 

discussed in this work. The parental guanidine is shown top left, followed by ethylguanidine and 

agmatine that are modified by addition of ethyl and butylamine groups respectively. Below are 

shown the diguanidine-C4 and diguanidine-C5 species in which two guanidine groups are connected 

by C4 and C5 chains respectively. In all cases the guanidino moieties are shown as guanidinium 

cations that are the abundant form at neutral pH. 

 

Figure 2. Binding of guanidine and diguanidine species to the complete G. violaceous guanidine-II 

riboswitch studied by isothermal titration calorimetry and fluorescence spectroscopy.  

A – C; Calorimetry. A solution of ligand was titrated into the RNA solution, and the heat evolved 

was measured as the power required to maintain zero temperature difference with a reference cell. 

Integration over time gives the heat required to maintain thermal equilibrium between cells. In each 

case the upper panel shows the raw data for sequential injections of 2 µL volumes (following an 

initial injection of 0.4 µL) of ligand into 200 µL of a 15 µM RNA solution in 40 mM HEPES (pH 

7.2), 100 mM KCl, 10 mM MgCl2. This represents the differential of the total heat (i.e. enthalpy 

∆H° under conditions of constant pressure) for each ligand concentration. The lower panels present 

the integrated heat data fitted to a single-site binding model. The thermodynamic parameters 

calculated are summarized in Table S1. Binding was studied using the ligands guanidine (A), 

diguanidine-C4 (B) and diguanidine-C5 (C). The sequence of the riboswitch is shown on the right. 

Titration of individual P1 and P2 stem loops is shown in Figure S2. 

D and E; Ligand-induced folding of the guanidine riboswitch studied by 2-aminopurine 

fluorescence. The GVP1P2 construct used in these experiments (the sequence is shown on the right) 

contains a single A10 2-aminopurine (2AP) at the 3’ end of the loop. On binding the ligand loop-

loop interaction generates A10-A10’ stacking in the crystal, and results in static quenching of 2-

aminopurine fluorescence. Fluorescence emission spectra (excite = 315 nm ; emission = 340 – 450 

nm) were recorded as a function of added ligand concentration using guanidine and diguanidine-C4. 

Fluorescence intensity was integrated between 355-375 nm, and plotted as a function of D 

guanidine and E diguanidine-C4 concentration. Ligand binding was also studied by ITC, shown in 

Figure S2. 

 

Figure 3. Crystal structure of ethylguanidine bound to G. violaceous riboswitch P1 stem-loop. 

A. The sequence of the P1 stem-loop. The nucleotide numbering preserves the A7 to A10 

numbering of the loop used previously (Huang et al., 2017b).  

B. The overall structure shown in parallel-eye stereoscopic view. The P1 stem-loop forms a dimer 
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by loop-loop interaction; the individual monomeric RNA species are colored here as blue and 

green. This color scheme is also used in Figures 5 and 6. The ethylguanidine molecules are colored 

magenta.  

C. Parallel-eye stereoscopic view of the two bound ethylguanidine molecules bound at the dimer 

interface, with electron density (2Fo-Fc) contoured at 2  shown for the ligands. The ethylguanidine 

molecules are hydrogen bonded to G9 and G9’ and non-bridging phosphate oxygens of the 

backbone.  

D. The two ethylguanidine molecules with their experimental phasing electron density map 

contoured at 1 . The two terminal carbon atoms are separated by 3.5 Å (broken red line); these 

would be connected by a single C-C bond in diguanidine-C4 . 

 

Figure 4. Crystal structures of diguanidine-C4 and diguanidine-C5 bound to G. violaceous 

riboswitch P1 stem-loop. 

A. The overall structure of the P1 stem-loop dimer shown in parallel-eye stereoscopic view. The 

diguanidine-C4 ligand molecule is colored magenta.  

B. Parallel-eye stereoscopic view of the diguanidine-C4 molecule bound at the dimer interface. 

Electron density (2Fo-Fc) contoured at 2  is shown for the diguanidine-C4 molecule. Each 

guanidine moiety is hydrogen bonded to G9 and G9’ and non-bridging phosphate oxygens of the 

backbone. 

C. The diguanidine-C4 with its experimental phasing electron density map contoured at 1 .  The 

position of the entire chain is defined, although the density for the central carbon atoms is weaker, 

indicative of some flexibility in this region. 

D. A parallel-eye stereoscopic view of the dimer interface with a surface depicted for the 

riboswitch with bound diguanidine-C4. The polymethylene chain connecting the guanidine moieties 

is clearly visible emerging from the side openings of the binding pockets and traversing the minor 

groove side of the dimer interface. 

E. A parallel-eye stereoscopic close-up view of the dimer interface with bound diguanidine-C5, 

with the electron density map (2Fo-Fc) for the ligand contoured at 2. Each guanidine moiety is 

hydrogen bonded to G9 and G9’ and non-bridging phosphate oxygens of the backbone. 

F. The bound diguanidine-C5 molecule shown in isolation, with its experimental phasing electron 

density map contoured at 1 .  Electron density for the central carbon atoms in the polymethylene 

linker is not visible, indicative of significant flexibility in the polymethylene chain.  
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