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ABSTRACT 

Designing concrete to attain its durability requirements is a tough challenge.  Chloride ingress is 

one of the most severe problems affecting the durability of concrete and has been investigated 

extensively.  There has also been a growing interest to reduce the use of conventional natural 

aggregates to promote sustainability in construction industry.  In this study, quartz sandstones 

are replaced for natural coarse aggregates in concrete and tested for chloride and corrosion 

resistance.  The study revealed that the concrete containing quartz sandstones as coarse 

aggregates performed well in corrosive environment.  In the chloride ion penetration test, 

concrete with 20% quartz sandstones showed a similar pattern to that of the control concrete 

made solely from natural coarse aggregates. 
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Introduction 

The resistance of concrete against chloride ingress mainly depends on its porosity and the 

fraction of capillary pores [van Noort et al., 2106].  The main deterioration mechanism of 

concrete structures involved in marine environment is through chloride ingress [Ghafoori et al., 
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2013; Silva, 2013].  The resistance of concrete against chloride ingress is a function of its 

permeability and the fraction of capillary pores therein.  The lower the water/cement ratio, the 

greater the resistance to penetration of deleterious materials.  At present, reinforced concrete 

structures are to be designed in such a way that they can tackle degradation related to 

mechanical, chemical and environmental actions [Pradelle et al., 2017]. 

Corrosion of steel reinforcements embedded in concrete is also considered as one of the major 

problems in durability deterioration of reinforced concrete structures.  Corrosion not only 

induces expansion resulting in spalling and cracking, but also reduces the overall cross-section of 

reinforcement bars, thereby reducing the load-carrying capacity of a structure [Yu et al., 2017]. 

Due to the alkalinity of concrete pore solution, the rebar is generally in a passive state which 

promotes the formation of thin passive layer [Bertolini et al., 2013].  When the chloride content 

at the rebar level exceeds a critical value, corrosion takes place.  The parameters that involve 

during this process are the pH of concrete, level of chloride available at the rebar/concrete 

interface and the electrochemical potential of steel [Glass and Buenfeld, 1997; Angst et al., 2009; 

Alonso and Sanchez, 2009].  Alkalinity of concrete mainly depends upon the cement type used. 

Improper compaction can also increase the voids at the concrete-steel interface which may 

acidify the pore solution thereby increasing the critical chloride threshold level [Brenna et al., 

2017; Glass and Buenfeld, 2000].  Therefore, the evaluation of reinforced concrete exposed to 

corrosion plays an important role on maintenance and repair of reinforced concrete structures 

[Vedalakshmi et al., 2009; Morris et al., 2002; Reou and Ann, 2009]. 

In the recent trends of concrete sustainability, usage of alternative materials without sacrificing 

concrete durability has become a focal point of research.  A huge amount of naturally occurring 

material sources are being consumed.  So, there occurs the interest in using alternative solid 



materials in concrete, e.g. quarry wastes, if possible, to reduce the landfill problem and thereby 

improve the overall sustainability [Kumar et al., 2016].  In this research, quartz sandstone 

aggregate (originating from dimension stone manufacture in Dholpur region, Rajasthan, India) 

was replaced for conventional natural aggregate and the obtained concrete tested for its chloride 

and corrosion resistance. 

Material properties and preparation of test samples 

Binding cement of 43 grade (conforming to IS 8112:1989) with a specific gravity of 3.15; 

normal consistency of 32%; initial and final setting time of 66 minutes and 164 minutes was 

used.  River sand of Zone II confirming to IS 383 (1970) was used.  Natural coarse aggregates 

of sizes 20 mm and 10 mm were used for casting of concrete cubes.  Quartz sandstone 

aggregates in slightly different sizes of 25 mm and 10 mm were used as replacement for natural 

coarse aggregates.  The particle size distribution, composition of aggregates, cement properties 

and gradation details are the same as given in Kumar et al. (2016a).  The substitution of quartz 

sandstone was carried out in 20% steps for the whole range of 0–100% [Kumar et al., 2017]. The 

mix proportion of fresh concrete containing quartz aggregates is given in Table 1. 

Table 1 Mix proportions of fresh concrete [Kumar et al., 2017b]. 

Water- 

Cement Ratio 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Coarse 

aggregates 

10 mm 

(kg/m3) 

Coarse 

aggregates 

20 mm 

(kg/m3) 

Fine 

aggregates 

(kg/m3) 

Minimum-

Maximum 

Admixture 

(%) 

0.35 440 154 559.35 683.65 635.47 0.87-0.90 

0.4 405 162 567.45 693.55 645 0.86-0.89 

0.45 342.2 153.9 589.60 713.29 662.05 0.86-0.89 



Methodology 

Chloride ion penetration test 

The silver nitrate solution spray method is a simple and quick method to determine the chloride 

ion migration depth of concrete (Otsuki et al., 1992, Baroghel-Bouny et al., 2007).  Cubic 

specimens of 100 mm size, water cured for 28 days, were allowed to permeate by 4% NaCl 

solution for 90 days.  To maintain a constant concentration, the NaCl solution was replaced after 

24 hours of immersion, then at 3rd day and then at every 7 days.  The samples were tested for 

chloride penetration at regular intervals (at 28, 56 and 90 days).  The samples were split in half 

and the fresh surfaces sprinkled with 0.1 N silver nitrate (AgNO3) solution (Figure 7).  The 

AgNO3 reacts with the free chloride on the concrete surface and forms a white precipitate of 

silver chloride (AgCl).  At the regions where there is an absence of free chlorides, AgNO3 reacts 

with hydroxide to form a brown precipitate of silver oxide (AgO).  Thus the region of colour 

change indicates the presence of chloride penetration (Figure 8).  The white layer of silver 

chloride takes place when the concentration of free chloride ion is more than 0.15% by weight of 

cement [Güneyisi et al., 2007; Güneyisi et al., 2009]. 

Corrosion test 

To measure the corrosion of steel reinforcements, chloride induced corrosion technique was 

adopted.  Macro cell method (ASTM C 876-2009) was used to measure (monitor) the corrosion 

activities of embedded steel bars in concrete.  The potential difference between anode and 

cathode across a standard resistor of 100 Ώ was measured (Figure 1). 



To prepare the specimens for corrosion test, thermo-mechanically treated (TMT) steel bars, 

factory manufactured by hot rolling steel wires and then passing them through water were used. 

Three TMT bars, as given in Figure 2 (12 mm diameter and 350 mm length) were taken and 

properly cleaned with a wire brush for removing the dirt and rust on the surface.  Rubber shrink 

tube was firmly affixed on the two ends of the steel bars at a length of 75 mm.  This was done to 

prevent that area (which is exposed outside the specimen) from getting corroded.  The 

dimensions of concrete specimens prepared for corrosion testing (280 mm × 150 mm × 115 mm) 

were in accordance to ASTM G 109-2005.  A total of three steel bars were used for this purpose 

(Figure 2).  One of the steel bars was placed at the top (anode) and rest placed at the bottom 

(cathode) with the adequate cover prescribed by the standard code.  A reservoir of 15 mm height 

was made at the head of the specimen for ponding. 

After casting, the corrosion specimens were cured in water for 28 days by maintaining the 

temperature at 27 ± 2°C.  The specimens were withdrawn from the curing tank and dried at 

room temperature for a period of 30 days.  Two layers of epoxy paint were used to coat all the 

vertical layers of specimen.  The steel bars were then wired along with a resistor of 100 Ώ 

between the terminals (top and bottom).  Along the head of specimen, 3% NaCl solution was 

poured and covered to minimise evaporation.  The samples were then subjected to alternate 

wetting and drying cycles (3 days ponding, pouring out contents and 11 days drying) (Figure 3). 

Measurements were taken at every wetting and drying stage and were continued fortnightly.  A 

high impedance voltmeter was used to measure the potential difference between the terminals. 

The macro cell current was calculated by the following equation: 

Where, Vj = Voltage across 100 Ώ resistor. 



Figure 1. Test layout from ASTM C 876 

(a) Reference electrode circuitry (b) Sectional view of copper-copper sulphate electrode

Figure 2. Steel bars and concrete specimen (ASTM G 109-2005) 

Figure 3. Epoxy coated specimens following ASTM G 109-2005 (drying and wetting cycles) 



The total integrated current is obtained from the following equation: 

 

Where, 

TC = Total corrosion (coulombs) 

tj = Time in seconds at which measurement of the macro cell current is carried out 

ij = Macro cell current (amperes) at time tj. 

The accepted maximum level specified by the standard ASTM C876-2009 is 150 C. 

Results and Discussion 

The results and detailed discussions of chloride resistance test and corrosion test are as follows: 

Chloride ion penetration test 

The graphs showing the results of chloride ion penetration with respect to the percentage of 

quartz sandstone (Dholpur stone) are given in (Figures 4, 5 and 6). 

While considering the concrete mix with water/cement ratio of 0.35, the depth of chloride ion 

penetration increased as the dosage of quartz sandstone (Dholpur stone) increased.  The chloride 

penetration of the control concrete tested at various days of exposure were similar to that 

concrete with 20% quartz sandstone.  A gradual increase in chloride penetration was noticed in 

the specimens beyond 20% replacement.  At 90 days, chloride ion penetration was 20 mm for 

the concrete with 0% quartz sandstone (control concrete) and 27 mm for concrete mix with 

100% quartz sandstone. 



Figure 4 Chloride ion penetration of concrete mixes with w/c 0.35 

Figure 5. Chloride ion penetration of concrete mixes with w/c 0.40 



Figure 6. Chloride ion penetration of concrete mixes with w/c 0.45 

Figure 7. Spraying of 0.1 N silver nitrate solution on freshly split concrete specimens 



Figure 8. Freshly split concrete specimens showing the depth of chloride penetration after 

28 days (Arrows indicate the depth of chloride penetration) 

The concrete mixture with a water/cement ratio of 0.4, a similar gradual increase of penetration 

was observed as the quartz sandstone dosage increased.  At 90 days, the control concrete 

recorded a penetration of 22 mm and the concrete with 100% quartz sandstone showed 30 mm 

penetration.  The concrete specimens with 0.45 water/cement ratio showed a similar increasing 

trend of penetration depth.  However, at 90 days, the control concrete and 20% quartz sandstone 

concrete showed a depth of penetration of 24 mm.  A maximum depth of penetration of 32 mm 

was recorded for the concrete with 100% quartz sandstone at 0.45 w/c.  The gradual increase in 

chloride penetration can be related to the privation of internal packing of quartz sandstone 

concrete.  However, at lower water cement ratios (0.35 and 0.45), control concrete and concrete 

with 20% substitution showed a similar penetration depth. 



Corrosion test 

The macro cell corrosion for various concrete mixes were calculated at initial day (0 day), 

28 days, 56 days, 90 days and 180 days for the series with water/cement ratios of 0.35, 0.40 and 

0.45.  The relevance of increasing the water/cement ratio is that it makes the pore system of 

concrete more susceptible for the migration of aqueous species such as chloride.  The results are 

shown in Figures 9, 10 and 11. 

According to ASTM C 876-2009, a least value of 10 µA has been considered to establish the 

indication of corrosion activity.  A positive value in the macro cell current cell confirms the 

corrosion in progress and vice versa. 

Figure 9. Macro cell current of specimens with water/cement ratio 0.35 and various levels of 

quartz sandstone in coarse aggregate 



 

Figure 10. Macro cell current of specimens with water/cement ratio 0.40 and various levels of 

quartz sandstone in coarse aggregate 

 

Figure 11. Macro cell current of specimens with water/cement ratio 0.45 and various levels of 

quartz sandstone in coarse aggregate 



For the concrete mixes with water/cement ratio of 0.35, the early values of the control mix were 

-0.219 µA and the values at 180 days were -0.164 µA.  Concrete mixes with 40% quartz

sandstone registered a value of -0.160 µA and -0.122 µA, respectively and in the concrete mix 

with 100% quartz sandstone, the values were -0.159 µA and -0.116 µA, respectively.  All the 

macro cell values were found to be gradually rising from 0 day to 180 days.  From the above 

observations, it can be said that the control mix in all the water/cement ratios showed better 

resistance to corrosion.  At 0.35 water/cement ratio, the substitutions 40%, 60% and 80% 

showed almost a similar trend with very little deviation.  At 0.40 water/cement ratio, the control 

mix showed a macro cell current of -0.224 µA at 0 day and -0.172 µA at 180 days.  At 100% 

replacement it was -0.142 µA and -0.104 µA, respectively.  At 0.45 water/cement ratio, it was 

-0.187 µA at 0 day and -0.146 µA at 180 days for the control mix and -0.155 µA at 0 day and

-0.109 µA at 180 days for 100% substitution.

From the observations, it was clear that the readings were showing a trend of negative to positive 

for all the concrete mixes i.e. increasing risk for corrosion in the course of 180 days of ponding. 

The observed readings were nonetheless remaining below 10 µA indicating no evident corrosion. 

The same conclusion can be drawn for total corrosion calculated as per ASTM G 109-2005.  For 

all the concrete mixes, the total corrosion was less than 150 C which is the threshold value as per 

the standard. 



Conclusions 

The following conclusion may be drawn from the study, 

• A similar pattern of chloride penetration depth was noticed for control concrete and

concrete with 20% quartz sandstone at lower water/cement ratios (w/c < 0.40).  In

chloride prone areas, the substitution of quartz sandstones can be limited to 20% with

proper gradation.

• From the results of corrosion test, as all the values of macro cell corrosion test were less

than 10 µA, we may establish that there is no significant evidence of corrosion in the

samples after 180 days of ponding.  Being sedimentary type of stone, concrete having

quartz sandstones tend to perform well at corrosive environments.
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