
                                                              

University of Dundee

Escherichia coli O157:H7 transcriptome datasets for comparison of RNA-seq and
microarray platforms
Grabowiecka, Ewa; Martin, David; Crozier, Louise; Holden, Nicola

Published in:
Data in Brief

DOI:
10.1016/j.dib.2018.11.136

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Grabowiecka, E., Martin, D., Crozier, L., & Holden, N. (2019). Escherichia coli O157:H7 transcriptome datasets
for comparison of RNA-seq and microarray platforms. Data in Brief, 22, 126-131.
https://doi.org/10.1016/j.dib.2018.11.136

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/195291768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.dib.2018.11.136
https://discovery.dundee.ac.uk/en/publications/89b1aa02-4e5b-4f76-a384-b65ee76a235d


Contents lists available at ScienceDirect

Data in Brief

Data in Brief 22 (2019) 126–131
S
M
T
H

https://
2352-34
(http://c

n Corr
E-m
journal homepage: www.elsevier.com/locate/dib
Data Article
Escherichia coli O157:H7 transcriptome
datasets for comparison of RNA-seq and
microarray platforms

Ewa Grabowiecka a, David Martin a, Louise Crozier b,
Nicola Holden b,n

a The University of Dundee, Dundee, UK
b James Hutton Institute, Dundee, DD2 5DA, UK
a r t i c l e i n f o

Article history:
Received 13 November 2018
Received in revised form
26 November 2018
Accepted 27 November 2018
Available online 30 November 2018
doi.org/10.1016/j.dib.2018.11.136
09/Crown Copyright & 2018 Published by
reativecommons.org/licenses/by/4.0/).

esponding author.
ail address: Nicola.holden@hutton.ac.uk (N
a b s t r a c t

Whole transcriptome analysis to investigate differential gene
expression and regulatory adaption can be carried out on two dif-
ferent technological platforms: by probe hybridisation to microarrays
or by RNAseq for deep sequencing. Since there are difference in terms
of their genome coverage, sensitivity and cost, there is a requirement
for robust comparisons to determine the platform of choice. Here, we
present datasets for the whole transcriptional response verocytoxi-
genic Escherichia coli (VTEC) obtained from RNA-seq and microarray
platforms in response to spinach, together with a comparison
between the datasets (available at Array Express: E-MTAB-3249,
E-MTAB-4120, E-MTAB-7441).
Crown Copyright & 2018 Published by Elsevier Inc. This is an open

access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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ata format
 Filtered and analysed with statistical tests

xperimental factors
 E. coli O157:H7 was grown in minimal medium at 18 °C to mid-log

phase and transferred to medium containing 40% (v/v) spinach leaf
lysate for 1 h
xperimental features
 Total RNA was extracted using commercial kits and a cDNA library
generated with enterobacteria-specific primers and hybridized to a
microarray (E. coli v2 array – Agilent), or rRNA was depleted and
paired-end cDNA libraries generated for sequence on an Illumina Hi-
Seq. 2000. A series of statistical analyses was used for comparison
between the datasets.
ata source location
 James Hutton Institute, Dundee, DD2 5DA, UK.

ata accessibility
 Data are with this article and also available at ArrayExpress:
D
E-MTAB-3249 (microarray) https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-3249/

E-MTAB-4120 (microarray) https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-4120/

E-MTAB-7441 (RNAseq) https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-7441

Scripts used for data analysis are available on GitHub: https://github.
com/TheMicroGirl/SakaiRNASeq
elated research article
 L. Crozier, P. Hedley, J. Morris, C. Wagstaff, S.C. Andrews, I. Toth, R.W.
Jackson, N. Holden, Whole-transcriptome analysis of verocytotoxi-
genic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific
metabolic responses on exposure to spinach and lettuce extracts,
Front Microbiol, 7, 2016. doi: 10.3389/fmicb.2016.01088 [1]
Value of the data

� Direct comparison between transcriptome platforms can allow for the optimal approach to be
chosen.

� Microarray platforms can offer a cheap and easy approach for transcriptional analysis for model
organisms, like Escherichia coli O157:H7, but are limited by the probe set and potentially, sensitivity.
RNA-seq does not have the same limitations but is costlier and requires specific skills for analysis.

� There are few published reports that make direct comparisons of the platforms; most adopt either
one or the other.

� Here, the same sample set was applied to RNAseq and microarray transcriptome platforms to
provide the most robust comparison.

� The comparison of the datasets showed a strong correlation between the platforms (R 4 0.8) but
the presence of outliers highlights differences in their outputs.
1. Data

The microarray [1] and RNA-seq datasets are available in ArrayExpress. A comparative analysis
pipeline (Fig. 1) was implemented for bioinformatics analysis and downstream assessment. The
microarray dataset required additional processing steps since it is based on probes rather than genes
and contains non-target probes from multiple Escherichia coli isolates. Correlation between the
datasets from each platform required normalization before the comparison of the Log-fold change
(spinach leaf lysate condition relative to the control no-plant condition) could be made. The Pearson
and Kolmogorov–Smirnov tests of the Log-fold change datasets indicated strong correlation, although
the distribution was tailed outside the range of �2 to þ2-fold change (Fig. 2).

https://doi.org/10.3389/fmicb.2016.01088


Fig. 1. Flow diagram of analysis steps and processes. RNAseq (blue) and microarray (green) process steps are in blue and green
respectively. Other steps were done in R (pink) or externally (yellow).
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2. Experimental design, materials and methods

2.1. Sample preparations

RNA and cDNA samples from the E. coli O157:H7 Sakai strain were obtained and used for micro-
array analysis as described previously [1]. The cDNA library for RNA-Seq was constructed from the
same RNA samples, using the approach described for previously Xanthomonas [2], and run on an
Illumina Hiseq. 2000 (Genomic Sequencing Unit, the University of Dundee, Dundee, UK).



Fig. 2. Correlation graph of expression profiles. Correlation of differential expression of genes by Log fold-change (logFC),
acquired from the RNAseq and microarray datasets.
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2.2. Data analysis

All bioinformatics scripts and processes are listed in Table 1 and illustrated in Fig. 1.

2.2.1. Microarray
The published microarray dataset [1] was reanalysed to permit a dataset comparison. Raw data

were normalised between samples to ensure consistency across data sets. Probes from each sample
were filtered in accordance with the corresponding fluorescence of the negative control probes on the
microarray plate. Only probes which were 10% brighter than the 95% percentile of the negative probes
were maintained for the analysis. Linear modelling was applied to the data using the R (v3.0.2)
statistical language in the R studio software (v0.97.551) [3] utilising the Bioconductor Limma library
(v3.18.7) [4] and following the Limma user guide (Script EA 2 – Table 1). A dendrogram was produced
using the gPlots 2.12.1 [5].

2.2.2. RNA-seq
FastQC software (v0.10.1) [6] was used to perform a quality check of the raw data, according to the

software specifications. The reads were then aligned to the Sakai reference genome (GenBank
accession number BA000007) using the Bowtie (v2 2.1.0) aligner [7]. Firstly, an index was built using
the Index Builder provided by Bowtie2 (Script EA 3A) and this was then used to align the RNA
samples to the reference genome (Script EA 3B). Paired-end and random alignment was performed to
compare the two (Script EA 11), producing one.sam file per each sample. Reads were then
summarised using the featureCount software [8]. First, an annotation file was generated using the
Sakai reference genome (GenBank accession number BA000007) (Script EA 3C). The generated
reference file was then used to extract the count information from the aligned.sam files (Script EA
3D). The output was a tab delimited text file containing the name of the gene, start and end positions
of the gene on the strand, count of mRNA and the strand direction. Files were then imported into R
studio, normalised, and fitted into a linear model using the Voom function from the Bioconductor
libraries Limma [9] and edgeR (v3.2.4) [10]. The log of the fold change between experiment and
control cultures was obtained from this linear model (Script EA 4). Volcano plots were generated
(Script EA 12) using the ggplots2 package [11].



Table 1
Analysis steps (EA) and associated scripts and processes.

EA # Description Scripts (refer to GitHub) and codes

1 Process flow diagram n/a: graphics (Fig. 1)
2 Script for microarray analysis 1.Microarray_Data_Analysis
3A Script for generating the Bowtie2 index Bowtie2-build –f sakaigenome.fasta EcoliSakai
3B Script for both paired end and unpaired alignment using

Bowtie2
Unpaired: bowtie2 -N -x EcoliSakai -U file1.fastq.gz, file2.fastq.gz.sam file

Paired end: bowtie2 -N -x EcoliSakai -1 file.fastq.gz -2 file2.fastq.gz –S.sam file
3C Script for index of featureCounts { printf 'GeneID/tChr/tStart/tEnd/tStrand/n'; (grep -v CDS Sakai.gff | grep gene| sed -e 's/[̂/t]

*gene¼//' -e 's//.[0–9]//'| awk 'BEGIN{OFS¼"/t"}{print $9, $1, $4, $5,$7}')} |uniq 4 exons.saf
3D featureCounts script featureCounts –a exons.saf –F SAF –o outputfile.txt.sam file
3E Script for using blastdb for creation of Sakai database formatdb name.fasta –n databaseName –t title –p F
3F Script for using matching the probe sequences to the

database
blastall -p blastn –m8 –I Agilentprobes.fasta –d SakaiDatabase –v |-o output.txt

4 Script for RNA-Seq analysis 2.RNASeq_Data_Analysis/3. DEG_analysis
5 Python Script for changing sequence headers in a fasta file 3.Microarray_Vs_RNASeq/1.fasta_file
6 Pyhon Script for removing blast hits which are not suitable 3.Microarray_Vs_RNASeq/2.blastn and sort
7 FastQC reports 2.RNASeq_Data_Analysis/1.FastQC
8 Generation of Volcano Plots Volcano plot
9 Microarray Top Table 1.Microarray_Data_Analysis
10 RNASeq Top Table 2.RNASeq_Data_Analysis/3. DEG_analysis
11 Comparison between RNAseq samples for paired end and

random alignment
2.RNASeq_Data_Analysis/2.Alighment_and_Count

12 Comparison between Microarray and RNASeq 3.Microarray_Vs_RNASeq/3.table merge
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2.2.3. Dataset comparisons
E. coli O157:H7 Sakai sequences, containing gene identifiers, were downloaded from the NCBI

database (Sakai: NC_002695.1, pOSAK1: NC_002127.1, pO157: NC_002128.1) and converted into the
appropriate fasta format using the Sequence Format Converter. A Python (v2.7.6) script [12] was
written to convert fasta identifiers into a suitable format for the microarray against the RNA-Seq
comparison (Script EA 5). The re-formatted fasta file was then used to construct a searchable database
by using Blast (v2.2.17) [13] tool blastdb (Script EA 3E). The Blastall tool was used to match the
microarray probe sequences to the above described database (Script EA 3F), resulting in a list of
microarray to ECs number matches. The list of matches was filtered to extract only matches in which
the sequence length was higher than 50 and mismatch was lower or equal to 7 (Script EA 6). Raw data
and Log-transformed fold-change (logFC) values of normalised microarray and RNA-Seq data were
compared and plotted using R studio (Script EA 12); (Fig. 2).
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