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1 Abstract 

2 Otiorhynchus sulcatus Fabricius, commonly known as black vine weevil or simply vine weevil, is 

3 an important pest of soft fruit and ornamental crops. This species is endemic to temperate areas of 

4 Europe but has spread to many other areas over the last century, including North America and 

5 Australasia. The ability of vine weevils to adapt to such different environments is difficult to 

6 reconcile with the parthenogenetic reproduction strategy, which is likely to underpin a low genetic 

7 diversity. It is therefore tempting to hypothesize that weevil adaptation to different environments 

8 is mediated, at least partly, by the microbial communities inhabiting these insects. As a first step 

9 towards testing this hypothesis we characterised the composition of the bacterial microbiota in 

10 weevils from populations feeding on strawberry plants across four geographically-separate 

11 locations in the United Kingdom. We performed 16S rRNA gene Illumina amplicon sequencing, 

12 generating 2,882,853 high-quality reads. Ecological indices, namely Chao1 and Shannon, revealed 

13 that the populations used for this study harboured a low diversity and an uneven bacterial 

14 microbiota. Furthermore, β-diversity analysis failed to identify a clear association between 

15 microbiota composition and location. Notably, a single Operational Taxonomic Unit (OTU) 

16 phylogenetically related to Candidatus Nardonella accounted for 81% of the total sequencing 

17 reads for all tested insects. Our results indicate that vine weevil bacterial microbiota resembles 

18 other insects as it has low diversity and it is dominated by few taxa. A prediction of this observation 

19 is that location per se may not be a determinant of the microbiota inhabiting weevil populations. 

20 Rather, other or additional selective pressures, such as the plant species used as a food source, 

21 ultimately shape the weevil bacterial microbiota.  Our results will serve as a reference framework 

22 to investigate other or additional hypotheses aimed at elucidating vine weevil adaptation to its 

23 environment.
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24 Introduction

25 The association between insects and bacteria has received significant interest in recent decades as 

26 many studies have demonstrated the potential importance of these partnerships for insect fitness. 

27 Stable associations between two or more organisms, frequently termed symbiosis, is a widespread 

28 phenomenon in nature with outcomes ranging from negative to neutral to beneficial, often 

29 classified as parasitism, commensalism or mutualism, respectively. These associations can be 

30 categorized based on the grade of dependency as primary symbionts, which show strong 

31 interdependence and have typically long co-evolutionary history with the host, and facultative 

32 symbionts, which show more recent association and are not strongly interdependent. Research on 

33 insect-bacteria associations have often focused on pairwise mutualist symbiotic relationships from 

34 which insects acquire quantifiable benefits, although often the bacterial community harbored by 

35 insects is poorly characterized. Some insects with restricted diets rely on bacteria to compensate 

36 nutritional deficiencies. For instance, the pea aphid Acyrthosiphon pisum Harris is provided with 

37 essential amino acids and the vitamin riboflavin by its obligate endosymbiotic bacterium Buchnera 

38 aphidicola (Nakabachi & Ishikawa, 1999) and the tsetse fly Glossina morsitans Westwood  is 

39 provided with essential vitamins by the endosymbiotic bacterium Wigglesworthia glossinidia 

40 (Nogge, 1981). Furthermore, bacteria can improve insect host fitness by degrading toxic secondary 

41 metabolites produced by plants as a chemical defense. This is the case for the coffee berry borer 

42 Hypothenemus hampei Ferrari which harbors Pseudomonas bacteria that detoxify caffeine by 

43 expressing caffeine demethylase genes (Ceja-Navarro et al., 2015). Importantly, certain bacteria 

44 have been shown to render their insect hosts less susceptible to predators and pathogens. This has 

45 been illustrated for the pea aphid, which is protected from parasitism by the parasitoid wasp 

46 Aphidus ervi Haliday when aphids are infected with the bacterium Hamiltonella defensa (Oliver 
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47 et al., 2005; Oliver et al., 2003) and from infection by the entomopathogenic fungus Pandora 

48 neoaphidis Remaud & Hennebert when aphids harbor the bacterium Regiella insecticola 

49 (Scarborough et al., 2005), and for the fruit fly Drosophila melanogaster Meigen, which becomes 

50 more resistant to RNA viruses when infected with the bacterium Wolbachia (Hedges et al., 2008). 

51 Weevils belong to the superfamily Curculionoidea which is one of the largest insect groups with 

52 more than 60,000 described species (Lyal & Alonso-Zarazaga, 2006). Weevil-associated bacteria 

53 studies, similarly to research on other insects, have typically focused on the symbiotic association 

54 between the bacterium Nardonella and different weevil species. Research started at the beginning 

55 of the 1990s with the observation of intracellular microorganisms confined in specialized cells, 

56 called bacteriocytes, in the rice weevil Calandra oryzae Linnaeus, although it remained 

57 undetermined whether the observed bacteria constituted a “symbiotic organ” or were simply 

58 “accessory cells” (Mansour, 1927; 1930; Pierantoni, 1927). Further investigation combining 

59 molecular techniques and fitness measures showed that these bacteria were present in different 

60 weevil species and were involved in adult development (Campbell et al., 1992; Nardon & Grenier, 

61 1988). Nonetheless, it was not until the beginning of the 21st century that Lefevre et al. (2004), 

62 based on a phylogenetic analysis of the 16S rRNA gene, identified this microorganism as a γ-

63 proteobacterium and designated the new lineage Candidatus Nardonella. This bacterium has been 

64 shown to be widespread throughout the weevil superfamily and is estimated to have become 

65 associated with weevils 125 million years ago (Conord et al., 2008; Lefevre et al., 2004). 

66 Nevertheless, some studies revealed that Nardonella has been replaced by another bacterium in 

67 species of the genus Curculio and the tribe Curculionini, highlighting the dynamic nature of insect-

68 bacteria associations (Toju et al., 2010; Toju et al., 2013). Subsequent studies focused on 

69 identifying C. Nardonella in other weevil species and on studying other features of its biology, 
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70 such as population dynamics during different insect life stages or the location of the Nardonella 

71 bacteriocytes in insect tissues (Conord et al., 2008; Hosokawa & Fukatsu, 2010; Hosokawa et al., 

72 2015; Huang et al., 2016; Mansour, 1930; Nardon et al., 2002; Toju & Fukatsu, 2011). Importantly, 

73 Anbutsu et al. (2017) working on the black hard weevil Pachyrhynchus infernalis Fairmaire 

74 showed that Nardonella is involved in cuticle formation by contributing to tyrosine synthesis as 

75 its suppression produced adults with low tyrosine titers and reddish, crumpled and/or deformed 

76 elytra.

77 Vine weevils, Otiorhynchus sulcatus, are parthenogenetic triploid females endemic to central 

78 Europe (Moorhouse et al., 1992). In the last two centuries, vine weevil distribution has expanded 

79 rapidly, primarily through plant trade routes, and this species is now found in most parts of Europe, 

80 and in parts of North America, South America, New Zealand and Japan (Kingsley, 1898; Masaki 

81 et al., 1984; Moorhouse et al., 1992; Prado, 1988). Vine weevils have been recorded developing 

82 successfully on 150 different host plant species (Moorhouse et al., 1992; Smith, 1932; Warner & 

83 Negley, 1976) with particular preference for strawberry (Hanula, 1988; van Tol et al., 2004; van 

84 Tol & Visser, 1998). Based on the ability of vine weevil to invade and establish in different 

85 environments despite its parthenogenetic reproduction mode, we hypothesized that the bacterial 

86 community associated with vine weevils could play an important role in insect adaptation.

87 In the last decade, advances in sequencing and computational approaches have enabled the 

88 characterization of the microbial communities associated with both plant and animal eukaryotic 

89 hosts, i.e. their microbiotas, at an unprecedented depth (Hacquard et al., 2015). Perhaps not 

90 surprisingly, such advances have been exploited to gain novel insights into the ecology of weevil 

91 microbiota. For instance, Hirsch et al. (2012) revealed that parthenogenetic species tend to harbor 

92 a less diverse bacterial community in comparison with sexual species in the weevil genus 
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93 Otiorhynchus. White et al. (2015) studied the bacterial community associated with exotic and 

94 endemic weevils in New Zealand and speculated that the presence of Wolbachia and Rickettsia 

95 could be involved in weevil resistance to parasitoids used in biocontrol. The influence of insect 

96 diet on shaping the bacterial microbiota composition was reported in the red palm weevil 

97 Rhynchophorus ferrugineus Olivier, the cotton boll weevil Anthonomus grandis Boheman and the 

98 pine weevil Hylobius abietis Linnaeus (Ben Guerrero et al., 2016; Berasategui et al., 2017; 

99 Montagna et al., 2015). Research by Berasategui et al. (2016) on the bacterial community 

100 composition in pine weevil populations across Europe revealed that despite significant variation 

101 in bacterial community composition, a core bacterial microbiota seemed to be shared by all pine 

102 weevil populations.

103 Many studies have shown that location can affect the bacterial microbiome of insects. For example, 

104 bacterial community richness and composition varied significantly between D. melanogaster 

105 populations collected from geographically separated areas of the USA (Corby-Harris et al., 2007). 

106 Furthermore, collection area was shown to clearly influence bacterial community assemblage of 

107 melon aphid, Aphis gossypii Glover, populations sampled across four Hawaiian Islands (Jones et 

108 al., 2011). Thus, as a first step to understand the influence of bacteria on vine weevil biology and 

109 fitness, we applied high-throughput sequencing techniques to investigate the existence of bacterial 

110 community patterns associated with location. For this purpose, we characterized the bacterial 

111 community associated with vine weevil populations infesting strawberry plants from 

112 geographically separated regions of the UK. Nevertheless, our results indicated that the sampled 

113 populations had a highly conserved similar bacterial community dominated by a single bacterial 

114 sequence phylotype, classified as C. Nardonella, which accounted for 81% of sequencing reads 

115 retrieved from all studied insects. 
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116 Materials and methods

117 Vine weevil adult populations

118 Vine weevil adults were collected during summer 2015, 2016 and 2017 from an area of 

119 approximately 50 m2 within strawberry crops at five different sites across the UK. Insects collected 

120 at different locations were considered as different populations. Exceptionally, we considered 

121 insects collected at the Invergowrie site as two separated populations, despite coming from the 

122 same area, as they were collected in two consecutive years and could harbour different bacterial 

123 community influenced by the different environmental conditions experienced. Details of the 

124 collection sites are presented in Table 1 and Figure 1. The collection sites in Stafford were only 

125 separated by 766 m whereas the Shifnal and Woore collection sites were separated from these two 

126 sites an average distance of 30 km. The collection site in Invergowrie was 494 km distant in 

127 average from the rest of the sites. Following collection, insects were directly frozen with liquid N2 

128 and stored at -80°C until further use.

129 DNA extraction

130 DNA extraction was performed on eight insects from each population except for the Stafford_2 

131 population in which four insects were used due to the small sample size at this site (one insect = 

132 one replicate). Insects were surface sterilised in a 1% bleach (May and Baker LTD, Dagenham, 

133 England) solution for one minute (Lawrence et al., 2015; Malacrinò et al., 2018). To remove the 

134 remaining bleach insects were submerged in autoclaved water three times, each time the insects 

135 were submerged for one minute. Surface sterilised insects were ground individually using pestle 

136 and mortar sterilised by exposing to UV light for 10 minutes. Once the whole sample was ground 

137 to a powder, total DNA was extracted using the NucleoSpin Kit (Macherey-Nagel, Düren, 

138 Germany) following the manufacturer’s instructions and the alternative step suggested in the Kit 
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139 protocol. An additional incubation at 70°C for 10 minutes was included, after the 10 minutes lysis 

140 step at 65°C specified in the protocol, to lyse gram negative bacterial cell walls. Extracted DNA 

141 was stored at -20°C in autoclaved Eppendorf tubes until further use.

142 PCR amplification of the 16S rRNA gene

143 A fragment of the V4 hypervariable region of the 16S rRNA gene was used for the current bacterial 

144 community study as it has been shown to yield optimal community analysis in previous studies 

145 (Caporaso et al., 2011) and it was chosen as a reference marker for the Earth Microbiome Project 

146 (EMP) (Gilbert et al., 2010). The primers used, 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 

147 806R (5’-GGACTACHVGGGTWTCTAAT-3’), carry an Illumina adapter, pad and linker at the 

148 5’ terminus. Additionally, the reverse primer (806R) carries a unique barcode which is a 12-base 

149 error correcting Golay code to allow multiplexing, i.e. sequencing different samples 

150 simultaneously.

151 The Kapa HiFi HotStart PCR kit (Kapa Biosystems, Wilmington, USA) was used to amplify the 

152 targeted DNA fragment in a G-Storm GS1 Thermal Cycler (Gene Technologies, Somerton, UK). 

153 The PCR mixture (20 µL) consisted of 4 µL of 5X Kapa HiFi Buffer, 1 µL of a 10 ng/µL Bovine 

154 Serum Albumin solution (Roche, Mannheim, Germany), 0.6 µL of a 10 mM Kapa dNTPs solution, 

155 0.6 µL of a 10 µM solution of each primer, 0.25 µL of Kapa HiFi polymerase (0.02 U/µL), 8 µL 

156 of sterile water and 1 µL of a 10 ng/µL solution of the template DNA. Samples in the thermocycler 

157 were subjected to three minutes of DNA initial denaturation at 94°C, then 35 cycles of 30 seconds 

158 of DNA denaturation at 98°C, 30 seconds of primer annealing at 50°C, and one minute of DNA 

159 elongation at 72°C, followed by a final elongation step of 10 minutes at 72°C. 

160 Based on the protocol described by Costello et al. (2009) and adopted by the EMP, each insect 

161 replicate was PCR amplified using a specific combination of forward and reverse primers with a 
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162 unique, replicate-specific, barcode.  For each primer pair combination, the corresponding PCR 

163 reaction was performed in simultaneous triplicates to diminish amplification biases, with an 

164 additional no template control. PCR reactions were combined in a barcode-wise manner, i.e. 

165 amplification replicates of the same primer pair were mixed and were tested on a 1.5% agarose gel 

166 with the corresponding no template control. The simultaneous triplicate amplification procedure 

167 was repeated three times for each primer pair combination. So, for each primer pair combination 

168 we performed nine amplifications in total. Finally, all PCR products were mixed in a barcode-wise 

169 manner (nine amplifications mixed) and kept at -20°C until further use.

170 Illumina MiSeq library preparation and sequencing 

171 PCR products were purified with Agencourt AMPure XP kit (Beckman Coulter, Brea, USA) using 

172 0.7 µL AMPure XP beads per 1 µL of sample. The DNA concentration of 3 µL of each PCR 

173 reaction, mixed according to their barcode, was quantified using Picogreen (ThermoFisher, UK) 

174 following the manufacturer’s recommendations.  Next, the amplicon library was generated by 

175 mixing individual barcoded replicates in an equimolar ratio. The library was sequenced by the 

176 Genome technology group at the James Hutton Institute, Dundee UK, using Illumina MiSeq 

177 platform with paired-end reads of 150 bp per read.

178 Illumina MiSeq data processing with QIIME

179 The Illumina MiSeq platform generated three FASTQ files with the forward, reverse and barcode 

180 sequences. The FASTQ files and the metadata information, organised in a mapping file, were 

181 processed with the open source software Quantitative Insights Into Microbial Ecology (QIIME) 

182 version 1.9.0 (Caporaso et al., 2010) using the default parameters unless otherwise specified. 

183 Forward and reverse FASTQ files were decompressed and merged specifying a minimum 

184 sequence overlap of 5 bp between pairs of reads using the command ‘join_paired_ends.py’ The 
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185 reads were quality filtered and demultiplexed with the command ‘split_libraries_fastq.py’ 

186 specifying a minimum Phred quality score of 20. The remaining high-quality reads were clustered 

187 into Operational Taxonomic Units (OTUs) at 97% sequence similarity using SortMeRNA and 

188 sumaclust algorithms. OTUs were defined using a subsampled open-reference OTU picking 

189 approach with the command ‘pick_open_reference_otus.py’ against the chimera checked 

190 Greengenes database version 13_5 (DeSantis et al., 2006). The output was an OTU table with the 

191 identified OTUs as rows and the samples as columns, containing the abundance of each OTU per 

192 sample. The OTUs that did not match by 97% similarity any bacterial sequence on the database 

193 were classified as Unassigned. 

194 Identification of the Unassigned OTU_0

195 The proportion of different Unassigned OTUs revealed that the dominant OTU was the OTU_0, 

196 which accounted for 99% (2,347,616 reads) of the total reads for Unassigned OTUs (2,364,356 

197 reads). This OTU matched bacterial sequences found in different members of the Curculionidae 

198 family on the NCBI database. The highest matching percentage revealed similarity with bacterial 

199 sequences found in Otiorhynchus sulcatus Fabricius (vine weevil) by 100% (GenBank: Accession 

200 No. JN563788.1 and JN563787.1) and in O. salicicola Heyden (GenBank: Accession No. 

201 JN394467.1), O. armadillo Rossi (GenBank: Accession No. JN394466.1) and O. rugostriatus 

202 Goeze (GenBank: Accession No. JN394465.1) by 98% (Hirsch et al., 2012). Furthermore, it 

203 matched bacterial sequences found in Listronotus bonariensis Kuschel by 96% (GenBank: 

204 Accession No. KJ522448.1)  (White et al., 2015), in Steriphus variabilis Broun by 93% (GenBank: 

205 Accession No. KJ522449.1) (White et al., 2015) and a bacterial sequence classified as Candidatus 

206 Nardonella (γ-proteobacteria) found in Pachyrhynchus infernalis by 92% (GenBank: Accession 
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207 No. AP018160.1) (Anbutsu et al., 2017). Hence, we have provisionally classified the OTU_0 as 

208 C. Nardonella.

209 Data analysis with R 

210 To analyse the data with R software version 3.3.3 the packages phyloseq version 1.19.1 (McMurdie 

211 & Holmes, 2013) and PMCMR version 4.3 were installed from Bioconductor using the code 

212 ‘source (“http://bioconductor.org/biocLite.R”)’ and the function ‘biocLite()’. The packages 

213 dendextend version 1.8.0, vegan version 2.4-5, ape version 5.0 and ggplot2 version 3.0.0 were 

214 installed with the function ‘install.packages’. The function ancom was installed using the code 

215 ‘source(“ancom_functions.R”)’ and ‘source(“plot_ancom.R”)’. 

216 First, a new OTU table was generated after filtering the initial OTU table obtained with QIIME 

217 using the function ‘prune’ to remove for OTUs classified as mitochondria or chloroplast, likely 

218 representing a contamination from host tissues and/or the food source. Next, we removed from the 

219 remaining OTUs list, instances matching OTUs identified as environmental contaminants of the 

220 laboratory where we generated our sequencing library (Pietrangelo et al., 2018) likely representing 

221 insect and plant contamination, . After this initial filtering in silico, we identified the most abundant 

222 OTU in the phylum Bacteroidetes was used as an outgroup to root the phylogenetic tree generated 

223 by QIIME. Third, the phyloseq package was used to create the phyloseq object combining the new 

224 OTU table, the taxonomy matrix, the phylogenetic tree and the mapping file using the command 

225 ‘merge_phyloseq’. Fourth, the dataset was filtered to discard OTUs with less than five reads in at 

226 least one of the populations 10% of the studied insects with the function ‘filter_taxa’.

227 To study the α-diversity, replicates were rarefied (Gotelli & Chao, 2013; Gotelli & Colwell, 2001; 

228 2011) to a similar sequencing depth of 11,207 reads with the function ‘rarefy_even_depth’ from 

229 the package phyloseq. The Chao1 and Shannon indices were then calculated with the function 
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230 ‘estimate_richness’ from the package phyloseq. Normality was tested by applying a Shapiro-Wilk 

231 test with the function ‘shapiro.test’ which revealed that only Shannon index values were not 

232 normally distributed. Therefore, data for Observed OTUs and Chao1 index were analysed with the 

233 parametric ANOVA test paired with Tukey test for multiple comparisons with the functions ‘aov’ 

234 and ‘TukeyHSD’ from the R stats package 3.3.3. Shannon index values were analysed with the 

235 non-parametric Kruskal-Wallis test using the functions ‘Kruskal.test’ and 

236 ‘posthoc.kruskal.dunn.test’ from the package PMCMR. 

237 To study the β-diversity, the dataset was transformed into relative abundances, i.e. sample 

238 reads/total amount of reads. A distance matrix was calculated using Bray-Curtis metrics, which 

239 considers OTU relative abundance, with the function ‘ordinate’ from the package phyloseq. A 

240 hierarchical cluster analysis was performed with the function ‘hclust’ and the generated Cluster 

241 dendrogram was modified with the function ‘set’ within the package dendextend before plotting. 

242 Statistical differences in microbial composition among populations were tested using a 

243 permutational multivariate analysis of variance with the function ‘adonis’ from the package vegan 

244 (Dixon, 2003). OTUs showing significant differences in abundance between populations were 

245 revealed by applying an analysis of composition of microbiomes with the function ‘ANCOM’ 

246 from the package ANCOM using the multiple correction option ‘1’(Weiss et al., 2017). 

247 Results

248 Vine weevil bacterial microbiota is composed of 85 different bacterial taxa

249 We characterized the bacterial community of six vine weevil populations collected from 

250 strawberry crops grown at different locations in the UK (Table 1 and Figure 1) using an Illumina 

251 MiSeq 16S rRNA gene sequencing approach. The sequencing library yielded 3,153,991 high-

252 quality reads which clustered in 994 Operational Taxonomic Units (OTUs) at 97% similarity. 
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253 OTUs classified as chloroplast and mitochondria, as well as predicted contaminant OTUs, were 

254 removed from the original file, which reduced the number of high-quality reads to 2,882,853 (per 

255 sample mean 65,519; max 199,121; and min 11,224) and the number of OTUs to 931. As a result, 

256 91% and 93% of the original reads and OTUs, respectively, were kept for further analysis. To 

257 discard low abundance OTUs, which have low reproducibility, only those OTUs that had less more 

258 than five reads in at least 10% of the studied insects were removed retained for subsequent analysis. 

259 This further reduced the number of reads to 2,871,373 and the number of OTUs to 85. Although 

260 this step reduced the number of OTUs by over 90%, we retained more than 99% of the total number 

261 of high-quality reads. This suggested that the bacterial microbiota of the populations tested in this 

262 study comprised a relatively low number of highly abundant bacterial taxa. 

263 Vine weevil bacterial microbiota is dominated by γ-proteobacteria and α-proteobacteria 

264 To investigate the taxonomic distribution at genus level, we manually annotated the OTU_0 as C. 

265 Nardonella and imposed a threshold of 1% abundance on the whole dataset for plotting 

266 purposes.We investigated the taxonomic distribution, focusing on bacterial genera classes with a 

267 relative abundance greater than 1% on the whole dataset. As a result, only two bacterial genera 

268 classes and one family, that could not be classified at genus level, were considered: Candidatus 

269 Nardonella (γ-proteobacteria) and Rickettsia and Rickettsiaceae (α-proteobacteria) with average 

270 relative abundance of 85%, 5.8% and 6.9%, respectively (Figure 2). These two bacterial genus 

271 classes and family, accounted for 97.7% of the total reads generated for each of the studied insects 

272 across the 6 vine weevil populations. This further supports the idea that vine weevil bacterial 

273 microbiota in the sampled insects was dominated by a small number of taxa. 

274 Vine weevil populations harbor a low diversity bacterial microbiota 
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275 Within population diversity, or α-diversity, computed at OTU level, revealed low diversity in the 

276 bacterial communities across vine weevil populations. On average, populations harbored a 

277 bacterial community comprising 36 OTUs, a richness value (Chao1 index) of 43 and an evenness 

278 value (Shannon index) of 0.5 (Figure 3). Invergowrie populations tended to harbor a less diverse 

279 and more uneven bacterial community compared to the other populations. Statistical analysis of 

280 the observed OTUs revealed that Invergowrie populations tended to harbor a lower number of 

281 OTUs (Figure 3A, ANOVA, F =20.16, df= 5, P< 0.05) and lower richness index values (Figure 

282 3B, ANOVA, F= 16.89, df=5, P< 0.05) compared to the rest of the populations, although 

283 Stafford_2 and Invergowrie_2 populations were not significantly different (Figure 2A, ANOVA, 

284 H=34.13, df=5, P< 0.05). Statistical analysis of richness values revealed the existence of three 

285 groups with high (Stafford_1 and Woore populations), intermediate (Stafford_2 and Shifnal 

286 populations) and low (Invergowrie_1 and Invergowrie_2 populations) diversity (Figure 2B, 

287 Kruskal-Wallis test, H= 25.28, df=5, P< 0.05). However, . Statistical analysis of Shannon index 

288 values revealed that evenness was significantly lower only for Stafford_2 and Invergowrie_1 

289 populations, compared to the rest of the populations (Figure 3C, Kruskal-Wallis test, H= 19.88, 

290 df=5, P< 0.05). 

291 Vine weevil bacterial microbiota composition is dominated by Candidatus Nardonella.

292 Vine weevil bacterial community diversity between populations, or β-diversity, was calculated 

293 using a Bray Curtis approach, which considers OTU relative abundance. This analysis failed to 

294 reveal a clear pattern associated with location as the maximum level of variation between samples 

295 was only 30% (Figure 4). Nevertheless, statistical analysis revealed that despite the high similarity 

296 between samples, there were significant differences in the bacterial community composition 

297 between populations (Adonis test, df=5, P<0.05). We performed a rank-abundance evaluation of 

Page 14 of 39Entomologia Experimentalis et Applicata

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15

298 Closer inspection of the individual OTUs identified in our library to detect the microbiological 

299 basis underpinning the apparent lack of variation in OTU composition across sites. This analysis 

300 revealed that samples were dominated by the OTU_0, classified as C. Nardonella, which 

301 represented 81% of the total sequencing reads and 84%, on average, of the sequencing reads 

302 assigned to each individual insect (Figure 4). Thus, the high incidence of a single bacterial 

303 phylotype classified as C. Nardonella governed the bacterial community assembly of the 

304 populations studied here. 

305 Location specific OTUs are dominated by members of the Proteobacteria phylum

306 Statistical analysis revealed that despite the lack of location-associated pattern in the microbiota 

307 composition, the high similarity in bacterial community composition, there we identified were 

308 significant differences between populations (Adonis test, df=5, P<0.05, R2 Location= 0.37). We 

309 further investigated the presence of significantly different OTUs among populations. A total 

310 number of 16 OTUs was shown to vary significantly in abundance between vine weevil 

311 populations with 11, 2 and 1 of the OTUs belonging to Proteobacteria, Bacteroidetes and 

312 Actinobacteria phyla, respectively, and 2 Unassigned OTUs (ANCOM test, P<0.01, multiple test 

313 correction). OTUs assigned to Proteobacteria phylum belonged to Sphingomonadales and 

314 Rickettsiales orders within α-proteobacteria and to Enterobacteriales, Pseudomonadales and 

315 Xanthomonadales orders within γ-proteobacteria. OTUs assigned to Bacteroidetes phylum 

316 belonged to Sphingobacteriales and Flavobacteriales orders, and OTUs assigned to Actinobacteria 

317 phylum belonged to Actinomycetales order. The average abundance for these OTUs per population 

318 was: 0.05% for Stafford_1, 0.02% for Stafford_2, 0.08% for Shifnal, 0.12% for Woore, 0.02% for 

319 Invergowrie_1 and 0.02% for Invergowrie_2. Thus, OTUs that varied in abundance between 

320 locations represented a small fraction of the total number of reads and, despite belonging to 
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321 different phyla, they were biased towards members of the Proteobacteria phylum. This observation 

322 suggests that the 37% of the variance attributed to location in the analysis, is associated, at least 

323 partially, to the fluctuation of C. Nardonella across populations.

324 Discussion

325 The current study characterized for the first time the bacterial community of vine weevil adults 

326 from five different UK geographic areas. Our results showed that the bacterial microbiota 

327 composition did not follow a pattern governed by location, as only a small fraction of the 

328 Operational Taxonomic Units (OTUs) varied in abundance between populations. Furthermore, the 

329 bacterial community was dominated by members of the Proteobacteria phylum, with remarkably 

330 high abundance of a single bacterium belonging to the γ-proteobacteria and classified as 

331 Candidatus Nardonella. These findings are consistent with those reported previously in insect 

332 bacterial community studies, which revealed a similarly low diversity of bacterial microbiota 

333 dominated by members of the Proteobacteria phylum, compared with analogous studies on 

334 vertebrates or soil (Bansal et al., 2014; Bili et al., 2016; Broderick et al., 2004; Chandler et al., 

335 2011; Colman et al., 2012; Corby-Harris et al., 2007; Douglas, 2011; Fierer & Jackson, 2006; 

336 Gauthier et al., 2015; Ishak et al., 2011; Jones et al., 2013; Robertson-Albertyn et al., 2017; 

337 Vasanthakumar et al., 2006; Wong et al., 2011; Yun et al., 2014). This bacterial microbiota pattern 

338 seems to be common across insect clades even when targeting different 16S rRNA gene 

339 hypervariable regions (Baker et al., 2003; Guo et al., 2013; Suzuki & Giovannoni, 1996; Yang et 

340 al., 2016) or applying different DNA extraction procedures (Martin-Laurent et al., 2001). The 

341 reasons underlying such an intriguing pattern remain undetermined, although a number of 

342 hypotheses have been proposed to explain low microbial diversity in insects. One hypothesis 

343 suggests that the insect immune system fine tunes the bacterial microbiota composition in order to 
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344 tolerate only beneficial bacteria as has been seen in D. melanogaster and the red palm weevil 

345 (Chandler et al., 2011; Dawadi et al., 2018; Lhocine et al., 2008; Login et al., 2011; Ryu et al., 

346 2008). Another hypothesis, although not exclusive, suggests that low microbial diversity results 

347 from negative interactions between co-inhabiting bacteria as has been seen between Buchnera and 

348 Rickettsia in the pea aphid (Sakurai et al., 2005), between Spiroplasma and Wolbachia in D. 

349 melanogaster (Goto et al., 2006) and between Bartonella and Rickettsia in fleas from the genus 

350 Oropsylla (Jones et al., 2012). Nonetheless, the biological factors shaping insect bacterial 

351 microbiota in this characteristic manner remain speculative and open to future investigation.

352 The findings presented here show that vine weevil bacterial community is mainly composed of 

353 members of the α and γ-proteobacteria classes with noteworthy high abundance of the OTU 

354 classified as C. Nardonella. Conversely, a previous sequencing attempt to characterize vine weevil 

355 bacterial microbiota showed that  it was composed entirely of members of the α-proteobacteria 

356 order and, surprisingly, C. Nardonella abundance was very low as it could only be detected by 

357 diagnostic PCR with specific primers (Hirsch et al., 2012). Differences between the previous and 

358 the current vine weevil bacterial microbiota characterization could be attributed to insect ontogeny 

359 as Hirsch et al. (2012) examined 24-72h old vine weevil larvae, whereas we used vine weevil 

360 adults close to maturity. Insect life stage has been shown to influence microbial community 

361 composition in several insects, for example the Hessian fly Mayetiola destructor Say (Bansal et 

362 al., 2014), species of the parasitoid wasp genus Nasonia (Brucker & Bordenstein, 2012), the rice 

363 water weevil Lissorhoptrus oryzophilus Kuschel (Huang et al., 2016), the southern pine beetle 

364 Dendroctonus frontalis Zimmermann (Vasanthakumar et al., 2006), the house fly Musca 

365 domestica Linnaeus (Wei et al., 2013), D. melanogaster (Wong et al., 2011) and the neotropical 

366 butterfly Heliconius erato Linnaeus (Hammer et al., 2014). Furthermore, Nardonella in rice water 
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367 weevil was present at low titer in larvae and pupae whereas its abundance increased substantially 

368 upon adult emergence  (Huang et al., 2016). The mechanisms triggering such developmental 

369 changes in microbial composition are unclear, although it has been proposed that adaptation to 

370 utilize different resources at different life stages could influence bacterial community composition 

371 (Hammer et al., 2014). An additional factor to consider is that Hirsch et al. (2012) used larvae 

372 hatched from surface sterilized eggs for bacterial community characterization. Although bacterial 

373 transmission to progeny through the egg surface has not been studied in vine weevil, egg surface 

374 sterilization could potentially eliminate an important source of bacteria for the developing insect 

375 as has been described in other members of the Coleoptera order, such as the reed beetle genus 

376 Macroplea (Kleinschmidt & Kölsch, 2011; Kölsch et al., 2009) and the rove beetle Paederus 

377 sabaeus Erichson (Kellner, 2001; 2002). Therefore, to clarify the differences between the two 

378 studies, further research should aim to characterize vine weevil larvae bacterial microbiota in 

379 comparison with egg and adult life stages.

380 Interestingly, the vine weevil populations considered in our study harbored highly conserved 

381 bacterial communities despite belonging to geographically-separate areas. This could indicate that 

382 vine weevil diet plays a major role in shaping bacterial community composition, as all individuals 

383 were collected from the same host plant species. Insect diet has been proposed as an important 

384 factor influencing bacterial community composition for many insect species (Broderick et al., 

385 2004; Chandler et al., 2011; Colman et al., 2012; Violetta et al., 2017; Yun et al., 2014). 

386 Furthermore, diet influence on bacterial community composition has been acknowledged in 

387 closely related members of the weevil superfamily Curculionoidea: the red palm weevil 

388 experienced a dramatic change in bacterial community composition after 30 days of feeding on 

389 apple, compared with the original population from which these insects were sampled (Montagna 
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390 et al., 2015); the pine weevil possesses a bacterial microbiota composition resembling that of other 

391 bark beetles exploiting the same food source, whereas it differs from closely related weevils 

392 exploiting different food sources (Berasategui et al., 2016); populations of the chestnut weevil 

393 Curculio sikkimensis Hell collected from different Quercus species harbored different bacterial 

394 microbiota (Toju & Fukatsu, 2011); and the bacterial community of cotton boll weevil 

395 Anthonomus grandis Boheman changed significantly when fed with different artificial diets (Ben 

396 Guerrero et al., 2016). Thus, to confirm that diet is a dominant factor affecting microbial 

397 composition in vine weevils, future research should consider characterizing the bacterial 

398 community of populations from the same location infesting different host plant species.

399 Perhaps unexpectedly, location specific bacteria detected in our study constituted a small fraction 

400 of the total number of reads suggesting that location has a limited role in sculpting the composition 

401 of vine weevil bacterial microbiota. However, caution should be exerted when interpreting these 

402 data. For instance, our study could be limited by considering a relatively narrow sampling area. 

403 Furthermore, Shifnal and Woore populations lacked sampling replicates as we only analyzed one 

404 population at those locations. Hence, the greater proportion of location specific OTUs on Woore 

405 population, compared with the rest of the populations, may be derived from the sampling design 

406 rather than the intrinsic biology of the populations. Thus, future studies should aim to collect 

407 insects from a wider geographic area, including different populations from the same area, to 

408 determine if location has an influence in bacterial community composition in vine weevil.

409 The high incidence of the OTU classified as C. Nardonella in all tested insects could indicate the 

410 importance of its contribution to adult development and cuticle integrity as has been demonstrated 

411 in studies of other weevil species (Anbutsu et al., 2017; Kuriwada et al., 2010). C. Nardonella is 

412 a bacterial symbiont widespread throughout the weevil superfamily located in bacteriocytes 

Page 19 of 39 Entomologia Experimentalis et Applicata

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20

413 forming a specialized organ, the bacteriome, which localizes at the foregut/midgut junction of 

414 larvae and at the apex of the ovarioles in adults (Conord et al., 2008; Hosokawa & Fukatsu, 2010; 

415 Hosokawa et al., 2015; Huang et al., 2016; Mansour, 1930; Nardon et al., 2002). In a recent study, 

416 the Nardonella genome was sequenced from the black hard weevil Pachyrhynchus infernalis 

417 revealing that it possesses an extremely small genome (0.20 to 0.23 Mb) with reduced metabolic 

418 capacity (Anbutsu et al., 2017), a characteristic feature for primary obligate symbionts (Moya et 

419 al., 2008). Results from the same study revealed that this bacterium could influence adult 

420 development through its involvement in tyrosine production. Therefore, based on the contribution 

421 of Nardonella to adult development in other weevil species, it would be of great interest to 

422 investigate the dynamics of this bacterium at all vine weevil life stages.

423 The findings of the present study contribute to the field of research on insect bacterial microbiota 

424 as we have comprehensively characterized vine weevil bacterial community of several insect 

425 populations by amplifying a region of the V4 hypervariable region of the prokaryotic 16S rRNA 

426 gene, paired with Illumina MiSeq sequencing technology. Moreover, our results showed that vine 

427 weevil bacterial community of the populations sampled from strawberry plants did not follow a 

428 location specific pattern and was dominated by a single bacterium identified as C. Nardonella. 

429 This study forms the basis for future research to understand the role of diet and other location-

430 specific factors such as biotic and abiotic factors climatic conditions and natural enemy pressures 

431 in shaping vine weevil bacterial community. An additional interesting line of research would be to 

432 study the importance of C. Nardonella for vine weevil development and or reproduction. Likewise, 

433 as innovations in sequencing technology are becoming available for experimentation, it will be 

434 interesting to accurately identify and quantify the dominance of C. Nardonella in the vine weevil 

435 microbiota with additional methodologies. This will provide valuable insights for the field of 
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436 agroecology to devise new strategies for management and biocontrol of this damaging and 

437 polyphagous insect pest.  

438 Data Availability

439 The sequences generated in this study are deposited in the European Nucleotide Archive (ENA) 

440 under the study accession number PRJEB28361. The script used to analyze the data and generate 

441 the figures in this study is available on GitHub athttps://github.com/BulgarelliD-Lab/
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Figure legends

 Figure 1. Location of vine weevil sampling areas across the UK. Each shape represents a 

population collection site.

Figure 2. Taxonomic classification of bacterial community members at genus class level. α-

proteobacteria (filled area) and γ-proteobacteria (unfilled area) are shown. Y-axis represents 

average relative abundance in percentage of reads. Bars represent each insect from the a population 

specified on the x-axis. Populations are St1: Stafford_1, St2: Stafford_2, Shf: Shifnal, W: Woore, 

I1: Invergowrie_1 and I2: Invergowrie_2.

Figure 3.  Observed OTUs, richness and evenness of bacterial communities. A) Average number 

of observed OTUs per population, B) average Chao1 index values of richness per population and 

C) average Shannon index values of evenness per population. Plotted values sharing the same letter 

were not significantly different.

Figure 4. Bray-Curtis cluster dendrogram based on dissimilarity of the bacterial community 

associated with each insect. Each dendrogram leaf represents a single insect and different shapes 

represent different populations.
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Tables 

Table 1. Vine weevil population location and year of collection.

POPULATION LOCATION YEAR

Stafford_1 Stafford, Staffordshire 2017

Stafford_2 Stafford, Staffordshire 2017

Shifnal Shifnal, Shropshire 2015

Woore Woore, Staffordshire 2015

Invergowrie_1 Invergowrie, Dundee 2017

Invergowrie_2 Invergowrie, Dundee 2016
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Figure 1. Location of vine weevil sampling areas across the UK. Each shape represents a population 
collection site 
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Figure 2. Taxonomic classification of bacterial community members at genus level. Y-axis represents 
average relative abundance in percentage of reads. Bars represent each insect from the population specified 
on the x-axis. Populations are St1: Stafford_1, St2: Stafford_2, Shf: Shifnal, W: Woore, I1: Invergowrie_1 

and I2: Invergowrie_2. 
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Figure 3.  Observed OTUs, richness and evenness of bacterial communities. A) Average number of observed 
OTUs per population, B) average Chao1 index values of richness per population and C) average Shannon 

index values of evenness per population. Plotted values sharing the same letter were not significantly 
different. 

933x724mm (72 x 72 DPI) 

Page 38 of 39Entomologia Experimentalis et Applicata

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 4. Bray-Curtis cluster dendrogram based on dissimilarity of the bacterial community associated with 
each insect. Each dendrogram leaf represents a single insect and different shapes represent different 

populations. 
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