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Abstract

Coal is the most used fuel source to generate electricity by pulverised coal com-

bustion. During this process, volatile compounds are liberated giving rise to the

formation of a variety of char particles. Char particles morphology can be clas-

sified into groups reflecting different coal reactivity levels which may be used to

evaluate the effect of coal on the performance of burner. Char particles morpho-

logical classification may be automatically done with benefits in terms of speed,

consistency and accuracy. However, the classification performance relies on cor-

rect identification of char particles. Moreover, broken walls, created during char

generation process, blurriness and low contrast are factors that make the clas-

sification task a challenging problem. In this paper, we propose a system for

particle detection and particle classification into two reactive groups. Initially,

a set of candidate regions, that may contain particles, is selected by combining

regions and edges. Then, regions containing particles are detected using texture

features and a Support Vector Machine classifier. The particle classification is

done based on the International Commission for Coal Petrology criteria. Ex-

periments using coals from two Colombian regions —Valle and Antioquia—
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showed that the proposed system, in most cases, correctly detect char particles.

Regarding the classification of detected particles, analysed char samples were

automatically classified similarly as manual classification did. Consequently, the

system is found to be a successful first approach for char combustion reactivity

characterisation.

Keywords: Char coal morphology; Particle detection; Particle classification;

Image processing; Candidate regions; Machine learning

1. Introduction

Pulverised coal combustion is the most common method in coal-fired power

plants. However, there are environmental issues associated with electricity gen-

eration, such as air pollution and compatibility with local land use. Increased

combustion efficiency to convert coal into electricity may reduce CO2 emissions5

as well as the amount of unburned coal, and can be achieved by setting combus-

tion parameters correctly. These parameters may be tuned based on char mor-

phology. Chars are produced in the first stage of the coal combustion process.

Char morphology corresponds to the forms of char surfaces observed through a

microscope. Morphological characteristics of chars correspond to wall thickness,10

porosity, shape and unfused material. Char morphology can be used to estimate

coal reactivity, which determines combustion efficiency and the amount of ash

and carbonaceous oxides released to the environment [1, 2]. Char reactivity de-

pends on particle size and structure changes during the combustion. There are

three interacting factors: (i) the chemical reaction of oxygen with the internal15

surface of a particle, (ii) the extent of this surface, and (iii) the extent to which

oxygen diffusion through the pores —which form the internal surface— restricts

the reaction. In morphological terms, particle reactivity depends on porosity,

shape and wall thickness —where porosity corresponds to the ration between

area porous and area particle, shape is related to sphericity and wall thickness20

is a measure of char particle internal walls size.

The Combustion Working Group in Commission III of the International
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Committee for Coal and Organic Petrology (ICCP) published a classification

of chars [3] considering nine types, shown in Fig. 1. This classification can

be summarised in two main groups “high reactive” and “low reactive”. Char25

particles with high reactive morphology are more desirable for coal combustion.

The Mineroid char type is not considered in this work because the identification

requires a quantification of the ash content which is related to mineral matter.

The estimation of mineral matter is based on methods such as Rietveld-based

X-ray powder diffractometry that we considered out of the scope of this research30

as it increases cost and processing time.

Figure 1: The ICCP classification tree for char types and char groups considered in this work.

Char morphology is commonly analysed by experts using a microscope. Be-

fore this can be done, char particles are immersed in resin to create a block.

After curing the resin, the block is polished to expose char particles on the sur-

face [4]. Then, char particles from the block surface are observed, through an air35

or oil microscope, counted and classified, based on morphological characteristics
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of the ICCP classification decision tree. Finally, frequencies per char type are

used to define the reactivity of char samples. The char type with the highest

frequency is adopted as an estimation of coal reactivity. An expert analysis of

a char sample may be subjective, error-prone and requires a significant amount40

of time since it is necessary to observe and classify between 350 and 500 parti-

cles per sample, according to the recommendation of Wu et al. [5] in order to

guarantee reproducibility of results.

However, several manual analysis in industrial processes may be done au-

tomatically by the means of image processing and using new technologies. In45

coal industry, systems for characterisation allowed to automate the estimation

of coal quality based on texture and colour information considering three fixed

categories —best, good and poor— [6], the prediction of ash content of coarse

coal based on texture and colour features [7], and the estimation of particle

size and particle size distribution on fine coal [8]. In a similar way, automatic50

tools using image processing would be beneficial to increase the accuracy of char

analysis and reduce processing times.

Few systems for classifying coal samples into char types, following the ICCP

decision tree —where char particles are automatically detected and morphologi-

cal features are automatically quantified— have been reported [9, 10, 11, 5, 12].55

In those systems, a special effort is done to detect particles since the classifica-

tion heavily depends on morphological features. Changes in particle structure

may occur during devolatilisation and block preparation, resulting in (i) two

or more particles fused, and (ii) a particle is fragmented due to fragile walls

are fractured. In both cases, char particles may not be correctly identified.60

Consequently, morphological features are wrongly measured. Thus, misclassi-

fied particles may affect char reactivity analysis, and introduce errors in coal

quality characterisation [13, 5]. Char particles are detected using binary images

along with morphological operations [10, 5, 11] or edge information [12] to re-

fine the detection of broken particles. Binary images are obtained employing65

commercial software, such as KS400 [5, 11], histogram-based methods such as

Isodata [14, 15] and the Triangle method [16, 12]. However, those methods fail
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to detect particles if the particle fragments are separated by considerable width

gaps.

In other application domains, such as common object recognition, many de-70

tection and classification systems adopt a sliding window approach [17]. Small

regions of variable size (windows) are swept over an image and feature vectors

are used to represent the content of image regions. Feature vectors are used to

train a classifier in order to distinguish windows containing target objects from

others [18]. Recently, approaches using smaller numbers of windows (proposal75

regions) than full grids have been proposed to limit the number of candidate re-

gions by varying parameters and criteria. Some methods use different strategies

for identifying proposal regions, such as: colour contrast, edge information and

superposition of super-pixels [19, 20]; number of edges within a region [21]; and

hierarchical segmentation to identify initial regions using a similarity measure80

based on colour, texture and overlap areas for region merging [22]. High detec-

tion rates using at least 1000 proposal per image have been reported [22, 21].

However, most of those regions significantly overlap, lead to difficulties in se-

lecting proposals containing particles without duplications. Deep learning [23]

has also been used to identify and classify proposals [24, 25, 26]; first to refine85

results of proposal region methods [24, 25] and lately to identify and classify

proposals [26, 27]. However, deep learning approaches require a large amount

of training data, which is scarce in our case.

In this paper, a system is proposed for particle detection and particle clas-

sification into two reactive groups. Particle detection is performed using a90

three-step process. First, a set of candidate regions is selected by combining

regions and edges. This method generates a small amount of overlapped and

well-located regions. Second, regions are represented using texture features

to discriminate regions that contain particles. Third, regions are classified as

“particle” or “non-particle” using texture features and a Support Vector Ma-95

chine (SVM) [28] classifier. Finally, detected particles are classified into reactive

groups following the ICCP decision tree, as a way to characterise the reactivity

of an analysed char sample.
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An experimental evaluation was conducted to validate the proposed system

for char combustion reactivity characterisation using coals from two Colom-100

bian regions: Valle and Antioquia. Results shown that the proposed system

accurately identifies char particles. Concerning char particle classification, the

automatic classification of a char sample agrees with the manual classification.

Thus, coal reactivity characterisation, by the proposed system, is a way for set-

ting combustion parameters in a power plant, since high reactive coals require105

lower temperatures and residence times than low reactive coals.

2. Materials and methods

The coal characterisation is useful for setting combustion parameters in

power plants. Depending on the coal characteristics, temperature and resi-

dence time may be optimised and pollution emissions can be reduced. Coal110

characteristics are revealed either by laboratory analysis (ultimate and proxi-

mate analysis) or by char morphology classification. We propose a system to

characterise char reactivity based on char classification, which is composed of

three main processes: (i) Char image acquisition from a char-block using a mi-

croscope with an attached camera (Section 2.1). (ii) Particle detection based on115

candidate regions, which are classified into “particle” and “non-particle” using

SVM and texture descriptors, that are presented in Table 1, (Section 2.2). (iii)

Classification of char particles into high or low reactive using the ICCP deci-

sion tree and morphological features. The morphological features are calculated

using image-processing techniques (Section 2.3). Fig. 2 shows the modules and120

data flow in our system.

2.1. Char images acquisition

Cross-section images are acquired from a char-block surface using the two-

step process described next (Fig. 2a-b).
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Figure 2: Main modules and data flow of the proposed char reactivity characterisation system.

(i) Char images acquisition: (a) Sample preparation, (b) Image acquisition. (ii) Particle

detection: (c) Selecting candidate regions, (d) Representing candidate regions using texture

features, (e) Classifying candidate regions into “particle” and “non-particle”. (iii) Particle

classification: (f) Calculating morphological feature, (g) Classifying char particles into high

or low reactive using the ICCP decision tree. (h) Characterising char combustion reactivity.

2.1.1. Sample preparation125

Coals samples from two Colombian regions are used to generate char parti-

cles: Valle (South West) and Antioquia (Central West), see Fig. 3. The proxi-

mate and the ultimate analysis are presented in Table 2. The ultimate analysis
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Table 1: Summary of texture descriptor abbreviations.

Symbol Definition

LBP Local Binary Pattern

HGM Histogram of Gradient Magnitudes

HOG Histogram of Oriented Gradients

ASM Angular Second Moment

IDM Inverse Difference Moment or Homogeneity

SumAvg Sum Average

SumEnt Sum of Entropy

Cont Contrast

Corr Correlation

Ent Entropy

DEnt Difference Entropy

IMC1 Information Measures of Correlation 1

IMC2 Information Measures of Correlation 2

is a chemical approach to characterise coals by determining the amounts of the

principal chemical elements in a sample. The proximate analysis is a way to de-130

termine the thermal energy released when coal is burned and predict how coals

will behave when handled and burned. In this work, the proximate analysis is

performed using the standard ASTM D5142-9 [29].

In particular, Valle and Antioquia coals are bituminous with a high volatile

content, as can be observed in Table 2. This kind of coals ignites easily and135

burns well to generate electricity in coal-fired power plants. However, if burned

improperly it can produce excessive air pollution when, for instance, the oper-

ating conditions are not optimised.

Coal samples are milled using a milling ball equipment to particle sizes of

−75µm and are used to produce chars in a drop tube furnace (Fig. 4a). At this140

size, gravity has minimal influence on particles, leading to better fluidisation

inside a reactor [30, 31]. Coal samples and a nitrogen-oxygen mixture fed a
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(a) Coal from Valle (b) Coal from Antioquia

Figure 3: Pulverised coal samples (−30µm).

Table 2: Proximate and ultimate analysis of coal samples.

Coal sample Valle Antioquia

Proximate Analysis (p/p.%, dry free)

Ash 36.05 13.62

Volatile matter 28.87 48.05

Fixed carbon (by difference) 35.09 38.33

Higher Heating Value (BTU/lb) 7727 9488

Ultimate Analysis( p/p.%, dry ash free)

Carbon 72.19 72.22

Hydrogen 5.45 5.14

Nitrogen 1.16 1.44

Sulphur 4.87 0.85

Oxygen (by difference) 16.32 20.34

furnace where devolatilisation took place. An amount of 1% v/v oxygen is

used for facilitating tar oxidation and avoiding char particle condensation. Coal

particle residence time, in the furnace, is 200 ms, at 900 ◦C with 104 ◦C/s145

heating velocity.
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2.1.2. Image acquisition

Char-blocks are built using char, resin and liquid hardener and are polished

with fine polishing clothes using suspensions of alumina at 0.5, 0.3 and 0.05

microns. A set of 200 char images of 1600 × 1200 pixels —that contain 1784150

char particles— is acquired using a metallurgical microscope Eclipse LVD 100

Nikon at 50x magnification lens (Fig. 4b). This magnification corresponds to a

scale of 0.8 µm/pixels.

A ground truth is built using a set of 1784 char particles —that are manually

annotated by experts indicating particle location, for detection evaluation, and155

reactive group, for classification evaluation— in order to evaluate the perfor-

mance of the automatic system (Fig. 4b).

Figure 4: Char images acquisition process. (a) Preparation of char sample in a drop furnace.

(b) Acquisition of char images from a polished char-block surface.

2.2. Particle detection

Although, human experts can easily identify particles, automatic identifi-

cation becomes a difficult task due to factors such as (i) broken particle walls160

caused by changes in char particle structure during combustion, (ii) unfocused

image regions because of poor char-block polishing during blocks preparation

and (iii) low contrast between the resin (background) and char particles. Par-

ticle detection is one of the main stages during an automatic char sample clas-
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sification since it may affect the accuracy of char morphology estimation. For165

particle detection, we used the three-step process described next (Fig. 2c-e).

2.2.1. Candidate regions selection

Candidate regions are selected by a four-fold process (Fig. 5). First, given

a grey scale image, I, the Triangle method [16] is used to convert it into a

binary image, in which ‘1’ indicates particles. This method assumes a bimodal170

distribution, which char images satisfy, as shown in Fig. 5b. Two peaks can

be observed in the histogram, the most prominent peak corresponds to the

background pixels, and the smallest peak corresponds to the particle pixels.

Briefly, the Triangle method draws a line between the maximum value of the

histogram and the lowest value larger than zero. The threshold is set to the175

value that maximises the distance between the histogram and the line. Second,

the Sobel operator is applied to I in order to obtain edges. Third, images from

the two previous steps are combined, using a set union operation, to refine

candidate regions. Fourth, connected white regions with an area less than 1000

pixels are discarded since they may correspond to isolated fragments, which are180

not of interest in the analysis, according to expert’s criteria. The threshold

value, 1000 pixels, was experimental tune. The flood-fill algorithm [32] is used

to obtain connected region.

Finally, a set of bounding boxes R = {r1, r2, ..., ri, ..., rn} is generated around

connected regions as they may correspond to locations of char particles (candi-185

date regions).

2.2.2. Candidate regions representation

Once candidate regions, potentially containing particles, are generated, the

content can be described using several methods [33]. We adopted texture fea-

tures, Haralick [34], LBP [35], HGM, and HOG [36] methods to represent the190

content of candidate regions (Table 1). The selected features may reveal complex

patterns —such as brightness, slope and size, among others—, which discrim-

inate regions containing particles. In particular, given a candidate region ri,
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Figure 5: Illustration of candidate regions selection from a particles image.

a feature vector based on texture information is obtained —as illustrated in

Fig. 6— to represent a region.195

Figure 6: Illustration of texture features extraction from a candidate region.

Firstly, ri is split into s2 patches of size wi

s ×
hi

s , where s > 0, and wi and

hi correspond to the width and the height of a proposal region ri. The value of

the splitting parameter s is tuned experimentally.
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Secondly, texture and edge features are obtained per patch. Texture is cap-

tured by Haralick and LBP. Haralick features [34] provide a set of metrics cal-200

culated over co-occurrence matrices representing spatial relations among pixels

values, in order to identify patterns. We used a step size of one pixel at four

angles of 0◦, 45◦, 90◦ and 135◦. The final Haralick value corresponds to the

average over all angles. LBP [35] searches for binary texture patterns at each

pixel considering a circular region, then a histogram is calculated to summarise205

the LBP values. LBP is computed using a radius of two and considering eight

neighbours. Edge information is quantified by calculating HGM and HOG.

HGM is obtained using the Sobel operator to generate a histogram of gradient

magnitudes. HOG [36] creates histograms by counting frequencies of gradient

angles; in this work, eight angles are considered.210

Finally, a feature vector for a candidate region is formed by concatenat-

ing the LBP, HGM, HOG and the Haralick values obtained per patch. The

concatenation of features allows to get a richer representation of a candidate

region.

2.2.3. Candidate regions classification215

Texture feature vectors —composed by Haralick, LBP, HGM, and HOG—

represent candidate regions and are used to classify candidate regions into “par-

ticle” and “non-particle”. Notice that the “non-particle” class includes regions

with partial and multiple particles. In this work we used the Support Vector

Machine (SVM) classifier [28]. SVM learnt a classification model from class220

annotated feature vectors, by choosing the best kernel transformation that lin-

early separates new examples. Intuitively, a good separation between classes is

achieved by a kernel transformation that has the largest margin to a decision

boundary. In general, the larger the margin, the lower the generalisation error

of a classifier. The trade-off between maximising the margin distance and min-225

imising the training error controlled by a regularisation parameter C. Regions

classified as “particle” are used next to determine char reactivity.

13



2.3. Particle classification

Char particles are classified into two reactivity groups —high and low—

using the three-step process described next (Fig. 2f-h).230

2.3.1. Morphological features extraction

Morphological features are required to classify char particles and the cal-

culation of those features heavily depends on the correct char particle detec-

tion. Four morphological features are used in the ICCP decision tree to de-

scribe a particle content —percentage of unfused material, porosity, sphericity,235

wall thickness— along with, auxiliary variables —such as area and number of

pores— that are used in an intermediate step. Features and auxiliary variables

are computed as follows [12].

1. Area: the number of white pixels in a binary image obtained by the Tri-

angle method (Fig. 7b).240

2. Percentage of unfused material: the ratio between unfused material and

particle area. The unfused material corresponds to the brightest grey

intensities in char images —values between 250 and 255— (Fig. 7c).

3. Number of pores: the number of voids identified in a char particle (Fig. 7d).

4. Porosity: the ratio between pores area or voids and particle area.245

5. Sphericity: the ratio between the minimum and the maximum Feret diam-

eters.The minimum and maximum Feret diameter correspond respectively

to the shortest and the longest distance between any two parallel tangents

at a particle (Fig. 7e).

6. Wall thickness: The second quartile (the median) of wall thickness distri-250

bution is used as the wall thickness measure. Wall thickness distribution

is calculated using line transects in three steps. First, a particle image

is converted into binary. Second, lines transects are drew from the image

centre in all directions. At each line, the distance of two intersected points

at the particle edges is computed as a measure of thickness. Third, the255

histogram of wall thickness is calculated (Fig. 7f).

14



(a) (b) (c) (d) (e) (f)

Figure 7: Illustration of morphological char features. (a) Char particle image in gray scale;

(b) Area of particle, in white; (c) Unfused material, in yellow; (d) Pores identified in red;

(e) The maximum and minimum Feret diameters; (f) Line transects used for calculating wall

thickness.

2.3.2. The ICCP decision tree

Particle classification is performed by the ICCP decision tree [3], which

was specially built for classifying char morphology based on experts knowl-

edge (Fig. 1). The classifier uses morphological features calculated previously.260

In particular, particles are classified into one of the two groups, “high reac-

tive” or “low reactive”. High reactive group corresponds to morphologies of

thin-walled, high porosity and large superficial area, such as Crassisphere, Te-

niusphere, Tenuinetwork and Crassisnetwork. Low reactive group refers to mor-

phologies of thick-walled, low porosity and small superficial area such as Mixed265

Porous, Mixed Dense, Solid and Inertoid.

2.3.3. Char reactivity characterisation

Particles in a char sample are characterised by relative frequencies of the

two reactivity groups: high and low. The char group with the highest frequency

indicates the reactivity of a char sample.270

3. Experimental results and discussion

In our study, a set of 200 images, that contain 1784 char particles, are

used to evaluate particles and particles classification (Section 2). The program

to analyse char particles was developed using Python and C++ programming

languages.275
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Training conditions of SVM classifiers, which are used to detect particles,

along with the performance and the evaluation of particles classification are

described in the following sections.

3.1. Feature selection for SVM classifiers in particle detection

SVM classification models were built using 80% of the dataset, 160 images280

that contain 1476 particles, which are annotated as particles to form a ground

truth. Since there is not negative examples, we introduce the Intersection over

the Union of the objects (IoUobj) to generate negative examples. IoUobj in a

region is used to determine whether a candidate region ri matches with a particle

from the ground truth, gti. The expression for IoUobj is defined as follows:285

IoUobj(ri, gti) =
areaobj(ri ∩ gti)
areaobj(ri ∪ gti)

, (1)

where areaobj is area of objects in a candidate region. Area is calculated

using a convex hull [37].

The training set was composed by 1476 examples of the class “particle” and

1628 examples of the class “non-particle”. Candidate regions with IoUobj ≤ 0.5

were considered as “non-particle” examples.290

SVM classifiers were learnt using a linear kernel with a regularisation pa-

rameter C = 1. A 5-fold cross-validation with a sub-sampling strategy was

used to optimise the model parameters since the training sets were imbalanced

(more examples in “non-particle” class examples than in “particle” class). In

the cross-validation strategy, the training dataset was randomly split into five295

subsets of equal size; one subset was used for evaluation and the remaining ones

for training the model. This process was repeated five times (the folds), i.e. a

subset was used for evaluation. The model is selected as the one with the high-

est accuracy (Acc) measure during the cross-validation. Acc is the percentage

of candidate regions correctly classified as “particle” and “non-particle”.300

Thirteen features were evaluated for describing proposal regions: HGM,

HOG, LBP and the ten Haralick features: ASM, Cont, Corr, IDM, SumAvg,

SumEnt, Ent, DEnt, IMC1 and IMC2. In addition, splitting factor values,

16



s = {1, 2, 3, 4}, were considered for extracting features, as was described in Sec-

tion 2.2.2. The number of bins, h, to construct a histogram was chosen based305

on the following rules:

• The Freedman-Diaconis rule, h = 2 IQR
3
√
m

,

• The Scott rule, h = 3.5STD
3
√
m

,

• Fix bin sizes h = 20, h = 50 and h = 100,

where IQR is the interquartile range, STD is the standard deviation and m is310

the amount of data. Outlier values were not considered during the construction

of histograms. The Tukey method [38] was used to identify the range for outlier

values.

Individual texture features were chosen based on Acc values and Area Under

the ROC Curve values (AUC) [39]. The AUC values corresponds to the proba-315

bility that a classifier ranked a randomly chosen “particle” example higher than

a “non-particle” one, which indicates how well a feature can distinguish among

classes. Table 3 and Table 4 present the Acc and the AUC values obtained using

LBP, HGM and HOG features. Feature histograms were calculated with a whole

training set using five rules to determine the number of bins. The classification320

performance measures, the Acc and the AUC, do not exhibit significant differ-

ences regarding the different number of bins. Regarding the splitting factor to

obtain feature vectors, the best accuracy values were yielded for a factor s = 4.

It is observed that describe proposal regions using local patches (s > 1) instead

of considering a whole region (s = 1) led to a better particles detection since a325

better representation is obtained.

Table 5 and Table 6 show the Acc and the AUC values obtained using

Haralick features. Similar to the performance observed using HOG, LBP and

HGM features, the Acc and the AUC computed using Haralick features increase

when large values of splitting factor were used. In particular, a splitting factor330

of s = 4 was used to obtain feature vectors.

Individual features with Acc and AUC values above 70 and s = 4 —in Ta-

17



Table 3: Average Acc values calculated using HOG, LBP and HGM features by different

splitting factors and methods to estimate the number of bins. The best performance values

are highlighted in bold.

Feature (Rule for

histogram bins)

Splitting factor, s = 1 Splitting factor, s = 2 Splitting factor, s = 3 Splitting factor, s = 4

Fea. len Acc ± I.C. Fea. len Acc ± I.C. Fea. len Acc ± I.C. Fea. len Acc ± I.C.

LBP(Freedman) 445 0.727 ± 0.011 1780 0.762 ± 0.004 4005 0.801 ± 0.010 7120 0.823 ±0.012

LBP(Scott) 334 0.726 ± 0.008 1336 0.758 ± 0.023 3006 0.800 ± 0.012 5344 0.820 ± 0.010

LBP(Fixed to 100) 100 0.724 ± 0.010 400 0.755 ± 0.020 900 0.800 ± 0.013 1600 0.819 ± 0.009

LBP(Fixed to 50) 50 0.723 ± 0.009 200 0.752 ± 0.018 450 0.803 ± 0.012 800 0.818 ± 0.012

LBP(Fixed to 20) 20 0.701 ± 0.012 80 0.741 ± 0.014 180 0.789 ± 0.013 320 0.808 ± 0.012

HGM(Freedman) 767 0.679 ± 0.015 3068 0.716 ± 0.015 6903 0.751 ± 0.003 12272 0.774 ± 0.008

HGM(Scott) 462 0.685 ± 0.020 1848 0.721 ± 0.019 4158 0.752 ± 0.018 7392 0.771 ± 0.015

HGM(Fixed to 100) 100 0.719± 0.015 400 0.736 ± 0.015 900 0.775 ± 0.011 1600 0.790 ± 0.015

HGM(Fixed to 50) 50 0.730± 0.019 200 0.739 ± 0.014 450 0.784 ± 0.013 800 0.798 ± 0.014

HGM(Fixed to 20) 20 0.735± 0.013 80 0.739 ± 0.019 180 0.793 ± 0.014 320 0.806 ± 0.012

HOG 8 0.544 ± 0.029 32 0.625 ± 0.032 72 0.681 ± 0.012 128 0.712 ± 0.013

Table 4: Average AUC values calculated using HOG, LBP and HGM features by different

splitting factors and methods to estimate the number of bins. The best performance values

are highlighted in bold.

Feature (Rule for

histogram bins)

Splitting factor, s = 1 Splitting factor, s = 2 Splitting factor, s = 3 Splitting factor, s = 4

Fea. len AUC Fea. len AUC Fea. len AUC Fea. len AUC

LBP(Freedman) 445 0.833 1780 0.839 4005 0.885 7120 0.910

LBP(Scott) 334 0.775 1336 0.803 3006 0.875 5344 0.904

LBP(Fixed to 100) 100 0.775 400 0.803 900 0.874 1600 0.903

LBP(Fixed to 50) 50 0.770 200 0.798 450 0.872 800 0.902

LBP(Fixed to 20) 20 0.739 80 0.773 180 0.859 320 0.888

HGM(Freedman) 767 0.756 3068 0.762 6903 0.824 12272 0.840

HGM(Scott) 462 0.705 1848 0.736 4158 0.792 7392 0.820

HGM(Fixed to 100) 100 0.731 400 0.750 900 0.817 1600 0.843

HGM(Fixed to 50) 50 0.741 200 0.754 450 0.829 800 0.851

HGM(Fixed to 20) 20 0.748 80 0.757 180 0.837 320 0.853

HOG 8 0.421 32 0.729 72 0.764 128 0.785

ble 3, Table 4, Table 5 and Table 6— were chosen to select the optimal subset

of features by applying a forward wrapper approach [40]. In this way, irrelevant

and redundant features are removed since those features do not contribute or335

may decrease the performance of a classifier. The forward wrapper is described

as follows: Starting from individual features, feature subsets are created by

adding a new feature, as long as the new feature increases the accuracy perfor-

mance of the feature subset, at each iteration. SVM classifiers were trained for

18



Table 5: Average Acc values calculated for Haralick features using different splitting factors.

The best performance value by feature in bold.

Feature
Splitting factor, s = 1 Splitting factor, s = 2 Splitting factor, s = 3 Splitting factor, s = 4

Fea. len Acc ± I.C. Fea. len Acc ± I.C. Fea. len Acc ± I.C. Fea. len Acc ± I.C.

ASM 1 0.501 ± 0.001 4 0.501 ± 0.001 9 0.501 ± 0.001 16 0.499 ± 0.001

Cont 1 0.499 ± 0.003 4 0.523 ± 0.017 9 0.648 ± 0.025 16 0.684 ± 0.025

Corr 1 0.564 ± 0.008 4 0.644 ± 0.012 9 0.693 ± 0.014 16 0.699 ± 0.016

IDM 1 0.649 ± 0.020 4 0.655 ± 0.019 9 0.726 ± 0.019 16 0.746 ± 0.019

SumAvg 1 0.501 ± 0.027 4 0.531 ± 0.014 9 0.634 ± 0.024 16 0.659 ± 0.027

SumEnt 1 0.582 ± 0.016 4 0.562 ± 0.016 9 0.709 ± 0.024 16 0.731 ± 0.021

Ent 1 0.556 ± 0.019 4 0.568 ± 0.026 9 0.729 ± 0.020 16 0.741 ± 0.031

DEnt 1 0.531 ± 0.030 4 0.561 ± 0.023 9 0.687 ± 0.024 16 0.708 ± 0.022

IMC1 1 0.615 ± 0.017 4 0.600 ± 0.031 9 0.717 ± 0.017 16 0.769 ± 0.021

IMC2 1 0.497 ± 0.005 4 0.487 ± 0.006 9 0.591 ± 0.018 16 0.712 ± 0.028

Table 6: Average AUC values calculated for Haralick features using different splitting factors.

The best performance value by feature in bold.

Feature
Splitting factor, s = 1 Splitting factor, s = 2 Splitting factor, s = 3 Splitting factor, s = 4

Fea. len AUC Fea. len AUC Fea. len AUC Fea. len AUC

ASM 1 0.498 4 0.500 9 0.498 16 0.273

Cont 1 0.605 4 0.500 9 0.707 16 0.748

Corr 1 0.602 4 0.699 9 0.737 16 0.772

IDM 1 0.633 4 0.639 9 0.758 16 0.790

SumAvg 1 0.452 4 0.544 9 0.714 16 0.749

SumEnt 1 0.565 4 0.530 9 0.805 16 0.813

Ent 1 0.525 4 0.590 9 0.821 16 0.815

DEnt 1 0.483 4 0.506 9 0.738 16 0.780

IMC1 1 0.613 4 0.604 9 0.758 16 0.828

IMC2 1 0.508 4 0.510 9 0.640 16 0.769

a subset of features using a 5-fold cross validation. Finally, the set of features340

chosen for representing the content of candidate regions are: LBP, computed

with histograms fixed to 50 bins, HGM, obtained with histograms fixed to 20

bins, HOG, Corr, SumEnt and IMC2. The SVM classifier achieved an Acc of

0.880± 0.011 and an AUC of 0.955.

3.2. Evaluation of particles detection345

The correct detection of char particles was evaluated using 20% of the

dataset, 40 images which contained 308 particles. Candidate regions were gen-
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erated by the method described in Section 2.2. We chose the recall and the

precision as evaluation measures [39]. The recall is the fraction of particles

correctly detected among regions identified as particles, it can be seen as the350

probability of detection. It is calculated using a confusion matrix as true posi-

tive divided by true positive plus false negative. The precision is the fraction of

particles correctly detected and is calculated using a confusion matrix as true

positive divided by true positive plus false positive. Table 7 shows the recall

and the precision values obtained at at two stages: (i) using candidate regions355

and (ii) using detected particles. Recall and precision values were calculated

considering IoUobj = {0.9, 0.8, 0.7, 0.6, 0.5} to determine if a candidate region

matches a ground truth.

Recall and precision values change depending on the IoUobj used to evaluate

positive matches. In general, higher values of IoUobj led to lower values of recall360

and precision, since a better localisation of candidate regions was expected. The

initial set of candidate regions identified by combining regions and edges scored

detection rates between 0.79 at IoUobj = 0.9 and 0.90 at IoUobj = 0.5. However,

the precision was low (maximum precision of 0.36 at IoUobj = 0.5) due to the

large amount of candidate regions containing isolated fragments, as well as blur365

and scratched regions caused by a poor char-block polishing. After the SVM

classifier was used to select candidate regions that contain particles, the recall

yield values between 0.51 at IoUobj = 0.9 and 0.58 at IoUobj = 0.5 with a

maximum drop of 0.32 in comparison to the recall obtained for the initial set of

candidate regions. The precision values were between 0.63 at IoUobj = 0.9 and370

0.72 at IoUobj = 0.5 with a maximum improvement of 0.31 in comparison to

the initial set, showing that the SVM classifier used to refine candidate regions

detection, in most cases, allows to select regions including char particles. Fig. 8

presents some particle detection results.

The experimental evaluations are conducted using a laptop with a processor375

Intel Core i7 and 4GB of RAM, and the implementation is done using Python,

with the scikit-learn and scikit-image libraries, as programming language. Re-

garding the processing time, the training of a SVM model takes approximately
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2.5 hours. Once trained, models are able to detect particles in less than 32

seconds per a whole image, and an individual char particle is detected in ap-380

proximately 6 seconds. The processing time is calculated using the testing set

—40 char images that contain 308 particles.

Table 7: Precision and recall values obtained the particle detection process.

Particle detection
stage

Total of
regions

Regions
per image

Precision values by IoUobj Recall values by IoUobj

0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

Candidate regions 681 17 0.36 0.37 0.39 0.41 0.41 0.79 0.83 0.87 0.90 0.90

Particles selected
by the SVM 250 6 0.63 0.64 0.68 0.71 0.72 0.51 0.52 0.55 0.58 0.58

Figure 8: Illustration of “particle” and “non-particle”. Particles manually annotated are in

green squares (ground truth), particles automatically detected are in red squares and non-

particles automatically detected are in black squares.

3.3. Evaluation of particles classification

The particle classification obtained automatically for char samples of Antio-

quia and Valle was compared against the manual classification. In each case,385

a relative frequency was calculated by group “high reactive” or “low reactive”.

The automatic classification was carried out over the set of candidate regions

classified as “particle” using the ICCP decision tree. The evaluation was con-

ducted on two sets of char images: (i) 160 images that contain 1476 particles,

which were used to train the SVM that select the regions containing particles;390

and (ii) 40 char images that contain 308 particles, that were used during the

testing process of the SVM. Table 8 shows the relative frequencies for the two

sets of char images. In the training process, a maximum classification error of

21



13% compared to manual classification was observed, while in testing, the error

increased to 24%. This error was a result of fragmented particles that may395

appear as individual particles which affects global features (e.g porosity cannot

be accurately measured when walls are broken).

Despite this classification error, the group assigned to the analysed char

sample corresponds to the manual classification —using the ICCP decision tree

errors are admitted up to 30%, since reactivity groups are assigned to a char400

sample based on the mode. All in all, the system can be applied to characterise

the char reactivity preliminary.

The experimental evaluations are conducted using a laptop with a processor

Intel Core i7 and 4GB of RAM, and C++ as programming language. Regarding

the processing time, the ICCP decision tree produces results in less than 0.5405

seconds per char particle. The processing time is calculated using the testing

set —40 char images that contained 308 particles.

Table 8: Char particles manually and automatically classified.

Char group

Training sets Testing sets

Coal from Valle Coal from Antioquia Coal from Valle Coal from Antioquia

Manual Auto Manual Auto Manual Auto Manual Auto

High reactive 0.50 0.50 0.29 0.16 0.44 0.36 0.37 0.13

Low reactive 0.50 0.50 0.71 0.84 0.56 0.64 0.63 0.87

4. Conclusions

Pulverise coal combustion produces residuals as air pollutants —particulate

matter (PM), carbon dioxide (CO2), sulphur oxides (SOx) and nitrogen oxides410

(NOx)— affecting the environment and also unburned coals representing eco-

nomical losses. Residuals production may be reduced by optimally setting the

combustion parameter, resident time and temperature. The combustion param-

eters depend on coal characteristics; high reactive coals burn faster and require

lower temperature than low reactive coals. In this paper, we present an auto-415

matic system for coal characterisation by classifying char particles into high and

22



low reactive.

The automatic system is two-fold: char particle detection and char particle

classification. A classifier using texture features does the former. The latter uses

the ICCP decision tree. Although, char images are characterise by low contrast,420

ill-defined edges and lack of colour, the best set of texture features was selected

using the forward wrapper method. Those features are able to represent the

content of candidate regions that are used for detecting particles. The ICCP

decision tree is based on morphological features, which are commonly used by

experts. Those morphological features are calculated using image processing425

techniques and represent correctly char structures. Experimental evaluations

indicate that the proposed automatic system yielded results similar to manual

analysis. As future work, strategies to detect as a whole particle fragmented

particles will be evaluated.
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[12] D. Chaves, E. Garćıa, M. Trujillo, J. M. Barraza, Char morphology from

coal blends using images analysis, in: World Conference on Carbon, CAR-

BON, 2013, pp. 1–5.470

24



[13] M. Cloke, E. Lester, Characterization of coals for combustion using petro-

graphic analysis: a review, Fuel 73 (3) (1994) 315–320.

[14] T. W. Ridler, S. Calvard, Picture thresholding using an iterative selection

method, IEEE Transactions on Systems, Man, and Cybernetics 8 (8) (1978)

630–632.475

[15] J. Reyes, Identificación de descriptores en imágenes de carbonizado, Mas-
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