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Signal Enhanced Proteomics: a Biological Perspective on Dissecting the 
Functional Organisation of Cell Proteomes 

Running title: Signal Enhanced Proteomics

Abstract 

Proteomes are highly dynamic and can respond rapidly to environmental and cellular 

signals. Within cells, some proteins can form distinct ‘pools’, i.e. where a subset of the 

protein shows different functions and/or properties, such as subcellular location. This 

means that for a given protein ‘A’, a subset (pool) of that protein can differ in a value 

that is measured for the total population of molecules of protein ‘A’. However, in 

quantitative proteomics studies it is common to measure averaged values for proteins 

that do not reflect variations that may occur between different protein isoforms, 

different subcellular compartments, or in cells at different cell cycle stages.  Here we 

review experimental approaches that can be used to enhance the signal from specific 

pools of protein that may otherwise be obscured through averaging across protein 

populations. This signal enhancement can help to reveal functions associated with 

specific protein pools, providing insight into the regulation of cellular processes. We 

review different strategies for proteomic signal enhancement, with a focus on the 

analysis of protein pools in different subcellular locations. We describe how MS-based 

proteome analyses can be combined with a general physico-chemical cell fractionation 

procedure that can be applied to many cultured cell lines.  

Introduction 

The field of proteomics has seen tremendous advances that have improved the 

efficiency of protein detection at multiple levels, including experimental design, sample 

preparation workflows, LC-MS instrumentation and computational analysis. As a 

result, it is now possible not only to identify a large proportion of a steady state cell 

proteome in a single experiment, either with, or without, fractionation [1,2] but also to 

describe additional proteome dimensions, such as protein turnover rates, cell-to-cell 

variation, post-translational modifications, and subcellular localization. 
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From a biological perspective, a limitation of most shotgun proteomics experiments is 

that protein extracts are typically prepared from heterogeneous populations of cells, 

e.g. either from tissues, whole organisms, or from unsynchronised cells at different cell 

cycle stages. The resulting quantitative data represent an averaged value across all 

of the pools of each protein. However, to characterise biological regulatory 

mechanisms, it is important not only to quantify protein expression levels, but also to 

resolve protein groups into separate isoforms. This “isoform inference” problem is 

inevitably associated with bottom-up proteomics; i.e. where proteins extracted from a 

cell, tissue or an organelle are identified following their digestion into peptides, which 

are then analysed using LC-MS/MS. Furthermore, information from additional 

proteome ‘dimensions’ e.g. describing the subcellular distribution of proteins and 

cross-correlating this with data on post-translational modifications (PTMs), protein 

complexes, rates of protein synthesis and turnover, can provide valuable insights into 

regulatory mechanisms and generate hypotheses that can be evaluated in follow-on 

experiments. This combined analysis approach has been referred to as either “Next 

Generation Proteomics”, or, “Multidimensional Proteomics” [3]. 

In this manuscript, we will review examples of methods that make it possible to 

enhance proteomic signals and thereby detect protein-level changes that would not 

have been detected in standard one-dimensional analyses.  

 

Signal enhanced proteomics vs Classical proteomics 

 

Most proteomics approaches have tended to provide measurements that describe an 

averaged view, or steady state proteome. Protein expression levels are measured 

from the combined analysis of different sub-populations of protein molecules extracted 

from homogenized cell or tissue extracts. In turn, the extracts are generated from pools 

of cells, which typically include cells at different stages of the cell cycle and may 

include cells that have shown different response levels to external stimuli. While this 

is useful in providing general information on the proteome and its remodelling, as 

described below, the averaging can obscure the detection of changes in proteins that 

occur specifically in subsets of the global proteome (Figure 1). 

 

To address the population averaging problem, several enrichment strategies at either 

cellular, or subcellular levels, can be applied to link the proteomics information more 



effectively with cell biology. For example, immunologists have long used surface 

markers to label and sort different subpopulations of immune cells, using Fluorescence 

Activated Cell Sorting (FACS). With recent improvements in sensitivity and throughput 

for MS analysis, it has become technically feasible and cost effective to combine FACS 

sorting with proteomics analysis, which helps to target protein detection in specific cell 

subsets [4,5]. Recently, Ly et al. extended this approach to using FACS also to isolate 

cell subpopulations defined by immunolabelling intracellular, rather than cell surface 

antigens [6]. Using this strategy, termed PRIMMUS (PRoteomic analysis of 

Intracellular iMMUnolabelled cell Subsets), Ly et al. were able to separate interphase 

and mitotic cells, and also able to isolate populations of FACS-sorted cells enriched 

for specific mitotic subphases in sufficient quantities for detailed MS-based proteomic 

analysis, as shown schematically in Figure 1. For example, using PRIMMUS allowed 

the identification of 115 protein phosphorylation sites that increased during G2, 

including the phosphorylation of serine S738 on TPX2, which was shown to be 

important for TPX2 function and mitotic progression. This demonstrates that even 

minor subsets of cells in a population, which exist only transiently, can be isolated and 

protein responses detected that would otherwise be obscured in the bulk analysis of 

the proteome in extracts prepared from mixtures of cells at different cell cycle stages. 

New technology platforms are now being developed, based on FACS, to allow 

proteomics analysis from low numbers of cells, even aiming at single cell analysis. For 

example, Zhu et al. described the use of FACS to deposit cells into a newly developed 

nanodroplet sample processing chip for nanoLC-MS analysis [7]. This allowed the 

identification of ~ 670 protein groups from a single HeLa cell. They further 

demonstrated that this single cell platform can differentiate cell types from enzyme‐

dissociated human lung primary cells and identify specific protein markers for epithelial 

and mesenchymal cells. 

 

Isoform specific proteomics  

In higher eukaryotes, many genes encode two or more protein isoforms, which behave 

as distinct pools of related proteins and that may differ in terms of subcellular 

localization, interaction partners and function. For example, alternative splicing of pre-

mRNA transcripts is commonplace, generating multiple mRNAs from the same gene, 

which in turn gives rise to proteins that can differ in structure and function. Isoforms 

can also arise via differential protein processing, e.g. cleaving the original translation 



product into shorter forms. In other cases, protein isoforms can arise from expression 

of closely related, duplicated genes. 

Whatever the mechanism, a common feature of closely related protein isoforms is that 

they usually share extensive regions of protein sequence identity and consequently 

have many shared peptides. The corollary is that many peptides that are identified in 

the typical bottom-up MS-based proteomics workflows cannot reliably be assigned to 

only one specific protein species for quantitation (Figure 2). If the structure of different 

protein isoforms is known experimentally, or predicted from genomic and 

transcriptomic studies, peptides that are either unique to a specific isoform, or shared 

between different isoforms, can be identified and used for MS-based quantification. 

However, the identities of all protein isoforms in different cell types and organisms are 

not always known in advance. To address the isoform problem experimentally, without 

relying on accurate genome annotations, a protein size fractionation step can be 

included in the workflow, e.g. using SDS-PAGE, or size exclusion chromatography 

(SEC), prior to digestion [8-10]. This can enrich for protein isoforms that differ in size, 

which in turn reduces the isoform inference problem in subsequent MS analysis. 

Computational approaches can also be used to distinguish protein isoforms. For 

example, Ahmad et al. [11] used a candidate approach, combined with sub-cellular 

fractionation, to detect protein isoforms that showed differential behaviour in separate 

subcellular compartments. Here, average values for protein intensity are first 

calculated using all of the peptides detected from a given gene, irrespective of 

isoforms. Next, the potential protein coding region is subdivided along its length and 

protein intensity is re-calculated, either using the peptides from the respective amino 

terminal, middle and carboxy-terminal ‘thirds’ of the protein sequence (‘rule of thirds’ 

approach), or else protein intensity calculated using groups of adjacent peptides, 

moving sequentially along the protein length from the amino to carboxy terminus. The 

principle is that if a protein isoform has a region of peptide sequence that is not present 

in other isoforms (e.g. resulting from inclusion of a differentially spliced exon), that may 

result in a protein intensity value for the isoform that differs from the average value 

obtained using all of the peptides matched to the protein group. Using the unbiased 

approach described above, Ahmad et al. [11] detected candidate protein isoforms via 

the analysis of peptide subsets and showed that the expression of some of these 

isoforms differed between the respective cytoplasmic and nuclear compartments of 

cultured human cell lines. 



Ahmad et al. [11] also analysed correlations between protein post-translational 

modifications (PTMs) and protein localisation and turnover rates. For example, this 

showed that while the presence of one or more phosphorylated residues had little or 

no effect on the mean protein turnover rate, a subset of proteins were identified for 

which phosphorylation correlated with altered turnover rates. Interestingly, in HeLa 

cells this also correlated with protein localisation. Thus, a larger fraction of nucleolar 

proteins showed effects of phosphorylation on turnover rates, as opposed to either 

cytoplasmic, or nuclear proteins. Gene ontology analysis showed further that the 

proteins whose turnover rates are most affected by phosphorylation were enriched for 

ATP and nucleotide binding proteins, multiple cell cycle regulated proteins and 

proteins involved in apoptosis and cell death response mechanisms. 

An alternative approach to identifying protein isoforms is to use a ‘top down’ MS 

strategy, rather than the more common ‘bottom up’ shotgun MS strategy discussed 

above. The top down strategy relies upon the ability to identify intact proteins by MS, 

rather than digested peptides [12]. The analysis of intact proteins can provide more 

accurate information, e.g. on the size of the proteins, on the presence of splice forms 

and PTMs [13-17]. Moreover, this approach can potentially provide more accurate 

quantification by overcoming many of the problems inherent in quantification using 

bottom up strategies. Currently, application of the top down strategy is still limited, at 

least in part, by the resolution and throughput capacity of modern MS instruments. 

However, the ability to resolve intact proteins by MS has improved significantly in 

recent years and we anticipate that further improvements will result in a wider adoption 

of the top down strategy in future. 

 

The subcellular proteome  

 

While most proteomic analyses have studied whole cell extracts, avoiding the issue of 

subcellular protein localization, some studies have focussed on analysing the 

proteomes of purified organelles and more recently global approaches have been 

developed to tackle the spatial dimension of the proteome. These global proteome 

localization approaches can be divided into two groups: first, targeted studies, which 

attempt to isolate biologically defined compartments (organelles), using fractionation 

methods that yield relatively pure fractions; second, global studies where multiple 

fractions are generated, using characteristics of subcellular compartments, e.g. 



density and solubility to detergents, as the basis for fractionation. Subsequently, cross-

gradient profiles are used to group proteins and assign them to compartments, based 

on co-fractionating markers. 

Examples of methods from the first group include the classic nucleolar extraction 

protocol, which has been used in the “spatial proteomics” workflow (Figure 3A) [18] as 

well as methods using detergents of increasing strength to target compartment 

proteomes, based on their accessibility and solubility [10]. Methods which belong in 

the second group include Protein Correlation Profiling (PCP) [19] and Localization of 

Organelle Proteins by Isotope Tagging (LOPIT) [20], both of which rely on statistical 

methods to unravel the pattern of distribution of compartment proteomes in mixed 

populations separated using a gradient fractionation approach. The LOPIT workflow 

has been used successfully to investigate how the proteome, at steady state, is 

partitioned between multiple organelles and compartments. LOPIT has taken 

advantage of isobaric labelling, such as iTRAQ [21] and TMT[22], which allows 

simultaneous analysis of up to ten samples in a single MS run. Isobaric labelling is 

particularly well suited for analysis of fractionation experiments, because physically 

combining fractions early in the workflow makes the analysis internally controlled and 

improves data quality by reducing the problem of missing values.  

Hyperplexed LOPIT [23] leverages new technological development, both in the TMT-

technology and MS instrumentation, allowing more accurate quantification of an 

increased range of reporter tags. In addition to higher multiplexing capabilities, 

HyperLOPIT features improved subcellular fractionation protocols, which aim to 

preserve as many sub-organelles as possible [24]. Another important part of any 

spatial proteomics approach is the computational workflow used to combine the 

proteomics data with the subcellular fractionation/organelle compartment information.  

Accordingly, considerable effort has been dedicated to the development of 

computational packages for spatial proteomics in recent years.  For example, Breckels 

et al., have recently described an example of a spatial analysis workflow combined 

with a step by step analysis guide [25]. An overview of a data analysis workflow for 

spatial proteomics is illustrated in Figure 3B. 

In addition to characterising organelle/compartment proteomes at steady state, it is 

also important to understand the dynamic remodelling of the subcellular proteome 

when cells respond to stimuli, e.g. stress, or viral infection.  This can result not only in 

changes in protein abundance, but also in protein translocation between 



compartments. Recently, Cristea and co-workers extended the methods described 

above to study virus-induced spatial cell remodelling. By combining label-free and 

isobaric labelling, they measured the abundance levels for host and viral proteins and 

their localization throughout the time course of human cytomegalovirus (HCMV) 

infection, providing a comprehensive resource for understanding host and virus 

biology during HCMV pathogenesis [26,27]. They reported global reorganisation of 

proteins across different cellular compartments, including reorganization and 

processing of lysosomal proteins into distinct pools and translocations of individual 

proteins between organelles at specific timepoints. They also demonstrated that 

translocation of an unconventional myosin, MYO18A, from the plasma membrane to 

the viral assembly complex, is necessary for efficient HCMV replication. 

The extent of proteome relocalization is also affected by the cell genotype, as first 

shown by comparing the response to stress induced by DNA damage in human 

HCT116 cells that were either wild type, or null, for the tumour suppressor p53 [28]. 

Using a MS-based proteomics approach, combined with subcellular fractionation, the 

distribution of the proteome between the nucleus and cytoplasm was compared before 

and after DNA damage induced by etoposide treatment, in both p53 +/+ and p53 -/- 

HCT116 cells. Few p53-dependent differences in proteome localization were detected 

under normal cell growth conditions, but clear differences after induction of DNA 

damage, particularly affecting the ability of ribosomal proteins to accumulate in 

nucleoli. This study illustrates how the unbiased proteomic analysis of part of the role 

of p53 in the DNA damage response was only revealed after linking MS-based 

proteome measurements with subcellular fractionation. 

Protein turnover analysis 

Early biochemical studies of protein turnover relied on detecting the incorporation of 

radiolabeled amino acids into newly translated proteins [29]. Typically, proteins were 

labelled with [35S] methionine and pulse-chase experiments used to determine their 

rate of degradation, after adding drugs to block protein synthesis. Nowadays, MS-

based proteomics allows the measurement of turnover rates for large numbers of 

proteins simultaneously, for example by using pulse labelling experiments combined 

with stable isotope labelling by amino acids in cell culture (SILAC). The principle of 

pulse SILAC is to metabolically label proteins with heavy isotope substituted amino 



acids and then to quantify how the isotope-labelled protein population changes over 

time (Figure 4). We and others have used pulse SILAC to study protein synthesis and 

turnover [10,30-36]. 

An alternative method is metabolic labelling using bioorthogonal amino acids [37], 

such as azidohomoalanine (AHA), which is incorporated into newly synthesised 

proteins instead of methionine [38]. AHA contains an azide group, enabling capture of 

newly synthesised proteins via click chemistry [37]. This, combined with SILAC, 

enables short pulse times [39,40]. 

Recently, protein turnover has been studied in high throughput by an MS-based 

approach combining SILAC and TMT labelling [41], which helped to address the 

problem of missing data between the time points, while allowing different proteoforms 

to be resolved by providing peptide-level measurements of turnover rates.  Another 

example of peptide level turnover data was recently reported by Ly et al. in 

immortalised human breast epithelial cells [42], who used pulse-SILAC and cellular 

assays to study the activation of v-Src tyrosine kinase activity in untransformed 

MCF10A cells. v-Src induced rapid oncogenic transformation, with the cells showing 

major phenotypic changes within 48-72 hours, affecting their morphology, motility and 

invasiveness. Over this time course, the expression and/ or turnover levels of only 

~3% of proteins changed by 2-fold or more. Furthermore, since many of the 

transformation-responsive proteins were low abundance, oncogenic transformation 

affected only ~ 1.5% of the total protein molecules in the MCF10A proteome.  

Protein turnover rates can vary for separate pools of the same protein located in 

different subcellular compartments (Figure 4). For example, this was identified for 

ribosomal proteins in HeLa cells using a combination of pulsed stable isotope labelling 

with SILAC and fluorescence microscopy [33,43]. There was a higher rate of ribosomal 

protein turnover in HeLa cell nuclei than in the cytoplasm. Newly translated ribosomal 

proteins are immediately imported into the nucleus, ready for assembly into nascent 

ribosomal subunits in the nucleolus. If not bound to rRNA, however, free ribosomal 

proteins in this nuclear pool are rapidly degraded. Ribosomal protein stability was 

dramatically increased upon assembly into ribosome subunits and export to the 

cytoplasm [43]. 

Another example showing how different pools of the same proteins can exhibit 

differential turnover rates was provided in a study on the assembly of RNA polymerase 

II complexes by Boulon et al. [44] By using pulsed SILAC to analyse protein turnover 



rates, combined with subcellular fractionation, they studied the assembly of RNA 

polymerase II, which occurs predominantly within the cytoplasm. After its assembly is 

completed, RNA polymerase II is transported into the nucleus, thereby preventing 

partially assembled and potentially non-functional sub-polymerase complexes 

competing for binding to gene promoters. The pulse-SILAC data showed that, similar 

to the situation with ribosomal proteins, protein turnover rates for subunits of the large 

polymerase complexes are higher in the cytoplasmic compartment, where assembly 

takes place, as opposed to the nucleus, where the complex functions (note the roles 

of these compartments is reversed for ribosome subunits). 

Systematic proteome level analyses of the relation between protein turnover levels 

and subcellular localization were carried out, using unbiased MS approaches in U2OS 

cells, by Larance et al., 2013 [10]. This study systematically compared protein turnover 

levels in the respective nuclear, cytosolic, membrane and cytoskeletal compartments, 

revealing an important feedback mechanism, whereby inhibition of protein degradation 

by the proteasome resulted in a rapid inhibition of new protein translation, mediated 

by induced phosphorylation of eIF2alpha. Importantly, all of these studies together 

show that protein half-life values based only on analyses of whole cell extracts provide 

average values that can mask the existence of pools of protein with different 

properties. 

Concluding Remarks 

In this manuscript we have highlighted some of the practical issues involved in 

integrating data from MS-based proteomic studies with functional studies in cell 

biology. In particular, we have focussed on how proteomics can be used to study 

subcellular localization and to identify pools of protein and distinct protein isoforms that 

can exhibit differences in structure and properties (e.g. turnover rate, interaction 

partners and PTMs) in different subcellular compartments. This information can be 

critical for understanding biological regulatory and response mechanisms, but is often 

lost or obscured in proteomic studies because of the effect of cell and protein 

population averaging when whole cell or tissue extracts are analysed.  

Subcellular fractionation approaches ([20,23,24,26,27]) can be conveniently applied 

in a multi-dimensional proteomics strategy to improve the functional analysis of cell 

proteomes [24] and in the characterization of spatial remodelling following a 



perturbation such as viral infection [26,27]. As shown for the role of p53 in the cellular 

response to DNA damage [28] characterising how subcellular proteome dynamics is 

affected by genotype will also be important and can now be analysed more 

systematically in human cells thanks to the availability of genome engineering 

technology with CRISPR/Cas9. We anticipate that in future more detailed studies 

examining the composition and dynamic remodelling of organelle proteomes at a 

multidimensional level will help to reveal new insights into the specific protein 

complexes and functional pools of proteins and isoforms that participate in cell 

regulatory mechanisms and metabolism.  
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Legends 

 

Figure 1 

Schematic comparing classic ‘averaged’ proteomics analysis and signal enhanced 

proteomics. When a population of cells in culture is subjected to external stimuli, some 

cells may respond differently, resulting in a heterogeneous population, shown here as 

red and blue cells. In a classical proteomics experiment, cell extracts are prepared 

from the mixed population, resulting in averaged protein signals. With ‘Signal 

Enhanced Proteomics’, the two populations of cells are separated prior to proteomics 

analysis, thus reducing the dilution of the signal for proteins in a specific subpopulation 

of cells. For example, in a classic proteomics experiment, without an enrichment step, 

the peptide denoted with (*) was not selected for fragmentation because it was below 

the intensity threshold (red dashed line). However, after cell enrichment, the intensity 

of this peptide was now above the threshold intensity required for sequencing and 

hence could be detected.  

 



Figure 2  

Isoform-specific Proteomics. A schematic representation of how a single gene can 

encode two protein isoforms as a result of alternative splicing. These isoforms 

extensively share their protein sequence, but differ in specific segments, exemplified 

here by the blue and red peptide sequences. The two protein isoforms may have 

different properties, such as different subcellular localizations, which will only be 

resolved if sub-cellular fractionation is used prior to the proteomics analysis. 

 

Figure 3 

An example of a spatial proteomics workflow. A) A detailed subcellular fractionation 

protocol, based on the nucleolar isolation protocol, but with the number of subcellular 

fractions collected extended, thus increasing the resolution of proteomics 

measurements. Total cell lysate (TCL) is included as a control in subsequent analyses. 

B) A data analysis workflow, including a protein size separation step, using SDS-

PAGE, of extracts from subcellular fractions, followed by LC-MS/MS. Raw files are 

analysed in MaxQuant [45,46], then peptide files re-assembled from individual 

evidence entries, analysed by Re-Fraction [47] to resolve protein groups into single 

protein IDs wherever possible. Protein cross-fraction profiles are generated from 

assigned peptide profiles. Protein profiles are clustered, using either a hierarchical, or 

k-means algorithm and predictive localization(s) assigned, based on their distance to 

co-clustering markers in the abundance space. 

 

Figure 4 

Compartment-specific protein turnover measurements. Pulse SILAC can be combined 

with sub-cellular fractionation to measure protein turnover in different subcellular 

compartments. A) Cells are cultured in different SILAC media, containing either “light” 

(L, K0R0), or “medium” (M, K4R6) isotope substituted forms of the amino acids 

arginine and lysine, until all proteins are fully labelled. The culture medium of the cells 

growing with the “medium” amino acids is then replaced with a culture medium 

containing “heavy” (H, K8R10) substituted versions of arginine and lysine. Finally, cells 

are harvested at different time points, along with the control cells growing in the culture 

medium containing normal, “light” (i.e. unsubstituted) arginine and lysine. Equal 

numbers of control and pulsed cells are then combined, prior to protein isolation and 

analysis. Either whole cell extracts can be prepared cells from each time point, or 



extracts prepared from cells that are fractionated, e.g. into cytoplasmic, nuclear and 

nucleolar fractions, as illustrated. The subsequent proteomics analyses allow the 

measurements of rates of protein synthesis, degradation and turnover. B) For a given 

protein, the change in isotope ratios over time measure, respectively, (i) the rate of 

protein degradation (M/L isotope ratio), (ii) the rate of protein synthesis (H/L isotope 

ratio) and (iii) the rate of net protein turnover (H/M isotope ratio). C) Turnover data can 

be collected for different subcellular compartments, revealing proteins and protein 

isoforms that differ in their turnover rates according to their localization. 
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