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Abstract 
 
 
Orofacial clefts are common developmental disorders that pose significant clinical, economic 

and psychological problems. We conducted genome-wide association analyses for isolated cleft 

palate (CPO) and cleft lip with or without palate (CL/P) with ~17 million markers in sub- 

Saharan Africans. After replication and combined analyses, we identified novel loci for CPO at 

or near genome-wide significance on chromosomes 2 (near CTNNA2) and 19 (near SULT2A1).  

In situ hybridization of Sult2a1 in mice shows expression of SULT2A1 in mesenchymal cells in 

palate, palatal rugae and palatal epithelium in the fused palate. The previously-reported 8q24 

locus was the most significant for CL/P in our study and we replicated several previously 

reported loci including PAX7 and VAX1.  
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INTRODUCTION 

 Orofacial clefts (OFCs) are the most common birth defects in the head and neck region, 

affecting one out of every 700 live births worldwide1. These defects lead to significant financial, 

educational, medical, psychological, and cultural problems for affected individuals and their 

families. Management of these disorders requires a multi-disciplinary team of experts to restore 

aesthetics and function. Such expertise is often lacking in many parts of the world resulting in 

significant inequities in OFC care2,3. Seventy percent of OFC are classified as non-syndromic 

with no visible recognizable structural defects other than clefts. Syndromic clefts account for 

30% of OFC, where there is a consistently defined structural anomaly in addition to clefts. In 

terms of etiology, OFCs are complex traits, with genetic, environmental, and stochastic factors 

contributing to the phenotypic expression4. To date, six genome-wide association studies 

(GWAS) and three meta-analysis for cleft lip with or without cleft palate (CL/P), and three 

GWAS for cleft palate only (CPO) have been conducted, and over 40 risk loci have been 

identified5-16. All of these studies have been conducted in individuals of European and Asian 

ancestry with this study representing the first GWAS in Africans.  

 African populations represent novel and richly productive populations for genetic and 

environmental exposure studies for OFC because they have the greatest genetic diversity of any 

continental population17,18 while residing in widely different environments. In this study 

involving individuals of African ancestry from Ghana, Nigeria and Ethiopia we identified novel 

loci associated with CPO using data from 3,178 participants (814 CL/P cases, 205 CPO cases, 

2,159 controls). Two of the identified novel loci were genome-wide significant after combined 

analysis with an independent replication sample. We also confirmed previously reported loci 
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from genome-wide studies of OFC in other populations, including populations of European and 

Asian ancestry.   

 

RESULTS 

Novel loci identified for CPO 

 The discovery analysis for CPO revealed a chromosome 2 locus with genome-wide 

significance (lead SNP rs80004662, near CTNNA2, p=7.41 X 10-9) – Figure 1. Other loci on 

chromosomes 19, 7 and 9 showed suggestive genome wide significance (5 X 10-7 > p > 5 X 10-8) 

on discovery analysis (Table 1 and Supplementary Table 1). On meta-analysis with an 

independent replication sample, the chromosome 2 locus remained genome-wide significant 

(p=7.29 X 10-9) - (Table 2 and Supplementary Table 2). Genes within the same topologically 

associated domains (TAD) as the GWAS SNP are potential GWAS candidates. The TAD which 

includes the genome-wide significant SNPs contains just three genes: CTNNA2, LRRTM1, and 

SUCLG1 (Figure 2). Among these genes, CTNNA2 is the best candidate as the chick ortholog has 

been implicated in control of cranial neural crest19. Ctnna2 has been reported to be expressed in 

the oral structures of the mouse embryo at E14.5 (Figure 2). 

 

SULT2A1 is expressed in the palate at E12.5 and E14.5 

 The chromosome 19 locus was near genome-wide significance (lead SNP rs62529857, 

SULT2A1, p=7.63 X 10-8). We studied the expression of the ortholog of the chromosome 19 

locus for CPO (Sult2a1) in mice. In situ hybridization of Sult2a1 in mice showed expression of 

SULT2A1 in mesenchymal cells in palate, palatal rugae and palatal epithelium in the fused palate 

(Figure 3). We also observed expression in the tongue, mandible, maxilla and the heart.  
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SysFACE analysis also showed that SULT2A1 is expressed at low levels in the neural plate, 

mandible and maxilla (Supplementary Table 3). The expression of SULT2A1 in the palate and 

other craniofacial tissues provides a biological rationale for its role in orofacial clefting. 

 

The 8q.24 region is the most significant locus for CL/P in African populations 

 While the analysis for CL/P showed no genome-wide significant loci (Figure 1, 

Supplementary Table 4 and 5), the most significant hit was on chromosome 8 (leading SNP, 

rs72728755, p = 1.52 × 10–6). This locus is in the 8q.24 region that has been previously reported 

to be associated with CL/P in other populations5-9,11. The lead SNP in our study is also one of the 

top scoring SNPs in the 8q region in the largest meta-analysis for OFC to date14.  

 

Fine-mapping of the 8q24 locus for CL/P 

 We fine mapped the 8q24 locus for CL/P using a number of methods. We examined 

haplotypes around the lead SNPs in our African sample and did a comparison with European and 

Asian ancestry samples from the 1000 Genomes Project. As expected, the African sample had 

smaller haplotypes and finer-grained linkage disequilibrium (LD) patterns in the region (Figure 

4). Specifically, the haplotype around the lead SNP (rs72728577) is 4.084 kb in the continental 

African sample in contrast to 13.345 kb in European (1000 Genomes EUR), 13.477 kb in East 

Asian (1000 Genomes EAS) and 12.104 kb in South Asian (1000 Genomes SAS) populations 

(Figure 4). Clumping analysis revealed a single clump of SNPs around the lead SNP (data not 

shown). Fine mapping using a shotgun stochastic search algorithm20 showed that the most likely 

configuration is a single causal variant in the region (Supplementary Figure 1). 
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 Given that the lead SNP in the 8q24 region in our study (rs72728755) is different from 

the lead SNP (rs987525) reported by most previous GWAS studies, we investigated this region 

further. SNP rs987525 is in low LD with rs72728755 (r2 =0.004) in our study. Reciprocal 

conditional analysis revealed that conditioning on rs987525 had a small effect on rs72728755 (p 

value decreased to 1.451 X 10-5 from 1.52 X 10-6) but conditioning in the other direction 

abolished the nominal significance of rs987525 (p value went to 0.231 from 3.296 X 10-2) 

suggesting that rs72728755 is driving the association in our study. We note that this finding does 

not exclude the possibility of more than one causal variant in the 8q24 region given that the two 

SNPs are in different haplotype blocks in all 1000 Genomes Project continental ancestry 

populations (Supplementary Figure 2).  

 

Characterization of chr8q.24 SNPs for enhancer elements that are active in palate 

formation  

 The 8q24 SNPs that are most strongly associated with CL/P may themselves be directly 

pathological (i.e., functional), or instead they may be in LD with those that are functional. We 

selected the lead SNP in the region (rs72728755) and two SNPs that are most strongly associated 

with CL/P and are in strong LD with the lead SNP (rs17242358 and rs55658222) for further 

studies.  To test whether these non-coding SNPs are functional by virtue of altering the function 

of a regulatory element, we examined the chromatin state model at each SNP based on 

chromatin-mark evidence from 128 cell lines from the Roadmap Epigenomics Consortium.  

None of the SNPs lie in chromatin marked regions as any type of regulatory element (Figure 5).  

We amplified about 1 kb of DNA centered on each SNP, engineered the elements with either the 

non-risk or risk-associated allele of the SNP (introduced by site-directed mutagenesis) into a 
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standard firefly luciferase reporter vector, and electroporated the reporters (separately) into a 

human fetal oral epithelial cell line (GMSM-K)21or primary human embryonic palate 

mesenchymal (HEPM) cell line22.In both cell lines, none of the elements, whether harboring the 

risk or non-risk SNP variant, induced luciferase expression more than 2-fold above that in 

control cells electroporated with an empty firefly luciferase vector (Figure 5).  In summary, we 

did not find evidence that rs72728755, rs17242358 or rs55658222, reside within enhancers 

active in two cell types relevant to palate formation. It is still possible they reside in enhancers 

active in a cell type not represented by the cell lines we tested or by those at the Roadmap 

Epigenomics Consortium (http://www.roadmapepigenomics.org/). Other possibilities are that 

one or more of the SNPs alter the sequence and, thereby, the functions of an unknown long non-

coding RNA or the SNPs are in linkage disequilibrium with the actual untyped functional SNPs.   

 

Novel variants identified in known GWAS-associated genes for CL/P  

 We identified two novel variants (p.Gly739Ser in DACH1 and p.Leu187Pro in ACVR2A) 

following Sanger sequencing (Table 3). These variants have not been previously reported in any 

genomic databases, including the gNOMAD, ExAC and 1000 Genomes.  The DACH1 novel 

variant (p.Gly739Ser) was predicted to be benign and tolerated by Polyphen and SIFT. However, 

structural analysis using the Hope server reveals that the variant amino acid is larger than the 

wild type and a change in size could lead to bumps in protein folding. There may also be a loss 

of flexibility and torsion angles when the flexible amino acid glycine is substituted with the non-

flexible serine (Supplementary Figure 3). The missense variant (p.Leu187Pro) in ACVR2A was 

predicted to be benign and tolerated by Polyphen and SIFT.   
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Some previously reported orofacial clefts loci are replicated in African populations 

 To investigate how many previously reported loci for OFC show evidence of association 

in our study, we extracted all association records for terms related to “orofacial clefts” (OFC), 

“cleft lip/palate”, “cleft lip”, and “cleft palate” in the NHGRI-EBI GWAS Catalog. There were a 

total of 139 unique SNPs of which 121 were in our dataset. However, only 39 of these SNPs (all 

for CL/P and/or all clefts) were genome-wide significant (p < 5 X 10-8) and were reported along 

with effect sizes. Of this subset, six variants showed significant association, i.e. p < 0.05 of 

which four SNPs also showed consistency of direction of effect for CL/P including SNPs in the 

chr8q24 region and in the genes PAX7, VAX1 and SOX5P1. (Table 4 and Supplementary Table 

6).  The effect size estimates in the present study (as indicated by the associated odds ratios) 

were remarkably similar to the observations in previous studies (Table 4). For CPO, only 3 SNPs 

have previously been reported to be genome-wide significant12. These SNPs were monomorphic 

or near monomorphic in our dataset, as they also are in other African ancestry populations in the 

1000 Genomes or gnoMAD databases. We also checked the association statistics for CPO in our 

study for the 48 SNPs and found that only two SNPs had a p < 0.05 but neither SNP had 

consistent direction of effect with previous studies (Supplementary Table 7). Given that African 

populations exhibit lower linkage disequilibrium and smaller haplotype block sizes across the 

genome, we investigated the possibility of fine mapping the replicated SNPs for CL/P to smaller 

regions than were observed in the original reports. For most of the replicated signals, African 

ancestry populations had the smallest haplotype blocks around the leading SNP (Figure 6a). Fine 

mapping indicated that the evidence supported one causal variant at each locus (Figure 6b, 

Supplementary Table 8) with the exception of one locus - rs987525 (a SNP in the 8q24 region 

fine mapped above) - where there was support for up to two causal variants. This finding further 
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supports the notion that there are at least two causal variants in the 8q24 region. Clumping 

analysis in our study sample revealed that each of the leading association signals consisted of a 

single clump of SNPs (i.e. it was unlikely that there were two or more variants explaining the 

association at any of the loci examined) with the exception of rs987525, which is consistent with 

the FINEMAP analysis.    

 

Discussion 

 Genomic studies of diverse populations have the potential to enrich our knowledge of the 

genetic architecture of many complex disorders. Here, we conducted a case-control GWAS for 

two OFC phenotypes CPO and CL/P in individuals enrolled from Ghana, Ethiopia and Nigeria. 

We identified two functionally plausible novel loci for CPO on chromosome 2 near CTNNA2 and 

on chromosome 19 in SULT2A1.   

 

 CTNNA2 encodes the Alpha-catenin protein that is involved in cell-cell adhesion by 

acting as a linker protein between cadherins and actin-containing filaments of the cytoskeleton 23. 

Although the role of CTNNA2 in clefting is currently unknown, several studies have reported an 

association between E-cadherin and clefting 24-27. A recent GWAS for CL/P also identified a 

significant association near a gene involved in actin cytoskeleton11. A recent exome sequencing 

study for Mendelian non-syndromic CL/P identified mutations in the epithelial cadherin-p120-

catenin complex that includes CTNND128.Studies in the chick embryo show that ctnna2 is 

expressed in neural crest cells19 and expression studies in the mouse embryo also demonstrate its 

expression in oral structures. SULT2A1 encodes the enzyme sulfotransferase 2A1. While the 

gene has not previously been reported in relation to OFC, our in-situ hybridization experiments 
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show an expression of this gene in the palate. Knock out experiments for this gene in model 

organisms would further clarify its role in clefting.  

  

 Four loci showed suggestive association (p < 5 X 10-7) for CPO. They are near ACVR2A 

on chromosome 2, SHH on chromosome 7, OPALIN on chromosome 10 and DACH1 on 

chromosome 13. ACVR2A encodes activin A type II receptor protein and is a member of the 

TGFB superfamily of structurally related signaling proteins29. The ACVR2A mouse knockout has 

micrognathia and associated defects such as cleft palate and no incisors30. These defects are 

similar to the features of Pierre Robin sequence where the small mandible leads to the limited 

space for the tongue to descend into the mouth causing cleft palate31. ACVR2A is expressed in 

human fetal palate suggesting that activin signaling plays a role in the development of the 

palate32.  DACH1, mouse homologue of Drosophila dachshund is a transcription factor involved 

in the regulation of organ formation. It inhibits TGFB signaling by binding to SMAD4 and 

NCOR133. DACH1 is required for eye, leg and brain development. Homozygous mutants die 

shortly after birth due to failure to suckle, cyanosis, and respiratory distress34. The mouse Dach2 

has similar expression pattern as mouse Dach1 suggesting there may be redundancy in the 

functions of these genes34. Missense variations in DACH2 have been reported in Allan–Herndon-

Dudley syndrome (OMIM: 300523), Miles–Carpenter syndrome, X-linked cleft palate and /or 

Megalocornea35-38. These reports support a role for the missense variation (p.Gly739Ser) we 

found in an individual with CL/P. OPALIN encodes the Opalin protein and has never been 

reported to play a role in clefting. SHH encodes the sonic hedgehog protein and it plays a role in 

cell division and embryogenesis. Mutations in SHH have been implicated in 
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holoprosencephaly39,40. A few studies have suggested a role for SHH in non-syndromic CL/P 

41,42. We are the first to report an association with SHH for isolated CPO from a GWAS.   

 

 For CL/P, our most significant locus is in the 8q24 region that has been previously 

reported in several other studies 5—9,11 in European populations. The lead SNP in our study is 

different from previous reports. Our analyses suggest that the two SNPs represent distinct signals 

for CL/P within the 8q24 region.  While the evidence in our study suggests that that the lead SNP 

represents a single causal variant, our transfection experiments were unable to determine which 

of the three tightly linked leading SNPs was the causal variant. The identification of significant 

SNPs in the 8q24 locus in multiple populations strongly supports its role in C/LP and suggests 

the possibility of more than one causal locus within this region.  

 

 Our study replicated several SNPs previously reported to be associated with OFC. Of 

note is the chromosome 9 locus near PTCH1. PTCH1 encodes the patched homolog 1 protein, a 

member of the Patched family that is mutated in Gorlin syndrome (whose features include 

OFC)43. It is a receptor for sonic hedgehog and is involved in cell proliferation, formation of 

structures during embryogenesis and tumor formation 44-46. Rare and common variants in PTCH1 

have been implicated in non-syndromic CL/P16,47,48.  

 

 This study has some limitations. There is lack of strong evidence in the replication cohort 

which is likely due to the fact that it is small in size and with limited power to detect significant 

associations. Other potential reasons for this observation include differences in LD, allele 

frequency differences and other sources of heterogeneity between population groups. Therefore, 
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there is the need for further replication of the novel signals in larger African cohorts. Additional 

replication in other populations is also warranted for the new significant signals on chromosomes 

2 and 19. The present study considered only common and low frequency variants but did not 

consider rare variants because the genotyping tool was a GWAS SNP array with the yield 

boosted by imputation. A more comprehensive analysis done with whole genome sequencing 

would provide a more complete association study that includes all classes of variants (including 

rare variants). We also noted that most of the association p-values in the replication sample were 

not small (p < 0.05) and those that were, often displayed inconsistency of direction of effect. For 

this reason, we limited the SNPs of interest to those that showed consistency of direction of 

effect in the replication sample in addition to being genome-wide significant in the discovery and 

combined analysis. 

 

 In conclusion, this first GWAS of OFC in Sub Saharan Africans identified novel loci for 

CPO and confirmed several findings previously reported from other ancestral populations. These 

findings add to the growing evidence about genetic risk factors for OFC and provide new 

candidate genes for functional studies. 

 

MATERIALS AND METHODS 

Study population and sample information  

 Ethical approval was obtained from the Institutional Review Boards (IRBs) at the Lagos 

University Teaching Hospital Idi-Araba, Lagos (IRB approval number: 

ADM/DCST/HREC/VOL.XV/321), Obafemi Awolowo University Teaching Hospital Ile-Ife 

(IRB approval number: ERC/2011/12/01), Kwame Nkrumah University of Science and 
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Technology (IRB approval number: CHRPE/RC/018/13), the Addis Ababa University (IRB 

approval number: 003/10/surg), and the New York State Department of Health (IRB 07-007), 

and the NIH Office of Human Subjects Research (OHSRP 11631). We have previously reported 

the recruitment and sample used for the discovery study49. In summary, eligible subjects are 

individuals with non-syndromic OFC and their families born to Ghanaian, Ethiopian, and 

Nigerian parents. Births from Caucasians and Asians are excluded.  

 

 We identified eligible cases after IRB approvals through various free OFC surgical repair 

projects, most of which participate in the Pan African Association for Cleft Lip and Palate 

(PAACLIP) network for treatment of OFC in Africa. This network is supported by cleft charities 

and all use a common standardized protocol for phenotyping.  For all the enrolled cases, the 

surgeons carried out standardized physical examinations, took clinical photographs and provided 

full description of OFC phenotypes and other recognizable malformations in a clinical database. 

We used our access to echocardiogram results to rule out cardiac defects. For both the discovery 

and replication samples (Supplementary Table 9), controls were apparently healthy individuals 

without clefts enrolled at the same sites as cases. Both related (usually the mother) and unrelated 

controls were included in the analysis. In Nigeria, Ghana and Ethiopia, unrelated controls were 

recruited at infant welfare/immunization clinics at the site of the same medical centers where the 

cases were enrolled and were matched for gender, age and geographical location. In the 

Democratic Republic of the Congo and the US sites, controls were recruited from the same 

medical centers as cases. Signed informed consent was obtained from all families that 

participated in the study. Every family recruited into the study was assigned a unique identifier 

number (UNID). Data from all recruited families was remotely entered from all the centers in 
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Africa into a secured Redcap database50. De-identified samples were shipped from sites in Africa 

to the United States.  

 

DNA extraction and preliminary quality control (QC)  

 Saliva samples were labelled at the Butali laboratory in Iowa and assigned a unique 

identification (UNID) number prior to DNA extraction. DNA extraction was done at the Butali 

lab using the Murray lab protocol (genetics@uiowa.edu). Every sample was quantified using 

Qubit (http://www.invitrogen.com/site/us/en/home/brands/Product-Brand/Qubit.html) (Thermo 

Fisher Scientific, Grand Island, New York) and separated into a stock and several working 

aliquots for downstream applications. We confirmed the sex reported in the REDCap database 

using TaqMan XY genotyping. These were done as part of our quality control process in the lab 

to prevent sample mislabeling. We then shipped 25ul aliquot of consented samples with 

confirmed genetic sex and DNA concentration of ≥ 50ng/ul to the Center for Inherited Disease 

Research (CIDR) for MEGA array genotyping. 

 

Genotyping  

 The expanded Illumina Multi-Ethnic Genotyping Array (MEGA) v2 15070954 A2 

(genome build 37) that contains over 2 million SNPs and over 60, 000 rare variants selected from 

populations of African origin was used for genotyping. We successfully conducted genotyping 

on 3,347 samples which included 3,198 unique samples and 70 duplicates. HapMap controls (70 

unique samples and 9 duplicates) were also genotyped as part of the quality control process.  
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Data cleaning 

 A detailed description of this process was recently published 51. Briefly, we checked for 

sex chromosome anomalies, for missing call rates, batch effects, identification of large 

chromosomal anomalies, confirmation of relatedness (i.e. identity by descent) and establishment 

of continental ancestry with respect to HapMap samples using methods described in Laurie et.al 

(2010)52 and implemented using R packages GWAS Tools 53, SNPRelate54 and GENESIS55. This 

process allowed for the use of a high-quality genotype data set for identifying significant 

genotype associations with non-syndromic OFC.  

 
 
Imputation and Association Analyses 

 As is usual for GWAS that conduct imputation, we did both pre-imputation and post-

imputation quality control [a full report is available in dbGAP and we present a summary here]. 

Briefly, for pre-imputation genotypes, after applying technical filters we filtered for missing call 

rates >= 2%, > 1 discordant call in 70 study duplicates, >1 Mendelian errors in 890 duos and 

trios, HWE p < 10-3 and MAF < 0.01, among others (see Supplementary Table 10). For the 

imputed SNPs, we only retained variants with a minor allele frequency of ≥ 0.01 and a quality 

metric (INFO) of ≥ 0.3, with the latter chosen based on the balance between stringency and 

inclusivity as recommended by de Bakker et al. 2008. 56 In the present study, choosing a 

threshold of 0.3 retained 69.5% of all imputed variants for downstream analyses, while more 

stringent thresholds of 0.5 and 0.8 would retain 63.5% and 49.0% of imputed variants, 

respectively. 
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Imputation was carried out using IMPUTE2 into the 1000 Genomes Phase 3 reference 

imputation panel57. The final dataset that passed quality control consisted of 3,178 (1,133 male; 

2,045 female) participants enrolled from Ethiopia (30%), Ghana (43%), and Nigeria (27%). The 

dataset included 814 cases of CLP, 205 cases of isolated CP, and 2,159 related and unrelated 

controls.  

 

 The imputation yield was ~45 million SNPs of which ~17 million passed our quality 

control filter and were included in the final analyses. Given the known differences in the 

developmental and genetic basis of isolated CL/P versus CPO, we conducted two separate 

GWAS analyses (one for each phenotype). Single-variant association tests were done for 

imputed dosage data filtered for imputed allelic dosage frequency < 0.01 and info < 0.3 using 

logistic mixed models as implemented in the GMAAT package58. This approach enabled us to 

obtain valid association tests while adjusting for population structure (the first seven 

eigenvectors of the genotypes), relationships between participants (using the computed genetic 

relatedness matrix (GRM)), and covariates (sex and study site). The Q-Q plot of the distribution 

of p-values did not show any residual stratification (Supplementary material).  

 

Replication 

 For the replication study, we included an independent sample of orofacial cleft cases and 

controls (300 CL/P cases, 179 CPO cases, 2523 controls) from Ghana, Nigeria, Ethiopia, 

Democratic Republic of Congo and African-American samples from New York and Virginia, 

USA. (Supplementary Table). DNA extracted from de-identified residual dried blood spots was 

genotyped for NY cases (identified from the New York State Congenital Malformations 
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Registry) and controls (identified from birth records). We selected for genotyping GWAS-

significant SNPs and SNPs in linkage disequilibrium with index SNP for a total of 48 SNPs 

using Fluidigm technology (San Francisco, California), which allowed for simultaneous 

genotyping of variants in samples in a multiplex, high-throughput format. Data was analyzed 

using PLINK2 (https://www.cog-genomics.org/plink2). For high-quality SNPs (SNP success rate 

≥97%), association with CPO and CL/P was tested under an additive genetic model.  Combined 

analysis of discovery and replication studies for the 48 SNPs was done as implemented in 

METAL59. Variants that had p < 5 X 10-8 and had the same direction of effect in both studies 

were considered genome wide significant. 

 

Fine mapping 

 Haplotypes were constructed using the confidence interval method of Gabriel et al 

(2002)60. Clumping analysis of association statistics was done with PLINK 61 (Purcell et al., 

2007) using default parameters. Fine mapping was done using a shotgun stochastic search 

algorithm as implemented in FINEMAP20. Reciprocal conditional analysis was done with 

GCTA62. 

 

Identification of GWAS Candidate Genes with a Topologically Associated Domain  

 GWAS signals that affect enhancers most likely influence the expression of genes 

within the same TAD. Each region was visualized in the human reference genome (hg19) by 

searching for interaction domain for the index SNP ID (http://promoter.bx.psu.edu/hi-

c/view.php).  
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Sanger Sequencing 

 We used methods that we reported previously49. We optimized primers for the 

amplification of exons in the ACVR2A1 and DACH1 genes. These genes where chosen based on 

their expression in the craniofacial region and the presence of mouse knock outs with cleft palate 

(http://www.informatics.jax.org/). A DNA concentration of 4ng / ul of in a 10 ul reaction for the 

polymerase chain reaction (PCR) were used. Two Yoruba HapMap samples and two water 

samples were added to the 96-well plates as template and non-template controls, respectively. 

Details of primers used and annealing temperatures are available from the Butali Laboratory 

upon request. A total of 270 cases from Ghana, Ethiopia and Nigeria were sequenced. We sent 

the amplified DNA products for sequencing at Functional Biosciences, Madison, WI 

(http://order.functionalbio.com/seq/index).  

 

 We compared the identified novel variations with variations in the 1000 genome (1KG) 

database (http://www.1000genomes.org/), Exome variant server (EVS) database 

(http://snp.gs.washington.edu/EVS/), and Exome Aggregate Consortium (ExAC) database 

(http://exac.broadinstitute.org/). The variants were also compared to over 5200 African and 

African American control exomes in these databases. We also sequenced population matched 

controls for each novel variant in order to validate novel variants. We predicted the functional 

effects of novel variants using bioinformatics tools such as Polymorphism Phenotyping 

(Polyphen) (http://genetics.bwh.harvard.edu/pph2/)63, Sorting Intolerant From Tolerant (SIFT) 

(http://sift.jcvi.org/)64, and Have Your Protein Explained (HOPE) 

(http://www.cmbi.ru.nl/hope)65.  Segregation analyses was performed to determine if variants are 

de-novo or inherited by sequencing samples from parents, when available. 
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In Situ Hybridization of Sult2a1 in Mice at E12.5 and E14.5 

 The in-situ hybridization method used in this study was adapted from our Sox2 paper 66. 

In summary, we used formalin-fixed paraffin embedded tissue sections for in situ hybridization.  

Mouse palatal samples were processed following the typical paraffin embedding process. Sagittal 

sections were cut in 8 µm and we used the standard in situ hybridization method listed in 

Gregorieff’s protocol 67. Digoxigenin-labeled probe was made from DIG RNA Labeling Kit 

(Rochei # 11175025910). Primers used for Sult2a1 are: Sult2a1-F: 5’-

ATGATGTCAGACTATAATTGGTT-3’, Sult2a1-SP6-R: 5’-

ATTTAGGTGACACTATAGTTATTCCCATGGGAAAATCCCTGGG-3’ 

 

Luciferase experiments to determine the functional role of SNPs at the 8q.24 locus. 

Plasmid Construct: We used RP11-976D7 as template to clone all three candidate elements in 

the 8q24 locus. The entire products were cloned into pENTR/D-TOPO plasmid (Life 

Technologies, Carlsbad, CA) for validation using Sanger sequencing. Site-directed mutagenesis 

was employed to get either non-risk or risk allele into the elements.  We then shuttled all the 

candidate elements into cFos-FFLuc plasmid for in vitro luciferase assay. 

Cell culture, electroporation and dual luciferase assay GMSM-K human embryonic oral 

epithelial cell line 6 (a kind gift from Dr. Daniel Grenier) were maintained in keratinocyte 

serum-free medium (Life Technologies) supplemented with EGF and bovine pituitary extract 

(Life Technologies). All cells were incubated at 37°C in 5% CO2. Human embryonic palatal 

mesenchyme cells (HEPM)7 were purchased from ATCC (ATCC® CRL-1486™) and 

maintained in ATCC-formulated Eagle’s Minimum Essential Medium (ATCC) supplemented 

with 10% fetal bovine serum (Life Technologies) and 1% antibiotic-antimycotic (Life 

Technologies).  For dual luciferase activity assay, each reporter construct was co-transfected 
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with Renila Luciferase plasmid for three biological replicates. Briefly, plasmids were 

electroporated into GMSM-K cells with AmaxaTM Cell Line Nucleofector® Kit V (Lonza, 

Cologne, Germany) using NucleofectorTM II (Lonza) (program: X-005), and plasmids were 

electroporated into HEPM cells with AmaxaTM Basic NucleofectorTM Kit for Primary 

Mammalian Fibroblasts (Lonza) using NucleofectorTM II (Lonza) (program: U-020). The Dual-

Luciferase Reporter Assay System (Promega, Madison, WI) and 20/20n Luminometer (Turner 

Biosystems, Sunnyvale, CA) were employed to evaluate the luciferase activity 72 hours post-

transfection. Relative luciferase activities were calculated by the ratio between the value for 

firefly and Renilla luciferase activities. Three measurements were made for the lysate from each 

transfection group. All quantified results are presented as Mean ± SEM. Student t-test was used 

to determine statistical significance. 
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Figure 1: Manhattan plots of association statistics for CPO (panel a) and CL/P (panel b) in Sub 
Saharan Africa. 
 

 
 
Figure 2: (a) Regional association plot in the chromosome 2 locus for CPO (b) TAD around the 
chromosome 2 locus for CPO (c) Ctnna2 expression in mouse embryo at 14.5 dpf (Eurexpress 
Transcriptome Atlas of the Mouse Embryo http://www.eurexpress.org/). 
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Figure 3: In situ hybridization of Sult2a1 in E12.5 and E14.5 embryos. Blue asterisks show 
mesenchymal cells in palate, black asterisks show palatal rugae with Sult2a1 expression, red 
asterisk shows palatal epithelium. Tg, tongue; Md, mandible; Mx, maxilla; Ht, heart. Scale bar: 
200 μm. 
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Figure 4: (a) Regional association plot in the Chromosome 8q24 locus for CLP (b) Haplotype 
block sizes around the 8q24 lead SNP rs72728755 for CL/P (c) LD patterns around the 8q24 
locus for European (EUR), East Asian (EAS), South Asian (SAS) and continental African 
(AFR*) ancestries. 
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Figure 5: (a) Overlay of the three SNPs against chromatin marked as a regulatory element (b) 
reporter assay in human fetal oral epithelial cell line (GMSM-K) and (c) primary human 
embryonic palate mesenchymal (HEPM). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy402/5193015 by U

niversity of D
undee user on 21 N

ovem
ber 2018



Figure 6: Haplotype blocks around the leading SNPs from previous GWAS studies that were 
replicated in the present study. 
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Table 1: Top hits for discovery association analysis for isolated cleft palate (CPO) and cleft 
lip/palate (CL/P) 
 
SNP Chr BP Effect 

Allele 

Non-

effect 

allele 

Effect 

allele 

frequency 

OR 95% CI 

(OR) 

P value 

CPO         

rs80004662 2 82025185 A G 0.013 7.5 3.45-16.28 7.41E-09 

rs113691307 2 82028390 C T 0.013 7.5 3.45-16.28 7.41E-09 

rs62529857 19 48386473 T C 0.023 3.5 2.16-5.68 7.84E-08 

rs117381175 9 98403220 C T 0.012 7.45 3.16-17.55 1.52E-07 

rs143238378 7 119266270 G A 0.015 4.26 2.35-7.71 1.64E-07 

rs188681640 7 119146159 A G 0.011 4.82 2.52-9.24 2.15E-07 

rs150382487 7 119140602 T A 0.011 4.81 2.52-9.21 2.16E-07 

rs189675673 19 48383400 G A 0.02 3.51 2.12-5.82 2.38E-07 

rs3858092 9 98291448 A C 0.396 1.72 1.39-2.11 2.62E-07 

rs182830500 7 119161353 T C 0.01 4.94 2.54-9.63 2.71E-07 

CL/P         

rs72728755 8 129990382 T A 0.097 1.62 1.33-1.97 1.52E-06 

rs1474306 3 145361479 T C 0.942 0.57 0.45-0.72 3.16E-06 

rs6768171 3 145361918 T G 0.942 0.57 0.45-0.73 3.76E-06 

rs55658222 8 129976136 G A 0.098 1.58 1.30-1.92 4.20E-06 

rs151084002 5 172805743 C A 0.048 1.81 1.39-2.35 7.02E-06 

rs112640811 1 150097784 G A 0.21 1.4 1.21-1.62 7.06E-06 

rs13274247 8 129981468 G A 0.42 1.32 1.17-1.50 7.06E-06 

rs12090508 1 150107793 A G 0.211 1.4 1.21-1.62 7.33E-06 

rs7517537 1 150114083 C T 0.211 1.4 1.21-1.62 7.47E-06 

rs744835 8 129982547 C T 0.478 1.32 1.17-1.48 8.36E-06 
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Table 2: Variants near or at genome-wide significance on combined analysis for isolated cleft 
palate (CPO) and with consistency of direction of effect 
 
 

 Discovery sample Replication 

sample 

Combined analysis 

SNP Gene Chr BP Score P value Z score P 

value 

Z score P value Direction 

rs80004662 [CTNNA2] 2 82025185 9.383 7.41E-09 0.199 0.842 5.784 7.29E-09 ++ 

rs113691307 [CTNNA2] 2 82028390 9.384 7.41E-09 -0.147 0.883 -5.783 7.33E-09 -- 

rs62529857 SULT2A1 19 48386473 15.421 7.84E-08 0.289 0.773 5.376 7.63E-08 ++ 

rs2325377 DACH1 13 71895298 15.524 3.62E-07 0.904 0.366 5.105 3.31E-07 ++ 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy402/5193015 by U

niversity of D
undee user on 21 N

ovem
ber 2018



Table 3: Novel variants in GWAS-identified candidate genes following Sanger sequencing 
 

Gene HGVc HGVp Type Ghana Nigeria 1KG EVS ExAC p S 

ACVR2A  p.Leu187Pro Missense 0 1 0 0 0   

DACH1  p.Gly739Ser Missense 1 0 0 0 0 B T 

 
Note: 1Kg= 1000 Genomes, EVS= Exome Variant Server, ExAC= Exome Aggregate Consortium 
P=Polyphen, S=SIFT, PS= Provean Score, B= Benign, T= Tolerated, PD= probably damaging, D= Deleterious. c. 
refers to coding sequence position  
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Table 4: Variants reported for CL/P from previous studies in NHGRI-EBI GWAS Catalog that were replicated in the present study 
 

Present study Previous studies 
SNP Effect 

allele 
P value OR OR 95% 

CI 
SNP-allele P value OR OR 95% 

CI 
Reported gene Mapped gene Authors Pubmed 

ID 
rs742071 T 1.25E-03 1.22 1.08-1.37 rs742071-T 7.00E-09 1.32 1.126-1.537 PAX7 PAX7 Ludwig et al. 2012 22863734 
rs6585429 A 8.86E-03 0.83 0.73-0.96 rs6585429-A 7.00E-13 1.23 NR VAX1 VAX1 Yu et al. 2017 28232668 
rs7017252 A 2.00E-02 1.18 1.03-1.35 rs7017252-A 8.00E-16 1.6  MYC; 

LOC728724 
LINC00824; 
LINC00977 

Yu et al. 2017 28232668 

rs12543318 C 2.22E-02 0.85 0.74-0.98 rs12543318-C 9.00E-12 1.23 NR DCAF4L2 SOX5P1; 
LOC100419762 

Yu et al. 2017 28232668 

rs987525 A 3.50E-02 1.14 1.01-1.29 rs987525-A 5.00E-35 1.92 1.66-2.218 NR LINC00824; 
LINC00977 

Ludwig et al. 2012 22863734 

rs7078160 A 3.54E-02 1.16 1.01-1.33 rs7078160-A 4.00E-11 1.38 1.213-1.576 NR KIAA1598 Ludwig et al. 2012 22863734 
rs6129653 A 5.85E-02 1.16 0.99-1.36 rs6129653-A 9.00E-12 1.23  MAFB LOC102724968; 

LOC105372620 
Yu et al. 2017 28232668 

rs6495117 A 7.37E-02 1.12 0.99-1.26 rs6495117-A 6.00E-11 1.2 NR NR LOC102723750; 
CLK3 

Yu et al. 2017 28232668 

rs7552 G 7.75E-02 1.13 0.99-1.29 rs7552-G 6.00E-22 1.37 NR FAM49A FAM49A Yu et al. 2017 28232668 
rs1838105 A 9.60E-02 0.9 0.79-1.02 rs1838105-A 1.00E-11 1.22  GOSR2 GOSR2 Yu et al. 2017 28232668 
rs2283487 A 1.21E-01 0.91 0.80-1.03 rs2283487-A 1.00E-10 1.2 NR CREBBP; 

ADCY9 
CREBBP; 
LOC102724927 

Yu et al. 2017 28232668 

rs861020 A 1.32E-01 0.88 0.75-1.04 rs861020-A 3.00E-12 1.44 1.273-1.635 IRF6 IRF6 Ludwig et al. 2012 22863734 
rs8001641 A 1.39E-01 1.14 0.96-1.35 rs8001641-A 9.00E-11 1.35 1.141-1.607 SPRY2 LOC105370275 Ludwig et al. 2012 22863734 
rs9545308 A 1.40E-01 1.29 0.92-1.80 rs9545308-A 2.00E-09 1.29  SPRY2 LOC101927216 Yu et al. 2017 28232668 
rs2289187 G 1.50E-01 1.09 0.97-1.24 rs2289187-G 4.00E-11 1.21  NR UBL7 Yu et al. 2017 28232668 
rs560426 G 1.87E-01 0.92 0.82-1.04 rs560426-G 3.00E-12 1.42 1.243-1.623 NR ABCA4 Ludwig et al. 2012 22863734 
rs8049367 C 2.49E-01 1.08 0.95-1.23 rs8049367-C 9.00E-12 1.35 1.25-1.47 CREBBP; 

ADCY9 
CREBBP; 
LOC102724927 

Sun et al. 2015 25775280 

rs7148069 A 2.66E-01 1.08 0.94-1.25 rs7148069-A 2.00E-08 1.22  LOC283553 LINC00640; 
LOC105370496 

Yu et al. 2017 28232668 

rs227731 C 3.29E-01 0.93 0.82-1.07 rs227731-C 9.00E-09 1.19  NOG; 
C17orf67 

NOG; C17orf67 Yu et al. 2017 28232668 

rs908822 A 3.76E-01 1.2 0.80-1.81 rs908822-A 4.00E-08 1.31  LOC285419 LINC01091; 
LOC105377407 

Yu et al. 2017 28232668 

rs2304269 A 3.82E-01 1.28 0.73-2.24 rs2304269-A 1.00E-12 1.23 NR TMEM19 TMEM19 Yu et al. 2017 28232668 
rs13317 A 3.83E-01 1.07 0.92-1.24 rs13317-A 4.00E-08 1.18 NR FGFR1 FGFR1 Yu et al. 2017 28232668 
rs287982 A 3.95E-01 0.95 0.84-1.07 rs287982-A 6.00E-09 1.22 NR TAF1B LOC105373421; 

TAF1B 
Yu et al. 2017 28232668 

rs3741442 G 4.18E-01 0.92 0.76-1.12 rs3741442-G 4.00E-12 1.22  KRT18 KRT18; EIF4B Yu et al. 2017 28232668 
rs2872615 A 4.73E-01 1.06 0.90-1.26 rs2872615-A 9.00E-12 1.22 NR NTN1 LOC101928235; 

NTN1 
Yu et al. 2017 28232668 

rs7871395 A 4.82E-01 1.05 0.92-1.20 rs7871395-A 6.00E-09 1.21  GADD45G LOC105376137; Yu et al. 2017 28232668 
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LOC105376139 
rs957448 A 4.96E-01 0.96 0.84-1.09 rs957448-A 1.00E-12 1.23 NR KIAA1429 KIAA1429 Yu et al. 2017 28232668 
rs2064163 C 5.92E-01 0.97 0.85-1.10 rs2064163-C 9.00E-19 1.3 NR IRF6; DIEXF DIEXF; SYT14 Yu et al. 2017 28232668 
rs4791774 G 6.38E-01 1.03 0.91-1.16 rs4791774-G 5.00E-19 1.56 1.42-1.72 NTN1 NTN1 Sun et al. 2015 25775280 
rs12681366 A 6.45E-01 1.03 0.91-1.17 rs12681366-A 2.00E-10 1.2 NR RAD54B RAD54B Yu et al. 2017 28232668 
rs1243572 G 6.45E-01 1.04 0.88-1.22 rs1243572-G 4.00E-10 1.2  GSC LOC107984693; 

LOC107984639 
Yu et al. 2017 28232668 

rs9381107 G 6.92E-01 0.97 0.83-1.13 rs9381107-G 3.00E-09 1.2 NR LOC100506207 LOC107986562; 
LOC107986563 

Yu et al. 2017 28232668 

rs7590268 G 7.54E-01 1.02 0.88-1.18 rs7590268-G 1.00E-08 1.41 1.225-1.636 THADA THADA Ludwig et al. 2012 22863734 
rs12229892 G 7.58E-01 1.09 0.62-1.92 rs12229892-G 2.00E-10 1.2 NR NR PTPN11 Yu et al. 2017 28232668 
rs10512248 A 7.67E-01 1.02 0.90-1.15 rs10512248-A 5.00E-10 1.22 NR PTCH1 PTCH1 Yu et al. 2017 28232668 
rs705704 A 7.84E-01 1.03 0.85-1.24 rs705704-A 1.00E-09 1.22  RPS26 LOC105369780 Yu et al. 2017 28232668 
rs481931 C 8.32E-01 0.98 0.80-1.19 rs481931-C 1.00E-12 1.25 NR ABCA4 ABCA4 Yu et al. 2017 28232668 
rs1907989 G 8.84E-01 1.01 0.89-1.15 rs1907989-G 2.00E-08 1.18 NR MSX1 LOC101928279; 

LINC01396 
Yu et al. 2017 28232668 

rs13041247 T 9.60E-01 1.00 0.87-1.15 rs13041247-T 2.00E-11 1.32 1.20-1.41 MAFB LOC102724968 Sun et al. 2015 25775280 

 
 
 
*Data from previous studies extracted from NHGRI-EBI GWAS Catalog (version 2018-09-30). “NR” indicates “not reported”. Effect sizes were reported with respect to the same 
allele across studies. Where more than one study reported the same genome-wide significant SNP, the study with the smallest P-value is presented in the table.    
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