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Highlights 

 The link between computer-based training and high-stakes assessments was 

investigated. 

 Training and selection test data of 15,752 pilot trainee applicants was analyzed. 

 The amount of training predicted test performance in curvilinear fashion as expected. 

 The ability test scores' structure was invariant across different amounts of training. 

 Free training was not linked to the psychometric structure of the high-stakes tests. 
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Abstract 

Ability tests are core elements in performance research as well as in applied contexts and are 

increasingly carried out using computer-based versions. In the last few decades a whole 

training and coaching industry has developed to prepare individuals for computer-based 

assessments. Evidence suggests that such commercial training programs can result in score 

gains in ability tests, thereby creating an advantage for those who can afford it and 

challenging the fairness of ability assessment. As a consequence, several authors 

recommended freely offering training software to all participants to increase measurement 

fairness. However, it is still an open question whether the unsupervised use of training 

software could have an impact on the measurement properties of ability tests. The goal of the 

present study is to fill this gap by examining the subjects’ ability scores for measurement and 

structural invariance across different amounts of computer-based training. Structural equation 

modeling was employed in a sample of 15,752 applicants who participated in high-stakes 

assessments with computer-based ability tests. Across different training amounts, our 

analyses supported measurement and structural invariance of ability scores. In conclusion, 

free training software is a means that provides fair preparation opportunities without 

changing the measurement properties of the tests. 

Keywords: computer-based training, computer-based testing, cognitive ability, 

measurement invariance, test fairness 

  



LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  5 

Measurement and structural invariance of cognitive ability tests after computer-based  

training 

1. Introduction 

In the last decades the use of computers in psychological assessment has grown 

enormously. In the domain of cognitive abilities, computer-based assessments have 

increasingly substituted paper-pencil tests and are now core elements in performance research 

and applied contexts such as personnel selection, admission decisions in educational contexts, 

or neuropsychological assessments. In these applications computer-based tests allow the 

assessment of cognitive abilities with high levels of standardization and offer the possibility 

to realize designs that could not be appropriately implemented with paper-pencil tests (Greiff, 

Scherer, & Kirschner, 2017; Tippins, 2015).  

However, particularly in high-stakes settings, there are still challenges with cognitive 

ability tests. One is the requirement of test fairness in the sense of ensuring that all test takers 

have comparable opportunities to demonstrate the abilities measured by the test. With 

cognitive ability tests, it is of particular importance to provide examinees with equal 

opportunities to prepare for the test (American Educational Research Association‚ American 

Psychological Association‚ & National Council on Measurement in Education, 1999). In the 

interest of fairness, the materials provided should closely resemble the actual test with 

regards to appearance and format (American Educational Research Association‚ American 

Psychological Association‚ & National Council on Measurement in Education, 2014). Yet, 

the requirement of equal opportunities for test preparation is increasingly challenged by a 

growing market of service companies offering commercially distributed training software. 

Although the quality of such software may vary substantially between providers, there is 
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evidence that training1 may result in substantial score gains in cognitive ability tests, not only 

in educational but also in selection settings (Chung-Herrera, Ehrhart, Ehrhart, Solamon, & 

Kilian, 2008; Hausknecht, Halpert, Di Paolo, & Moriarty Gerrard, 2007). It can be expected 

that only individuals with sufficient financial resources will be able to afford such training 

programs, calling into question the fairness of ability assessments (Sackett, Burris, & Ryan, 

1989; Stemig, Sackett, & Lievens, 2015). Such training gains can be partly attributed to retest 

effects, i.e. score gains resulting from the mere repetition of a test (Freund & Holling, 2011; 

Hausknecht et al., 2007). This implies that not only individuals with training course 

experience but also individuals who had the opportunity to repeat an examination may have 

an advantage over individuals who conduct an ability test for the first time. Taken together, 

commercially available training and the retest policies of institutions give rise to considerable 

concern about the fairness of these ability assessments. To deal with this problem, several 

authors suggested to freely offer training and practice materials to all participants (Arendasy 

et al., 2016; Freund & Holling, 2011; Sackett, Borneman, & Connelly, 2008; Zwick, 2002). 

For example, Arendasy et al. (2016) proposed that “making more informal student-centered 

practice opportunities accessible to all test-takers could resolve issues of fairness associated 

with differential access to test preparation opportunities without compromising measurement 

fairness” (p. 54). 

Today most organizations involved in high-stakes computer-based testing actually 

provide opportunities for test familiarization by distributing free practice items or tutorials as 

recommended by the International Test Commission (The International Test Commission, 

                                                                    
1 It is important to note that the terms training, practice, retest, and coaching are not 

exclusive categories but belong a continuum of preparation activities, with different 

emphasis on test familiarization and the development of test-specific skills (Arendasy, 

Sommer, Gutiérrez-Lobos, & Punter, 2016; Messick & Jungeblut, 1981). 
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2006). The range of complexity of practice materials currently offered by test-administering 

institutions is, however, mostly restricted to downloadable information brochures and 

example items in paper and pencil format. There is some slightly more sophisticated online 

material available. It must be expected though, that in case of cognitive ability tests, the 

practice gains increase as a function of the equivalence of the practice items with test items 

(Hausknecht et al., 2007). Therefore, to ensure test fairness, it is crucial to offer practice 

items that resemble the test items as closely as possible. Recently, more efforts have been 

made to increase fairness. In the United States for example, the College Board cooperated 

with the Khan Academy to offer freely available test practice programs for the SAT (formerly 

Scholastic Aptitude Test), a common test for college admissions. Overall, however, still only 

little consideration is given to the unequal opportunities to practice and training activities, for 

example by making effective preparation material freely available to all test takers and 

informing them openly about available training options.  

One reason for this deficiency may be that in the context of personnel selection there 

is virtually no published research on the effects and consequences of using sophisticated 

computer-based training tools, especially on the validity of the tests. This is surprising given 

the great potential of computer-based training tools in this field. With computer-based 

systems it is possible to offer training tools with high equivalence to selection tests. Such 

systems allow a very standardized presentation of training items (including timing and 

navigation issues), complex interfaces and item-selection algorithms, a wide range of 

multimedia features, reliable response recording, or feedback mechanisms. Finally, 

computer-based training systems can be economically distributed, making them especially 

attractive for larger user pools. 

2. Possible effects of training  
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For the current study possible consequences of practice and training are inferred from 

two related research areas. The first area comprises research regarding practice and retest 

effects (Sackett et al., 1989; Scharfen, Peters, & Holling, 2018; Van Iddekinge & Arnold, 

2017), the second includes research regarding the acquisition of cognitive skills (Ackerman, 

1987, 1988; Fitts, 1964). 

Since Ebbinghaus’ learning experiments it is well-established that practice of 

cognitive tasks normally results in asymptotic learning curves (Donner & Hardy, 2015; 

Heathcote, Brown, & Mewhort, 2000; Newell & Rosenbloom, 1981). Practice effects seem to 

occur in virtually all types of mental ability tests, with especially large sizes of effect for 

psychomotor coordination and spatial orientation tests (Sackett et al., 1989). Practice effects 

are generally larger when identical compared to alternate test forms are employed, i.e. 

practice gains increase the more equivalent both test forms are (Hausknecht et al., 2007; 

Scharfen et al., 2018). Since training with computer-based training modules can be 

considered as practice with parallel test forms, the possible consequences of freely offering 

training software on measurement properties may be derived from studies that analyze the 

impact of practice and retesting on test validity. 

Although research has shown that criterion-oriented validity is either unaffected or 

positively affected by practice and retest effects (Van Iddekinge & Arnold, 2017), the 

empirical literature for construct validity is rather mixed. An early study with psychomotor 

tests showed that the factor structure of a psychomotor task changed over practice to a 

simpler pattern (Fleishman & Hempel, 1954). Current research has demonstrated evidence of 

measurement invariance over retest scores of several cognitive ability tests (Reeve & Lam, 

2005) but also of non-invariance (Lievens, Reeve, & Heggestad, 2007). Here, variance in 

retest scores reflected test-specific abilities to a larger degree than variance of initial scores. 

This could be attributed to a reduction of construct irrelevant variance, like reduced test 
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anxiety or greater experience with the test and the test setting (Hausknecht et al., 2007; 

Lievens, Buyse, & Sackett, 2005; Van Iddekinge & Arnold, 2017). However, to our 

knowledge, there is no research on the question whether different training quantities could 

have an impact on the invariance of cognitive ability measurements. Different amounts of 

training could influence the measured variables without changing the basic ability of interest, 

thereby creating measurement bias. Likewise, different amounts of training could change the 

relations between different constructs.  

For the invariance of cognitive ability measurement theories of skill acquisition play 

an important role as well. Most of these theories suggest that practice of cognitive or 

psychomotor tasks may lead to the development of a (rather narrow) skill set (Fitts, 1964; 

Rosenbaum, Carlson, & Gilmore, 2001). Therefore, there is a certain risk that the intense use 

of computer-based training tools for cognitive tasks results in a change of the construct from 

a rather broad ability to a narrow skill. In this case, the test conducted after extensive practice 

would not be useable to measure the ability. Ackerman (1987, 1988) presented a 

comprehensive theory which states that by practice, a skill is acquired in three phases in 

which different determinants are important for individual performance: content abilities in the 

first phase (which correspond to different aspects of intelligence), perceptual speed in the 

second, and psychomotor skills in the third phase. For the construct-oriented validity of a 

cognitive test this implies that for those who have the opportunity to practice, in every phase 

of skill acquisition (depending on the amount of practice) the test would assess a different 

underlying ability. Importantly, Ackerman’s theory states that skill acquisition is only 

pertinent if the practice material is rather consistent and not complex (see also Ackerman & 

Schneider, 1985). For the construction of cognitive ability tests this implies that the test 

material should be rather complex and have an inconsistent structure so that even after 

intense practice, test-takers should never reach phases two or three of skill acquisition.  
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3. Goals of the current study  

Ability diagnostic in high-stakes settings is in the predicament that on the one hand 

providing free training opportunities is a promising way to (re-) establish fair initial 

conditions for every test-taker. On the other hand, this opportunity to practice increases the 

risk that test-takers may develop a cognitive skill in the tasks in question, thereby 

compromising the construct validity of the cognitive tests. For the context of personnel 

selection Ackerman’s theory (1987, 1988) shows a way of how the development of skills as a 

consequence of training may be prevented and the construct validity may be preserved: The 

nature of the tasks in the cognitive ability tests has to be more complex and inconsistent, so 

that more sophisticated and changing mental operations are required for the test items. The 

ability tests used in the present study were developed with a special focus on more complex 

and inconsistent material and items. Therefore we expected that training did not alter the 

measurement structure and the relations between constructs. 

Hypothesis 1: Increasing levels of training do not alter the factor structure of the 

measurements.  

Likewise, with reference to Ackerman’s framework there should be a consistent 

relationship between the ability constructs and perceptual speed as well as psychomotor 

coordination for different practice levels.  

Hypothesis 2a: Increasing levels of training do not alter the importance of perceptual 

speed within the factor structure. 

Hypothesis 2b: Increasing levels of training do not alter the importance of 

psychomotor coordination within the factor structure.  

In both cases we expect that the size of the respective factor loadings is not moderated 

by the amount of training. The goal of this study was to test these hypotheses in a sample of 

N = 15,752 applicants whose data were gathered in high-stakes application contexts. Since 
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the applicants were encouraged to use our freely distributed computer-based training tools, 

this sample provided a unique opportunity to test these hypotheses in a sample with high 

external validity. In contrast to previous studies, we used computer-based training tools that 

were specifically designed to resemble the different cognitive ability tests as closely as 

possible. In addition, the applicants provided data on their amount of individual training so 

that a quantitative measure of these training activities was available. 

4. Method 

4.1. Participants and procedure 

The present sample consisted of candidates applying for a pilot trainee position at 

major European airlines. Applicants were included in the present study if they had 

participated in an assessment between 2010 and 2017. During this period, all applicants were 

offered identical computer-based training programs and conducted the same ability tests. The 

present study only considered applicants who had participated for the first time in an 

assessment in our institution. Data sets with missing values were excluded from the analyses 

(there were 100 applicants, i.e. 0.63 % of the sample with incomplete training data) so that 

only complete data sets were used. The remaining 15,752 candidates were between 17 and 50 

years old (M = 20.30, SD = 2.68), 86% were male and 14% were female. All applicants had 

completed a high school education adequate for university entrance.  

In the following data from a multi-stage selection procedure were analyzed. The 

procedure started with a set of computer-based tests measuring cognitive abilities, knowledge 

and psychomotor abilities, as required for aviation training and the pilot’s profession. Further 

stages comprised a flight in a fixed-base flight simulator, an assessment center, and an 

interview. Examinations with computer-based tests were conducted in groups of up to 44 

subjects. The measurement procedure was highly standardized; all tests were administered at 

the same time of the day and in an identical order. Applicants completed all tests within one 
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day, in an air-conditioned and well-lit testing room. Each ability test started with an 

introductory text on the screen; the cognitive ability tests also included examples and a few 

practice items. Before the main test began, comprehension questions were answered by the 

test administrator if necessary.  

4.2. Measures 

For the present study, we analyzed nine computer-based tests. Six tests measured 

basic cognitive abilities: visual perception speed, selective attention, auditory and visual 

memory capacity, mental rotation and spatial visualization (both aspects of spatial abilities). 

In order to examine possible effects of the training on the relation between the measured 

construct of cognitive ability and other constructs, we also included two tests measuring 

technical knowledge and comprehension and one test measuring psychomotor coordination 

and the capacity for multiple task coordination. All tests have been developed in our 

institution and are employed in pilot selection for several years. The following cognitive 

ability tests were employed:  

The Optical Perception Test (test-retest reliability rtt = .90; Zierke, 2014) as a measure 

of visual perception speed required the subject to read four specific indicator values from a 

complex display consisting of nine dials. The dials differed in color (black/white) and shape 

(round/angular) and were displayed for two seconds. Before each task was presented, 

information was given about which dials were critical (black/white/round/angular) and thus 

which had to be read.  

The Symbol Concentration Test (rtt = .93; Zierke, 2014) as measure of selective 

attention required the subject to apply changing rules to long sequences of displayed 

triangles. The triangles differed in color, orientation, and number of dots displayed in each 

triangle. Before each sequence, a rule indicated which of these features were critical. The 
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subjects had to decide whether or not two consecutive triangles were identical with respect to 

the critical features.  

The Running Memory Span Test (rtt = .76; Zierke, 2014) is a measure of auditory 

memory. It required the subject to memorize acoustically presented sequences of digits and 

enter them in reverse order. The sequences differed in length of up to 35 digits.  

The Visual Memory Capacity Test (rtt = .74; Hermes & Stelling, 2016) contained an 

n-back task, requiring the subjects to compare a sequence of symbols and to react when the 

present symbol matched the one from n steps earlier in the sequence. The symbols differed in 

shape and color. Two-back, 3-back, 4-back, and 5-back sequences were administered.  

In the Mental Rotation Test (rtt = .91; Zierke, 2014) the subject had to visualize a cube 

with one face marked by a cross. Then sequences of acoustic orders were presented—

differing in length and speed—which specified how to mentally rotate the cube. At the end of 

each sequence the subjects had to indicate the position of the mark on the cube.  

The material in the Spatial Visualization Test (Cronbach's α = .91; Zierke, 2014) 

consisted of dice with different dot markings. The subjects saw one unfolded die of which all 

faces could be seen and five different dice of which three faces could be seen. The task was 

then to decide which of the five dice was unfolded.  

The Test of Knowledge in Physics (Cronbach's α = .78; Zierke, 2014) evaluated the 

subjects’ physics and technical knowledge, which mainly covered scholastic knowledge. The 

areas included technical systems, mechanics, electronics, thermodynamics, hydraulics, and 

aerodynamics.  

The Mechanical Comprehension Test (Cronbach's α = .78; Zierke, 2014) contained 

questions covering technical problems which, in most cases, were illustrated by pictures. The 

test did not assess textbook knowledge but rather measured the understanding of mechanical 

and physical principles and devices.  
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The “Monitoring and Instrument Coordination” test provided two measures, one for 

psychomotor coordination and one for multiple task coordination (rtt = .75 and .76 

respectively; Hoermann, 2016). The test was a complex, flight simulator like task mainly 

operated with a joystick. Different parameters (heading, speed, altitude) had to be 

coordinated via tracking tasks and button presses. In addition, an auditory secondary task had 

to be accomplished. The two measures were obtained from different parts of the test: the first 

represented psychomotor measures of the tracking performance and the second represented 

the coordination of a complex task consisting of several tracking tasks and the auditory task.  

4.3. Training and test preparation 

At least three weeks ahead of the computer-based assessment, all applicants were 

offered online access to the test preparation materials. Here, the computer-based training 

modules —which are executable software files—could be downloaded for offline use. The 

download package also included two documents: one contained training recommendations 

and the other was a template which was be used to record how often each training module 

was used. With these software modules and documents each candidate had the opportunity 

and was advised to practice for the ability tests prior to the examination. The training records 

were submitted on the testing day.  

The preparation concept differed between test domains. For basic cognitive abilities 

like visual perception speed, selective attention, auditory and visual memory capacity, mental 

rotation, and spatial visualization, the design of each training module resembled the actual 

test as closely as possible, yet without disclosing any test items. After instructions concerning 

the test principles, the user chose between up to three levels of difficulty, whereby the highest 

level equaled the item difficulty in the actual test. To ensure variation of training contents 

between repeated executions, training items were either randomly drawn at runtime from a 

larger pool of items or dynamically generated, thereby following specific rules to control item 
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difficulty. In the training program for the Running Memory Span Test for instance, the series 

of numbers that make up an item are randomly generated according to predefined sequence 

length specifications and restrictions on the frequency of occurrence and sequence of 

individual digits (e.g., to prevent the direct succession of identical digits). At the end of each 

training run the candidates received a summarized feedback about the percentage of correctly 

solved items. Recommendations were to start the training on the lowest level of difficulty, 

then work through all other levels. The same module should not be repeated more than three 

times in a row and regular breaks should be introduced. To keep the training varied, training 

modules for different abilities should be used alternately. In total each of them should be 

worked on 20 times. If candidates had the impression that their performance was still 

increasing, they were advised that they should practice even more.  

In contrast, the software module for tests of technical knowledge and comprehension 

was not developed as a training tool. It merely offered example items for familiarization with 

the test principle and the use as a self-diagnostic tool to identify personal deficiencies in the 

subject matter. A repetition of the module was recommended only to check the individual 

learning progress. Hence, the number of executions of the module could not be interpreted as 

an indicator of training quantity. Finally, as the measurement of psychomotor coordination 

and the capacity for multiple task coordination requires specific input devices, a different 

preparation strategy was chosen. Instead of a software module, the candidates received a 

comprehensive information brochure and the actual training took place on the testing day 

during a standardized, yet unscored familiarization phase directly before the test. 

4.4. Statistical analyses 

Test reporting and interpretation for the selection procedure is done on a 9-point 

standard scale (stanine). Applicants’ raw scores of each ability test are converted to stanine 
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values based on an archival data set of pilot trainee applicants. These individual stanine 

scores were used in the statistical analyses.  

In a first step, we analyzed the relationship between the scores of the ability 

measurements and the reported number of training runs. In a second step, we assessed 

whether increasing numbers of training runs had an impact on the psychometric properties of 

ability tests and the relationship between constructs. Our hypotheses 1, 2a, and 2b implied 

that with an increasing number of training runs, the relationship between the measured scores 

and the underlying (latent) constructs as well as the relationship between constructs remain 

unchanged. Such hypotheses can be tested by examining the measurement and structural 

invariance of ability scores across different levels of training (Putnick & Bornstein, 2016; 

Schmitt & Kuljanin, 2008; Vandenberg & Lance, 2000). As a first step the sample was 

divided in six groups, based on the mean number of training runs across the six cognitive 

abilities: visual perception speed, selective attention, auditory and visual memory capacity, 

mental rotation and spatial visualization (see Table 1). Two of these groups were defined 

based on conceptual reasons: the first group contained applicants who had not used any of the 

training modules. The last group contained applicants who had used the training modules on 

average more often than recommended, i.e. more than 20 runs. The other four groups 

included applicants who were situated between these two ends of the training distribution 

(with equal ranges in training quantity across groups and reasonable group sizes). 

Table 1 

Mean number of training runs and sample sizes of training groups 

 

Group  

No. 

Training quantity  

(X) 

N 

1  X =  0  60 

2  0 < X ≤  5  2061 

3  5 < X ≤ 10  3140 

4  10 < X ≤ 15  3578 

5  15 < X ≤ 20  4393 

6  X > 20  2520 
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These six groups were simultaneously analyzed in a multigroup structural equation 

model (Putnick & Bornstein, 2016). Cognitive ability, technical comprehension, and complex 

psychomotor coordination were conceptualized as latent variables and the test scores (stanine 

scores) of the computer-based tests were conceptualized as manifest variables (see Figure 1).  
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Figure 1. Confirmatory factor analysis model.  

[2-column fitting image] 

The assessment of measurement and structural invariance involved a sequence of 

model comparisons with increasingly stringent models (Putnick & Bornstein, 2016; see Table 

2). The first model is the configural invariance model. This is the least stringent model since 

it imposes no parameter constraints across groups. With such a model the hypothesis is tested 

whether the same tests load on the same latent variables across groups. Within each group, 

the factor loading of one manifest variable was set to 1 to achieve model identification. The 

second model was the metric invariance model. Here, each factor loading was constrained to 

be equal across groups. This model allowed to test whether the amount of computer-based 

training has an effect on the relative weights of the constructs on the measured test scores. 

The third model was the scalar invariance model. In this model the loadings and the 

intercepts of the measured variables were constrained to be equal across groups, which means 

that an individual with average ability would have the same expected manifest score on a test, 

irrespective of how much they trained. The fourth model was the residual invariance model. 

Here, the loadings, intercepts, and residual variances were constrained to be equal across 
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groups, which states that the amount of variance in manifest indicators not explained by the 

latent variables remains the same, irrespective of how much an individual has trained. The 

fifth model tests for invariant factor variances; here the variances of the latent factors are 

additionally constrained to be equal across groups implying that irrespective of the amount of 

training the variability of the latent ability remains the same. The sixth model was the 

structural invariance model. In this model, the loadings, intercepts, residual variances, factor 

variances, and the covariances between factors were constrained to be equal across groups. If 

the structural invariance model can be accepted, it implies that in addition the relations 

between latent constructs remain constant across training groups. In this case, the whole 

factorial structure of the measurements is not affected by training (hypothesis 1). 

Table 2 

Overview of equality constraints imposed across training groups  

 

No. Model  Factor 

loadings 

Intercepts Residual 

variances 

Factor 

variances 

Factor 

covariances 

1 Configural invariance free free free free free 

2 Metric invariance invariant free free free free 

3 Scalar invariance invariant invariant free free free 

4 Residual invariance invariant invariant invariant free free 

5 Invariant factor variances invariant invariant invariant invariant free 

6 Structural invariance invariant invariant invariant invariant invariant 

 

Note. All models are nested; the parameter constraint that is tested in a model is underlined. 

 

With reference to the Ackerman model, it was hypothesized that across different 

training levels, there should be a constant relationship between the ability constructs and 

perceptual speed (hypothesis 2a) and between the ability constructs and psychomotor 

coordination (hypothesis 2b). The measurement invariance analyses already serve as omnibus 

tests for both hypotheses. In particular, if metric invariance is supported, there is evidence of 

a common pattern of loadings across groups. This also comprises the loading of perceptual 

speed on the latent cognitive ability factor, i.e. irrespective of the amount of training, the 
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relationship between the latent variable and its indicators is not changed. To more specifically 

test hypothesis 2a, we compared the metric invariance model to a modified model where only 

the loading of perceptual speed on the latent cognitive ability factor was released. If there is 

no significant difference between both models, this indicates that the importance of 

perceptual speed was not changed due to different amounts of training: the size of the loading 

remained the same independent of training (Byrne, 2016). A similar analysis can be 

performed for psychomotor coordination (hypothesis 2b). Again, the metric invariance model 

can be compared to a modified model, in this case, psychomotor coordination was allowed to 

load on the latent cognitive ability factor. If there is no significant difference between the 

metric invariance and this modified model, it more specifically indicates that the importance 

of psychomotor coordination was not changed as a result of different amounts of training. 

The nested structural equation models were analyzed using the statistics environment 

R (version 3.4.3; R Core Team, 2017) together with the “lavaan” package (version 0.5-23; 

Rosseel, 2012). Maximum likelihood was employed to estimate the model parameters. Model 

fit of the baseline/configural model was assessed by a set of approximate fit indices: 

comparative fit index (CFI), root mean square error of approximation (RMSEA), and 

standardized root mean square residual (SRMR). The configural model was considered 

acceptable with CFI ≥ .95, RMSEA < .08, and SRMR < .08 (Byrne & Stewart, 2006). Chi-

square was not used as an acceptance criterion since chi-square is overly sensitive to sample 

size (Bentler & Bonett, 1980; Cheung & Rensvold, 2002) and chi-square is not considered as 

an appropriate criterion in very large samples (Rutkowski & Svetina, 2013).  

When chi-square is used as a criterion in large samples such as the present study, 

models tend to be rejected even due to differences of trivial size. However, it is not enough to 

claim that the chi-square value is inflated by sample size (Ropovik, 2015), when it is possible 

to empirically analyze the impact of sample size on the chi-square statistic. We therefore 
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estimated the impact of sample size on chi-square in the present study: we repeated the 

analysis with the baseline model in a subset of our sample. The subsample was generated by 

randomly drawing 10% of applicants out of each group (with replacement) resulting in 

sample sizes around N = 300 for each stratum, which is the usual recommendation to perform 

such analyses. Only for the first group, the complete sample was employed because of the 

small sample size. To minimize the impact of sampling error, we conducted the sampling 

procedure 1,000 times, analyzed the baseline model each time and computed the mean of the 

1,000 chi-square estimates. A comparison of this mean chi-square value with the chi-square 

value in the complete sample allows an estimation of the impact of sample size on chi-square. 

All models were nested models with increasing constraints. Therefore, these 

constrained models were assessed using a direct model comparison to the less restricted 

model. A model was determined to be invariant when the difference in the comparative fit 

index (ΔCFI) was smaller or equal to .01 (Cheung & Rensvold, 2002; Kim, Cao, Wang, & 

Nguyen, 2017). 

5. Results 

5.1. Descriptive analyses 

Figure 2 shows how often the training modules for the cognitive ability tests were 

actually used. Aggregated across the six cognitive domains, 10% of all candidates reported a 

mean training level of 20 runs, thereby following the recommendation exactly. In contrast, 

75% reported a lower level of training and 15% a higher one. As Table 3 illustrates, most 

modules were practiced 14-15 times on average. The module for selective attention was used 

less often and the module for visual perception speed was used more often. 
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Figure 2. Frequency distribution of the mean number of computer-based training runs across 

6 ability measures, for display purposes rounded to integer values. N = 15,752.  

[single column fitting image] 

 

 

Table 3 

Descriptive statistics for the number of computer-based training runs and performance in 

ability tests 

 

 Training runs Test performance  

 M (SD) M (SD) rTraining,Test 

Selective attention  12.68 (8.49) 5.18 (1.79) .32 

Visual perception speed 17.16 (11.64) 5.22 (1.87) .50 

Auditory memory 14.73 (10.16) 5.33 (1.96) .37 

Visual memory 14.04 (9.96) 5.18 (2.07) .36 

Mental rotation 14.34 (9.93) 5.65 (2.22) .37 

Spatial visualization 14.30 (9.51) 4.91 (1.85) .39 

Knowledge in physics - 4.90 (2.13) - 

Mechanical comprehension - 4.63 (1.97) - 

Psychomotor coordination - 4.72 (2.00) - 

Multiple task coordination - 4.96 (1.91) - 

 

Note. For each measure the mean number of training runs and the mean stanine score of test 

performance is shown, together with the Spearman correlation of both variables. For the latter 

4 measures no data for training quantity were available due to a different preparation concept. 

Due to the large sample size, indications of statistical significance for correlation coefficients 

are omitted. N = 15,752. 

Table 3 also shows the performance data for all computer-based tests in stanines with 

M = 5 and SD = 2. The mean test scores and the respective standard deviations measured in 
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our sample were comparable to the normative group, with slightly better performance than 

the norm average of M = 5 in measures where training modules were offered in advance, and 

a slightly lower performance than the norm in the others. 

For the six measures of cognitive abilities, the relationship between the number of 

training runs and test performance was analyzed. As a visual inspection indicated that it was a 

non-linear, monotonic relationship, we performed the analyses using Spearman’s rank order 

correlation. In contrast to the Pearson product-moment correlation, Spearman’s coefficient 

evaluates the monotonic relation between two variables and not the linear. As Table 3 shows, 

there were substantial correlations between training runs and test performance. The 

correlation coefficients ranged from r = .32 (selective attention) to r = .50 (visual perception 

speed), with a mean correlation of M = .39 (the mean correlation was computed by 

transforming the correlation coefficients to Fisher’s Z values and back-transforming the mean 

Z value). The more often a training module had been practiced on average, the higher was the 

achieved test result. It must be noted, however, that higher average training scores were also 

associated with higher standard deviations, so that the pattern of correlations between training 

and test performance may be mediated by the variability in training runs. Figure 3 further 

illustrates the relationship between the number of training runs and test performance. When 

aggregated across the six cognitive ability measures, there was a non-linear relationship 

between the number of training runs and test performance. Generally, more training predicted 

on average better performance. However, the training gains became smaller with additional 

training amounts. This pattern was also present when data were analyzed for each measure 

separately.  
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Figure 3. Relation between the mean number of computer-based training runs and mean test 

performance. X axis: mean number of training runs across 6 ability measures, for display 

purposes rounded to integer values; y axis: mean stanine scores aggregated across 6 ability 

tests, corresponding to the 6 training modules. Error bars indicate 95% confidence intervals. 

Due to small sample sizes with more than 40 training runs and increasingly larger confidence 

intervals, applicants with on average more than 40 training runs have been aggregated (only 

for display purposes; n = 262, M = 53 training runs). N = 15,752; the data point with the 

smallest sample size is at 39 training runs with n = 28. 

[1-column fitting image] 

 

5.2. Confirmatory factor analyses 

The ability scores were tested across different levels of training for measurement and 

structural invariance. The sequence of increasingly stringent models started with the 

configural invariance model which imposes no parameter constraints across groups. As Table 

4 shows, the fit of the configural invariance model was acceptable, χ2(df = 192) = 2,396.23, p 

< .001, CFI = .97, RMSEA = .07, SRMR = .03. Imposing restrictions between groups also 

resulted in acceptable model fit statistics and also the CFI differences between models were 

acceptable: the metric invariance model (ΔCFI = .001), scalar invariance model (ΔCFI = 

.003), residual invariance model (ΔCFI = .003), invariant factor variances model (ΔCFI = 

.004), and the structural invariance model (ΔCFI = .001). Thus, the factorial structure of the 



LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  24 

ability measurements remained constant across different levels of computer-based training, 

supporting hypothesis 1.  

 

Table 4 

Goodness of fit for models of invariance across different levels of computer-based training  

 

Model χ2  

(df) 

CFI RMSEA 

(90% CI) 

SRMR Model 

compa-

rison 

ΔCFI Decision 

Configural invariance 2,396.23 

(192) 

.970 .066  

(.064-.069) 

.030 --- --- Accept 

Metric invariance 2,552.27 

(227) 

.969 .062 

(.060-.065) 

.035 configural .001 Accept 

Scalar invariance 2,811.60 

(262) 

.966 .061  

(.059-.063) 

.037 metric .003 Accept 

Residual invariance 3,019.40 

(312) 

.963 .057  

(.056-.059) 

.038 scalar .003 Accept 

Invariant factor 

variances 

3,394.23

(327) 

.959 .060 

(.058-.062) 

.087 residual .004 Accept 

Structural invariance 3,438.54

(342) 

.958 .059  

(.057-.061) 

.087 factor .001 Accept 

 

Note. Acceptance criterion for nested models: ΔCFI ≤ .01 (Cheung & Rensvold, 2002). CFI = 

comparative fit index, RMSEA = root mean square error of approximation, SRMR = 

standardized root mean square residual. N = 15,752 (see Table 1 for individual group sizes). 

As outlined in the Methods section, a significant chi-square value is not a reliable 

indicator of model fit in very large samples. To estimate the impact of sample size on chi-

square in the present study, we repeated the analysis with the finally accepted model (i.e., the 

structural invariance model) in subsets of our sample. Mean chi-square in the subsamples was 

χ2(df = 342, N = 1,629) = 691.29. While still statistically significant, there was a large drop in 

the value of chi-square, indicating that it was considerably influenced by sample size. 

Since measurement invariance across the different amounts of training was supported, 

this also supported the hypotheses of a constant relationship between the ability constructs 

and perceptual speed (hypothesis 2a) and between the ability constructs and psychomotor 

coordination (hypothesis 2b). To specifically assess the importance of perceptual speed, a 

modified version of the metric invariance model was analyzed where only the loadings of 
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perceptual speed on the latent cognitive ability factor was released, χ2(df = 222) = 2,542.31, p 

< .001, CFI = .97, RMSEA = .06, SRMR = .04. However, a direct model comparison with the 

metric invariance model showed no significant difference between the two models, Δχ2(df = 

5, N = 15,752) = 9.96, p = .076. This implies that the liberalized, less parsimonious model, 

allowing different loadings between groups, did not result in a significantly better fit. It can 

be concluded that the importance of perceptual speed remained constant across different 

amounts of training. Hypothesis 2a was supported. To specifically evaluate the importance of 

psychomotor coordination, again a modified version of the metric invariance model was 

analyzed. In this case psychomotor coordination was allowed to load on the latent cognitive 

ability factor, χ2(df = 221) = 2,549.09, p < .001, CFI = .97, RMSEA = .06, SRMR = .04. 

Again, a direct model comparison showed no significant difference between the two models, 

Δχ2(df = 6, N = 15,752) = 3.18, p = .786, suggesting that the importance of psychomotor 

coordination remained constant across different training quantities, supporting hypothesis 2b.  

6. Discussion 

With the growing use of computer-based diagnostics, especially in applied contexts, 

the question of good and fair preparation for applicants has become increasingly crucial. 

Preparation for ability tests has become an industry in many selection contexts and the 

financial resources of the applicant and differences in quantity and quality of test preparation 

constitute growing sources of variance and unfairness. Our approach to cope with this 

challenge was to offer freely available computer-based training modules to all applicants. The 

present study showed that there were training effects consistent with previously published 

research, but most importantly, the structure of the tests was not altered by offering free 

training to all applicants. The analyses for measurement and structural invariance indicated 

that there was no change in the factorial structure of the ability measures. With regard to our 

specific hypotheses, the invariance analysis showed that increasing levels of training did not 
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alter the importance of perceptual speed and psychomotor coordination within the factorial 

structure. With respect to Ackermann’s theory (1988), this finding is interpreted as evidence 

for the fact that training did not alter the measured constructs from rather broad abilities to 

task-specific skills. This can be attributed to the way the ability tests of the present study 

were designed: they were characterized by an inconsistent structure, i.e. the rules for item 

processing changed constantly during the test. This inconsistency impeded the process of 

automation and required continuous active information processing. Therefore, even after 

intense practice, the content abilities (Ackerman, 1988) remained the main factor for solving 

the test items and hence, the structural validity of the tests was not affected.  

Previous studies have already analyzed the measurement invariance of cognitive 

ability tests in the context of practice and retest effects. However, as a result of different 

criteria for defining the groups, these are not directly comparable to the present study. For 

example, previous studies analyzed invariance across classes of training prior to admission 

testing (Arendasy et al., 2016), practice with different cognitive tasks between repeated 

intelligence measurements (Estrada, Ferrer, Abad, Román, & Colom, 2015), different 

methods used to construct alternate test forms (Arendasy & Sommer, 2013), or authors 

analyzed invariance across different measurement occasions (Arendasy & Sommer, 2017; 

Freund & Holling, 2011; Lievens et al., 2007; Reeve & Lam, 2005; Sommer, Arendasy, & 

Schützhofer, 2017). To our knowledge, the present study is the first that analyzes 

measurement and structural invariance across different amounts of test-specific training. As 

most of the previous invariance studies, our invariance analyses were conducted within a 

multi-group framework. Recently, moderated nonlinear factor analysis was proposed as a 

more general approach (Bauer, 2017): it allows investigating measurement invariance also for 

continuous variables which could be used in future research. 
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Additionally, we found that although there were instructions given for computer-

based training in the present study, applicants did not always follow them, resulting in a large 

variability in the use of the training modules. The reasons for the large differences in training 

quantity may be diverse: individual differences in motivation, time resources, beliefs about 

the effectiveness of training or correctness of self-evaluations (for relevant factors in 

commercial coaching programmes, see Ryan, Ployhart, Greguras, & Schmit, 1998). 

Therefore, when psychologists decide to offer computer-based training to all applicants, they 

must decide how to cope with these possible influences. One strategy could be to allow 

applicants to participate in the examination only if they confirm having trained up to a 

specified level. This could enhance construct validity since the measurements are less biased 

by differences in training and hence, potential differences in motivation, time resources, or 

correctness of self-evaluations. However, it should also be considered that such differences 

may provide diagnostically relevant information. Moreover, to the extent that these 

differences meet requirements for the later job, the criterion-related validity of measurements 

will be enhanced if applicants are allowed to participate in the examination irrespective of 

their actual training level. In this case, it is mandatory to offer the training software to all 

applicants, with sufficient time for an adequate test preparation. In addition, institutions have 

to underline the importance of training to all applicants, otherwise the risk that applicants 

only fail the examination due to insufficient training will be unacceptably large. Such false 

negative decisions are probable since in most cases the introduction of training software 

necessitates the adjustment of test norms—which become stricter as a result of the training 

effects. In particular, if the number of potentially suitable applicants is rather small, the costs 

of false negative decisions are high. Taken together, there is some investment required with 

the introduction of computer-based training but it ensures that training and the resulting score 

gains are not restricted to applicants with high financial resources. 
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Consistent with studies on practice effects and learning curves, we found a positive, 

non-linear relationship between the quantity of computer-based training and cognitive 

performance (Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010; Donner & Hardy, 

2015). Such a relation was also reported by studies that used the time spent on training and 

not the number of training runs (cf. Hausknecht et al., 2007), which is plausible since the time 

spent on training and the number of training runs should be highly correlated. As discussed in 

several lines of research, the relationship between training and cognitive performance is 

mainly based on familiarization with the item format and an increase in test-specific skills 

(for an overview of the causes of retest and practice effects see Randall & Villado, 2017; Van 

Iddekinge & Arnold, 2017). Recent evidence supported the hypothesis that score gains after 

repeated testing are due to refinements in the solution strategies of subjects (Arendasy & 

Sommer, 2017; Hayes, Petrov, & Sederberg, 2015). As Arendasy and Sommer (2017) point 

out, when subjects repeatedly conduct an ability test, information on speed and accuracy of 

the solution strategy and salient item design characteristics are stored in working memory. 

With further retests, the cognitive schema becomes more automatized and hence more 

working memory resources become available. Depending on the nature of the cognitive 

ability analyzed, such an automation process may proceed at different speeds, with for 

example simple speed tasks reaching the plateau faster than memory or reasoning tasks 

(Scharfen, Jansen, & Holling, in press; Scharfen et al., 2018). 

A limitation of the present study is that the number of training runs was not 

experimentally manipulated and not directly monitored but only reported by each applicant. 

Therefore, it cannot be excluded that the training data were biased by record inaccuracies or 

socially desirable behavior. For example, we do not know whether the participants actually 

adhered to the suggestion or whether the spike after run 20 in figure 3 could be due to social 

desirability. Furthermore, it is possible that some applicants had used commercial preparation 
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methods in addition to our training software. However, the relationship between training data 

and test performance, which is in line with theoretical expectations based on Ebbinghaus' 

learning curves (cf. Figure 1) suggest that such influences are—at least on average—of only 

minor importance. Moreover, the training guidance with recommendations and the record 

template, together with the upcoming high-stakes setting, are likely to have increased the 

reliability of the training records. It would be desirable to more closely monitor the training 

activities of the applicants, for example by tracking the usage of the software. However, in 

this case the monitoring process should be made transparent to the user to ensure data 

protection and to prevent negative reactions such as reactance or enhanced socially desirable 

behavior (cf. Ketelaar & van Balen, 2018). 

Particularly in times of internet testing and the growing (online) availability of 

information about tests, to be reliable and fair, psychological diagnostics has to react. Our 

results suggest that free computer-based training is a possible way to react to today’s 

challenges without affecting the measurement quality in diagnostic decision making and tests 

for measurement invariance are an efficient way to screen for such potential biases. However, 

offering training software to all applicants is certainly not the optimal strategy in every 

applied context. For example, if sufficient training cannot be implemented due to insufficient 

individual prerequisites (such as in neuropsychology or psychiatry) or contextual conditions 

(e.g., short time lags between registration and assessment), this training concept is not 

appropriate. Similarly, if the ability tests have a rather simple structure which makes them 

vulnerable to skill development after practice, other strategies may be more appropriate. In 

these cases, the application of alternative ability tests and test versions should be preferred. 

Alternatively, the test-retest interval may be extended (Scharfen et al., in press). For 

personnel selection contexts, however, offering computer-based training to all subjects offers 

a powerful tool to ensure sufficient fairness of the diagnostic process.  

  



LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  30 

References 

 

Ackerman, P. L. (1987). Individual differences in skill learning: An integration of 

psychometric and information processing perspectives. Psychological Bulletin, 102, 

3-27. doi:10.1037/0033-2909.102.1.3 

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: 

Cognitive abilities and information processing. Journal of Experimental Psychology: 

General, 117, 288-318. doi:10.1037/0096-3445.117.3.288 

Ackerman, P. L., & Schneider, W. (1985). Individual differences in automatic and controlled 

information processing. In R. F. Dillon & R. F. Schmeck (Eds.), Individual 

differences in cognition (pp. 35-66). Orlando: Academic Press. 

American Educational Research Association‚ American Psychological Association‚ & 

National Council on Measurement in Education. (1999). Standards for educational 

and psychological testing. Washington, DC: American Psychological Association. 

American Educational Research Association‚ American Psychological Association‚ & 

National Council on Measurement in Education. (2014). Standards for educational 

and psychological testing. Washington, DC: American Educational Research 

Association. 

Arendasy, M. E., & Sommer, M. (2013). Quantitative differences in retest effects across 

different methods used to construct alternate test forms. Intelligence, 41, 181-192. 

doi:10.1016/j.intell.2013.02.004 

Arendasy, M. E., & Sommer, M. (2017). Reducing the effect size of the retest effect: 

Examining different approaches. Intelligence, 62, 89-98. 

doi:10.1016/j.intell.2017.03.003 

Arendasy, M. E., Sommer, M., Gutiérrez-Lobos, K., & Punter, J. F. (2016). Do individual 

differences in test preparation compromise the measurement fairness of admission 

tests? Intelligence, 55, 44-56. doi:10.1016/j.intell.2016.01.004 

Bartels, C., Wegrzyn, M., Wiedl, A., Ackermann, V., & Ehrenreich, H. (2010). Practice 

effects in healthy adults: A longitudinal study on frequent repetitive cognitive testing. 

BMC Neuroscience, 11, 118. doi:10.1186/1471-2202-11-118 

Bauer, D. J. (2017). A more general model for testing measurement invariance and 

differential item functioning. Psychol Methods, 22, 507-526. doi:10.1037/met0000077 



LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  31 

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis 

of covariance structures. Psychological Bulletin, 88, 588-606. doi:10.1037/0033-

2909.88.3.588 

Byrne, B. M. (2016). Structural equation modeling with amos : Basic concepts, applications, 

and programming (Third edition. ed.). New York: Routledge, Taylor & Francis 

Group. 

Byrne, B. M., & Stewart, S. M. (2006). Teacher's corner: The macs approach to testing for 

multigroup invariance of a second-order structure: A walk through the process. 

Structural Equation Modeling: A Multidisciplinary Journal, 13, 287-321. 

doi:10.1207/s15328007sem1302_7 

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing 

measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 

9, 233-255. doi:10.1207/s15328007sem0902_5 

Chung-Herrera, B. G., Ehrhart, K. H., Ehrhart, M. G., Solamon, J., & Kilian, B. (2008). Can 

test preparation help to reduce the black—white test performance gap? Journal of 

Management, 35, 1207-1227. doi:10.1177/0149206308328506 

Donner, Y., & Hardy, J. L. (2015). Piecewise power laws in individual learning curves. 

Psychonomic Bulletin & Review, 22, 1308-1319. doi:10.3758/s13423-015-0811-x 

Estrada, E., Ferrer, E., Abad, F. J., Román, F. J., & Colom, R. (2015). A general factor of 

intelligence fails to account for changes in tests’ scores after cognitive practice: A 

longitudinal multi-group latent-variable study. Intelligence, 50, 93-99. 

doi:10.1016/j.intell.2015.02.004 

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of 

human learning (pp. 243-285). New York: Academic Press. 

Fleishman, E. A., & Hempel, W. E. (1954). Changes in factor structure of a complex 

psychomotor test as a function of practice. Psychometrika, 19, 239-252. 

doi:10.1007/bf02289188 

Freund, P. A., & Holling, H. (2011). How to get really smart: Modeling retest and training 

effects in ability testing using computer-generated figural matrix items. Intelligence, 

39, 233-243. doi:10.1016/j.intell.2011.02.009 

Greiff, S., Scherer, R., & Kirschner, P. A. (2017). Some critical reflections on the special 

issue: Current innovations in computer-based assessments. Computers in Human 

Behavior, 76, 715-718. doi:10.1016/j.chb.2017.08.019 



LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  32 

Hausknecht, J. P., Halpert, J. A., Di Paolo, N. T., & Moriarty Gerrard, M. O. (2007). 

Retesting in selection: A meta-analysis of coaching and practice effects for tests of 

cognitive ability. Journal of Applied Psychology, 92, 373-385. doi:10.1037/0021-

9010.92.2.373 

Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2015). Do we really become smarter when 

our fluid-intelligence test scores improve? Intelligence, 48, 1-14. 

doi:10.1016/j.intell.2014.10.005 

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for 

an exponential law of practice. Psychonomic Bulletin & Review, 7, 185-207. 

doi:10.3758/bf03212979 

Hermes, M., & Stelling, D. (2016). Context matters, but how much? Latent state-trait analysis 

of cognitive ability assessments. International Journal of Selection and Assessment, 

24, 285-295. doi:10.1111/ijsa.12147 

Hoermann, H.-J. (2016). MIC: Monitoring & instrument coordination – documentation. 

Unpublished report. German Aerospace Center (DLR). Hamburg, Germany.  

Ketelaar, P. E., & van Balen, M. (2018). The smartphone as your follower: The role of 

smartphone literacy in the relation between privacy concerns, attitude and behaviour 

towards phone-embedded tracking. Computers in Human Behavior, 78, 174-182. 

doi:10.1016/j.chb.2017.09.034 

Kim, E. S., Cao, C., Wang, Y., & Nguyen, D. T. (2017). Measurement invariance testing with 

many groups: A comparison of five approaches. Structural Equation Modeling: A 

Multidisciplinary Journal, 24, 524-544. doi:10.1080/10705511.2017.1304822 

Lievens, F., Buyse, T., & Sackett, P. R. (2005). Retest effects in operational selection 

settings: Development and test of a framework. Personnel Psychology, 58, 981-1007. 

doi:10.1111/j.1744-6570.2005.00713.x 

Lievens, F., Reeve, C. L., & Heggestad, E. D. (2007). An examination of psychometric bias 

due to retesting on cognitive ability tests in selection settings. Journal of Applied 

Psychology, 92, 1672-1682. doi:10.1037/0021-9010.92.6.1672 

Messick, S., & Jungeblut, A. (1981). Time and method in coaching for the sat. Psychological 

Bulletin, 89, 191-216. doi:10.1037/0033-2909.89.2.191 

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of 

practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1-55). 

Hillsdale: Lawrence Erlbaum. 



LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  33 

Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and 

reporting: The state of the art and future directions for psychological research. 

Developmental Review, 41, 71-90. doi:10.1016/j.dr.2016.06.004 

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-

project.org/ 

Randall, J. G., & Villado, A. J. (2017). Take two: Sources and deterrents of score change in 

employment retesting. Human Resource Management Review, 27, 536-553. 

doi:10.1016/j.hrmr.2016.10.002 

Reeve, C. L., & Lam, H. (2005). The psychometric paradox of practice effects due to 

retesting: Measurement invariance and stable ability estimates in the face of observed 

score changes. Intelligence, 33, 535-549. doi:10.1016/j.intell.2005.05.003 

Ropovik, I. (2015). A cautionary note on testing latent variable models. Frontiers in 

Psychology, 6, 1715. doi:10.3389/fpsyg.2015.01715 

Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of intellectual and 

perceptual-motor skills. Annual Review of Psychology, 52, 453-470. 

doi:10.1146/annurev.psych.52.1.453 

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of 

Statistical Software, 48. doi:10.18637/jss.v048.i02 

Rutkowski, L., & Svetina, D. (2013). Assessing the hypothesis of measurement invariance in 

the context of large-scale international surveys. Educational and Psychological 

Measurement, 74, 31-57. doi:10.1177/0013164413498257 

Ryan, A. M., Ployhart, R. E., Greguras, G. J., & Schmit, M. J. (1998). Test preparation 

programs in selection contexts: Self-selection and program effectiveness. Personnel 

Psychology, 51, 599-621. doi:10.1111/j.1744-6570.1998.tb00253.x 

Sackett, P. R., Borneman, M. J., & Connelly, B. S. (2008). High stakes testing in higher 

education and employment: Appraising the evidence for validity and fairness. 

American Psychologist, 63, 215-227. doi:10.1037/0003-066X.63.4.215 

Sackett, P. R., Burris, L. R., & Ryan, A. M. (1989). Coaching and practice effects in 

personnel selection. In C. L. Cooper & I. T. Robertson (Eds.), International review of 

industrial and organizational psychology (pp. 145–183). Oxford, UK: Wiley. 

Scharfen, J., Jansen, K., & Holling, H. (in press). Retest effects in working memory capacity 

tests: A meta-analysis. Psychonomic Bulletin & Review.  

https://www.r-project.org/
https://www.r-project.org/


LST ANALYSIS OF COGNITIVE ABILITY 

ASSESSMENTS  34 

Scharfen, J., Peters, J. M., & Holling, H. (2018). Retest effects in cognitive ability tests: A 

meta-analysis. Intelligence, 67, 44-66. doi:10.1016/j.intell.2018.01.003 

Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and 

implications. Human Resource Management Review, 18, 210-222. 

doi:10.1016/j.hrmr.2008.03.003 

Sommer, M., Arendasy, M. E., & Schützhofer, B. (2017). Psychometric costs of retaking 

driving-related cognitive ability tests. Transportation Research Part F: Traffic 

Psychology and Behaviour, 44, 105-119. doi:10.1016/j.trf.2016.10.014 

Stemig, M. S., Sackett, P. R., & Lievens, F. (2015). Effects of organizationally endorsed 

coaching on performance and validity of situational judgment tests. International 

Journal of Selection and Assessment, 23, 174-181. doi:10.1111/ijsa.12105 

The International Test Commission. (2006). International guidelines on computer-based and 

internet-delivered testing. International Journal of Testing, 6, 143-171. 

doi:10.1207/s15327574ijt0602_4 

Tippins, N. T. (2015). Technology and assessment in selection. Annual Review of 

Organizational Psychology and Organizational Behavior, 2, 551-582. 

doi:10.1146/annurev-orgpsych-031413-091317 

Van Iddekinge, C. H., & Arnold, J. D. (2017). Retaking employment tests: What we know 

and what we still need to know. Annual Review of Organizational Psychology and 

Organizational Behavior, 4, 445-471. doi:10.1146/annurev-orgpsych-032516-113349 

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement 

invariance literature: Suggestions, practices, and recommendations for organizational 

research. Organizational Research Methods, 3, 4-70. doi:10.1177/109442810031002 

Zierke, O. (2014). Predictive validity of knowledge tests for pilot training outcome. Aviation 

Psychology and Applied Human Factors, 4, 98-105. doi:10.1027/2192-0923/a000061 

Zwick, R. (2002). Fair game? The use of standardized admissions tests in higher education. 

New York: Routledge Falmer. 

 

 

 

 


