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Abstract 25 

Multi-atlas-based methods are commonly used for MR brain image labeling, which alleviates the 26 

burdening and time-consuming task of manual labeling in neuroimaging analysis studies. 27 

Traditionally, multi-atlas-based methods first register multiple atlases to the target image, and 28 

then propagate the labels from the labeled atlases to the unlabeled target image. However, the 29 

registration step involves non-rigid alignment, which is often time-consuming and might lack 30 

high accuracy. Alternatively, patch-based methods have shown promise in relaxing the demand 31 

for accurate registration, but they often require the use of hand-crafted features. Recently, deep 32 

learning techniques have demonstrated their effectiveness in image labeling, by automatically 33 

learning comprehensive appearance features from training images. In this paper, we propose a 34 

multi-atlas guided fully convolutional network (MA-FCN) for automatic image labeling, which 35 

aims at further improving the labeling performance with the aid of prior knowledge from the 36 

training atlases. Specifically, we train our MA-FCN model in a patch-based manner, where the 37 

input data consists of not only a training image patch but also a set of its neighboring (i.e., most 38 
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similar) affine-aligned atlas patches. The guidance information from neighboring atlas patches 39 

can help boost the discriminative ability of the learned FCN. Experimental results on different 40 

datasets demonstrate the effectiveness of our proposed method, by significantly outperforming 41 

the conventional FCN and several state-of-the-art MR brain labeling methods. 42 

 43 

Keywords: Brain image labeling, multi-atlas-based method, fully convolutional network, patch-44 

based labeling  45 

 46 

1.Introduction 47 

Anatomical brain labeling is highly desired for region-based analysis of MR brain images, 48 

which is important for many research studies and clinical applications, such as facilitating 49 

diagnosis [1, 2] and investigating early brain development [3]. Also, brain labeling is a 50 

fundamental step in brain network analysis pipelines, where regions-of-interest (ROIs) need to 51 

be identified prior to exploring any connectivity traits [4-7]. But it is labor-intensive and 52 

impractical to manually label a large set of 3D MR images, thus recent developments focused on 53 

automatic labeling of brain anatomy. However, there are multiple challenges in automatic 54 

labeling: 1) complex brain structures, 2) ambiguous boundaries between neighboring regions as 55 

observed by the highlighted region in Figure 1, and 3) large variation of the same brain structure 56 

across different subjects. 57 

 58 

Figure 1: Typical example of brain MR intensity image (left) and its label map (right). The 59 

region inside the orange rectangle has a blurry boundary, which is challenging for automatic 60 

brain labeling. 61 
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Recently, many attempts have been made to address these challenges in MR brain labeling 62 

[8-15]. In particular, the multi-atlas-based labeling methods have been widely used as standard 63 

approaches for their effectiveness and robustness. Basically, through defining an atlas as a 64 

combination of the intensity image with its manually-labeled map, one can label a target image 65 

in two steps: 1) registering the atlas image to the target image, and then 2) propagating the atlas 66 

label map to the target image. This generalizes to multi-atlas labeling methods, where multiples 67 

atlases are first registered to the target image, and then labels from all labeled atlases are 68 

propagated to the target unlabeled image. Generally, the multi-atlas-based methods can be 69 

classified into two categories:  registration-based and patch-based methods. Typically, 70 

registration-based methods first align multiple atlases to the target image in the registration step 71 

[16, 17], and then fuse the respective warped atlas label maps to obtain the final labels in the 72 

label fusion step [8, 18-20]. The main drawback of such methods is that the labeling performance 73 

highly depends on the reliability of non-rigid registration techniques used, which is often quite 74 

time-consuming [21]. 75 

Patch-based methods, on the other hand, have gained increased attention in image labeling, 76 

since they can alleviate the need for high registration accuracy through exploring several 77 

neighboring patches within a local search region [22-27]. For such methods, affine registration of 78 

the atlases to the target image is often used. Specifically, for each target patch, similar patches 79 

are selected from the affine-aligned atlas images according to patch similarities within a search 80 

region. Then, the labels of those selected atlas patches are fused together to label the subject 81 

patch. The underlying assumption of patch-based methods is that, when two patches are similar 82 

in intensity, they are also similar in labels [28]. To measure the similarity between patches, 83 

several feature extraction methods have been proposed based on anatomical structures [22, 29] or 84 

intensity distributions [23, 24]. However, these hand-crafted patch-driven features have a key 85 

limitation. For example, they are limited by using a pre-defined set of features (i.e., color, 86 

gradient, shape, intensity distribution etc.), without exploring other possible features that can be 87 

considered and learned when comparing patches for our target task. 88 

Recently, the convolutional networks (ConvNet) methods have shown great promise and 89 

performance in several medical image analysis tasks, including image segmentation [30-33] and 90 

image synthesis [34-36]. An appealing aspect of ConvNet is that it can automatically learn the 91 

most comprehensive, high-level appearance features that can best represent the image. 92 
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Specifically, the fully convolutional network (FCN) [37] have demonstrated its effectiveness in 93 

medical image segmentation. For example, Nie et al. [38] adopted the FCN model for brain 94 

tissue segmentation, which significantly outperformed the conventional segmentation methods in 95 

terms of accuracy. 96 

In this paper, we propose a novel multi-atlas guided fully convolution network (MA-FCN) 97 

aiming at further improving the labeling performance with the aid of patch-based manner and the 98 

registration-based labeling. To guide the learning of a conventional FCN for automatic brain 99 

labeling by leveraging available multiple atlases, we align a subset of the training atlases to the 100 

target images. Note that we only implement affine registration (with 12 degree of freedom using 101 

normalized correlation as cost function) to roughly align atlases to the target image, instead of 102 

non-rigid registration, which ensures efficiency and also demonstrates the ability of the FCN for 103 

inferring labels from local regions. In the training stage, we propose a novel candidate target 104 

patch selection strategy for helping identify the optimal set of candidate target patches, thus 105 

balancing the large variability of ROI sizes. Both target patches and their corresponding 106 

candidate atlas patches (two training sources) are used for training the FCN model. We take our 107 

proposed FCN model one step further by devising three novel strategies to incorporate the 108 

extracted appearance features from the two training sources in a more effective way, i.e., atlas-109 

unique pathway, target-patch pathway, and atlas-aware fusion pathway. Specifically, atlas-110 

unique pathway and target-patch pathway process the atlas patch and target patch separately, 111 

while atlas-aware fusion pathway merges these pathways together. The main contributions of our 112 

method are two-fold: 113 

(1) We guide the learning of FCN model by leveraging the available information in multiple 114 

atlases.  115 

(2) The proposed method does not need a non-rigid registration step for aligning atlases to 116 

the target image, which is more efficient for brain labeling. 117 

2. Related Works 118 

Registration-based labeling. Registration based methods leverage both non-linear 119 

registration and label fusion techniques. Many relevant works were proposed to improve the 120 

performance of the registration step, including the LEAP method [39] which constructs an image 121 

manifold according to the similarities between all training and test images. The sophisticated 122 
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tree-based group-wise registration strategy developed in [40] employed pairwise registration 123 

strategy that concatenated precomputed registrations between pairs of atlases (Wang et al. 2013). 124 

For the label fusion step, the voting-based strategies proposed by [8, 41-47] are popular for 125 

fusing the warped atlas labels. For instance, Langerak et al. [8] defined a global weight for each 126 

atlas by its similarity in intensity to the target image, and then performed a weighted sum of all 127 

atlas labels to get the final label. They used a single weight for the whole atlas image, which 128 

overlooks the fact that subject-to-subject similarity varies across anatomical regions. To address 129 

this limitation, Artaechevarria et al. [42] proposed a local weighted voting method to fuse 130 

weights in a voxel-wise manner. Specifically, the weight of each voxel is computed using the 131 

mutual information similarity of the atlas image and the target image in a small region. The local 132 

weighted strategy can boost the accuracy of label propagation; however, it may fail in highly 133 

variable anatomical regions that cannot be simultaneously captured by all atlases. To avoid this 134 

limitation, Isgum et al. [43] used an atlas selection strategy to select a subset of atlases with the 135 

highest similarities to the target image by statistical pattern recognition theory. Then, the 136 

propagated labels were combined by spatially varying decision fusion weights. In a different 137 

work, Sanroma et al. [48] combined a learning-based atlas selection strategy with nonlocal 138 

weighted voting to label a brain. The best atlases were selected based on their expected labeling 139 

accuracy by learning the relationship between the pairwise appearance of the observed instances 140 

and their final labeling performance, and then the final label value was voted from both local and 141 

neighboring voxels in the selected atlases. The limitation of this method is that the weights are 142 

computed independently for each atlas, without taking into account the fact that different atlases 143 

may produce similar label errors. Wang et al. [20] solved this limitation by proposing a joint 144 

label fusion strategy (JLF), in which joint probability of pairwise atlases is modeled to estimate 145 

the segmentation error at a voxel, and then weighted voting is formulated in terms of minimizing 146 

the total expectation of labeling error. One major limitation of registration-based methods is that 147 

it takes lots of time to align atlases to the target image. 148 

Patch-based labeling. Patch-based labeling methods use a non-local strategy to alleviate 149 

the need for high registration accuracy. They propagate the label information of the selected 150 

similar atlas patches, which are identified within a local neighborhood of the target patch. Most 151 

patch based methods are constructed assuming only affine registration as a prerequisite to align 152 

the atlases to the target image because affine registration is much faster than non-rigid 153 
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registration. Some methods use sparse patch selection strategy to select the most similar intensity 154 

patches for the target training patch to improve the label fusion step. Zhang et al. [49] segmented 155 

the brain by using a sparse patch-based label fusion (SPBL) strategy. Candidate image patches 156 

are selected from a neighborhood region to build a graph, and then a sparse constraint is applied 157 

to the candidate atlas patches to derive the graph weights. Finally, the patches are fused together 158 

by a weighted fusion function. In other works, the learning strategies are proposed to learn the 159 

mapping from the input intensity patch to the final label map. Zhang et al. [29] proposed to label 160 

the brain by using a hierarchical random forest. They clustered similar patches together to learn a 161 

bottom-level forest, and then the bottom-level forests were clustered together by their 162 

capabilities. Finally, the high-level forest was trained by clustering bottom-level forests and all 163 

atlases. The limitation of their method is that the performance can be easily influenced by the 164 

cluster strategy. Zikic et al. [24] proposed to build atlas forests (AF) by using a small and deep 165 

classification forest, which encodes each atlas individually in reference to an aligned 166 

probabilistic atlas map. Each atlas forest produces one probability label estimation, and then all 167 

label estimations are averaged to get the final label. Their method is fast since only one 168 

registration is needed to align the target image to the probabilistic atlas map. However, this 169 

method requires manually designed features to train the forest, without exploring other possible 170 

image features, which may not best represent the target image. Some methods combine 171 

registration-based method with patch-based method together to improve the labeling 172 

performance. Wu et al. [11] proposed a hierarchical feature representation and label-specific 173 

patch partition method (HSPBL), which is a combination of registration-based method and 174 

patch-based method. Specifically, they use non-rigid registration to preprocess the atlas data, and 175 

then each image patch is represented by multi-scale features that encode both local and semi-176 

local image information to increase the fidelity of similarity calculation. Finally, the atlas patch 177 

is further partitioned into a set of label-specific partial image patches by atlas label information. 178 

ConvNet labeling. ConvNet, on the other hand, can automatically learn the high-level 179 

features of the image. One of the widely used ConvNet architectures in image labeling is 180 

convolutional neural networks (CNN) [50, 51], which learns convolution kernels to simulate the 181 

receptive fields of our visual system [52] and extracts the deep features from the image. The 182 

parameters of the convolution kernels are updated by back-propagation of the errors. However, 183 

CNN is limited by a lack of efficiency in processing the whole brain image as it uses a patch-to-184 
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voxel prediction strategy, which can only predict the label of a center voxel for each input patch. 185 

To solve this issue, fully convolutional networks (FCN) [37, 38] were developed by using a 186 

patch-to-patch training strategy without using the fully connected layer. FCN typically inputs a 187 

patch and outputs the predicted label of the whole patch. U-Net [30] and V-Net [31] were also 188 

introduced to label brains by combining shallow layers with corresponding deep layers in FCN. 189 

This allows merging learned features at different depths of the network and helps avoid gradient 190 

degeneration when reaching shallow layers, thus guaranteeing the convergence of the network 191 

training. 192 

3. Method 193 

In this section, we detail the proposed MA-FCN framework for automatic brain labeling. 194 

Our goal is to improve the labeling performance of a typical FCN by guiding and boosting its 195 

learning using multiple aligned atlases. Our method comprises training and testing stages. In the 196 

training stage, we randomly select several training images as atlases. Specifically, we first select 197 

3D patches from the training images using a random selection strategy. Next, for each selected 198 

training 3D patch, we select the K most similar candidate atlas patches within a specific search 199 

window. Then, all training patches and their corresponding selected candidate atlas patches are 200 

input into the MA-FCN model for training. Note that the atlas patch refers to the combination of 201 

atlas intensity patch and its corresponding label patch. In the testing stage, each testing 3D patch 202 

is concatenated with its K most similar atlas patches, and then fed into MA-FCN to predict the 203 

label patch. Since each target voxel 𝒙 in the brain belongs to many overlapping 3D patches, we 204 

fuse all the predicted labels from all patches containing 𝒙 to finally label the target voxel by 205 

majority voting. 206 

3.1. Data Preparation 207 

Prior to the atlas patch selection step, we affine register all atlases (i.e., intensity images and 208 

their corresponding label maps) to the training data using FLIRT in FSL toolkit [53]. Next, we 209 

propose a patch sampling and selection strategy to identify the most similar atlas patch to the 210 

target patch. Figure 2 presents the flowchart of our novel strategies for training patch sampling 211 

and atlas patch selection, which are further detailed in Sections 3.1.1 and 3.1.2, respectively.  212 

3.1.1. Training patch sampling 213 
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Noting the large variability in size across anatomical ROIs, randomly sampling from the 214 

whole brain will create an imbalance in training samples across different ROIs. For instance, a 215 

whole-brain sampling strategy might select many more locations within large ROIs than smaller 216 

ones, which will weaken the model learning for small brain anatomical regions. On the other 217 

hand, ROI boundaries are very important in labeling since they contain direct structural 218 

information, but voxels near the boundaries are more difficult to classify than the inside voxels. 219 

Therefore, more training samples should be sampled along the boundaries of the target ROIs. 220 

We proposed a boundary-focused patch extraction strategy to solve the imbalance samples 221 

by randomly sampling patches across the whole brain. For each labeled ROI, we detect its 222 

boundary using the Canny edge detector, thereby creating an edge map for each target intensity 223 

image (Figure 2). We also extract the inner voxels within each ROI while excluding the edge to 224 

build an inner voxel location map. Then, we randomly sample locations from both edge and 225 

inner voxel maps while ensuring that: 1) the number of samples extracted from each ROI is the 226 

same, and 2) the number of patches extracted around the boundary is larger than that from the 227 

inside of each ROI. In our experiment, the ratio between the boundary and inside patches is set to 228 

4:1. We have tested the ratios 1:1 and 2:1 and found that the performance of 2:1 is better than 229 

1:1. Then we tested the ratio 4:1 and found that it has the same performance as 2:1. Thus, we 230 

choose ratio 4:1. 231 
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 232 

Figure 2: Flowchart illustrating patch sampling and similar atlas patches selection. (Top) We 233 

sample patches both around the boundary (e.g., red dots) and inside (e.g., green dot) the target 234 

anatomical regions of interest. (Bottom) The blue box represents a selected patch and the yellow 235 

box delineates its corresponding search neighborhood. For each target intensity patch, we 236 

identify its 𝐾 most similar atlas patches. Then, each selected intensity atlas patch is coupled with 237 

its corresponding label patch to make up the training atlas data (paired with the target training 238 

patch). 239 

3.1.2. Candidate atlas patch selection 240 

An atlas set 𝐴 contains M atlases, which is defined as 𝐴 = {𝐼𝐴(𝑖), 𝐿𝐴(𝑖)|𝑖 = 1,2, … , 𝑀}, where 241 

𝐼𝐴(𝑖)  and 𝐿𝐴(𝑖)  represent the 𝑖 -th atlas intensity image and its corresponding atlas label map, 242 

respectively. For convenience, the atlas set is represented as 𝛺, where 𝛺 = {1,2, … , 𝑀}. A target 243 

image set B contains N samples, each defined as follows: 𝐵𝑖 = {𝐼𝐵(𝑖), 𝐿𝐵(𝑖)|𝑖 = 1,2, … , 𝑁}, where 244 

𝐼𝐵(𝑖)  and 𝐿𝐵(𝑖)  represent the 𝑗 -th training intensity image and its corresponding label map, 245 

respectively. For each target patch 𝐼𝐵(𝑖)
𝑗

 centered at location 𝑗, the most similar atlas intensity 246 

patches are extracted from each atlas 𝐼𝐴(𝑖)  within a search neighborhood 𝑁(𝑗)  based on a 247 
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predefined image similarity measure. As shown in Equation 1 below, �̂�  is the collection of 248 

selected candidate atlas patches from all existing atlases. 𝑃𝐴(𝑚)
𝑛 = {𝐼𝐴(𝑚)

𝑛 , 𝐿𝐴(𝑚)
𝑛 }  denotes the 249 

selected label and intensity patches from atlas 𝑚 at location 𝑛 , and 𝐼𝐴(𝑚)
𝑛 , 𝐿𝐴(𝑚)

𝑛  denote the 250 

intensity and label patches, respectively. || ∙ ||2 is the Euclidean distance. 251 

 �̂� = {𝑃𝐴(𝑚)
𝑛 , 𝑚 ∈ Ω  | min

𝑛∈𝑁(𝑗)
||𝐼𝐵(𝑖)

𝑗
− 𝐼𝐴(𝑚)

𝑛 ||2} (1) 

To reduce the computational time of our model, we divide our patch selection strategy into 252 

two steps. For each atlas image, we first extract their atlas patches within the first search window 253 

(with the same center location as the intensity patch and spaced out by a step size of 2 voxels). 254 

Among these patches, we find the candidate patch that has the highest similarity with the 255 

intensity patch. Then, we set up the second search window (with the same center location as the 256 

aforementioned candidate patch and spaced out by a step size of 1 voxels), and reselect the 257 

candidate patch following the same criterion, and within that new search region. Note that, to use 258 

our method on different datasets, all brain MR data are first normalized within a fixed intensity 259 

range [0, 255] using Min-Max normalization strategy before performing atlas patch selection. 260 

For example, in our validation datasets, image intensity of LONI dataset falls within a range of 261 

[0, 3000], while image intensity of SATA dataset falls within a range of [0, 4000]. We suppress 262 

the intensity value to the 85% of the max intensity value of the input image, and then normalize 263 

the image intensity value from 0 to 255. We should also note that the range [0, 255] is not very 264 

important. We have also normalized the MR data using [0, 1] and [-0.5, 0.5] intervals 265 

respectively, which did not affect the labeling performance when using a normalization interval 266 

of [0, 255]. Next, we identify the set of most similar atlas intensity patches to the target intensity 267 

patch using the Euclidean distance as follows:  268 

 �̅� = {𝑃𝐴(𝑚)
𝑛 , 𝑚 ∈ 𝑅, |𝑅| = 𝐾|||𝐼𝐵(𝑖)

𝑗
− 𝐼𝐴(𝑚)

𝑛 ||2 ≤ ||𝐼𝐵(𝑖)
𝑗

− 𝐼𝐴(𝑡)
𝑛 ||2; 𝐼𝐴(𝑚)

𝑛 , 𝐼𝐴(𝑡)
𝑛 ∈ �̂�; 𝑡 ∈ Ω − 𝑅} (2) 

By ranking all selected atlas image patches �̂�, the top 𝐾 most similar patches �̅�  can be 269 

selected from the M similar patches using Equation 2.Then, the training patch 𝐼𝐵(𝑖)
𝑗

 and its 𝐾 270 

selected atlas image patches are combined as joint input to our proposed model. 𝑅 is a subset of 271 

𝛺, which contains the indices of the final selected similar atlases. |𝑅| denotes the cardinal of 𝑅.  272 

Figure 2 shows both patch sampling and similar atlas patches selection steps. In the 273 

sampling step, we extract many patches around the ROI boundary (red points) and fewer patches 274 

inside the target ROI (green point). 275 
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3.2. Multi-atlas Guided Fully Convolutional Networks (MA-FCN) 276 

The flowchart of our proposed framework is summarized in Figure 3, which comprises 277 

three components: 1) atlas-unique pathway, 2) target-patch pathway, and 3) atlas-aware fusion 278 

pathway. For each candidate atlas patch, it is concatenated with the target patch to propagate 279 

independently using an atlas-unique pathway. On the other hand, an atlas-aware-fusion pathway 280 

is proposed to merge separate atlas pathways into the target-patch pathway. In particular, the 281 

target-patch pathway propagates the target patch along with the fused atlas intensity and label 282 

patches to get the final label map. Note that each training patch propagates not only using an 283 

independent path (target-patch pathway), but also along the atlas-unique pathway as it 284 

concatenates with the selected candidate atlas patch. We detail each of these three components in 285 

Sections 3.2.1, 3.2.2 and 3.2.3, respectively. 286 

 287 

Figure3: The flowchart of the proposed Multi-Atlas Fully-Convolution Network (MA-FCN). 288 

The three pathways in MA-FCN are highlighted in gray, cyan, and pink bands. The batch 289 

normalization layer and the ReLU layer are each followed by the convolution and deconvolution 290 

layers. The symbol ⨁ denotes the concatenation of all the data together and then being convolved 291 

by a 1 × 1 × 1 kernel. The parameters under the figure are the parameters of the single pathway. 292 

3.2.1 Atlas-unique pathway 293 

The atlas-unique pathway is designed based on the fully convolutional network (FCN), 294 

which aims to convert the atlas information (intensity and label) into comprehensive features to 295 

enhance the discrimination capacity of the model. In our previous work [54], we concatenated 296 
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the atlas image and the target image together directly as input to the neural network, in order to 297 

learn the mapping from intensity image to the label map. In this method, we adopt a patch-wise 298 

‘atlas and target’ integration strategy, where the atlas patch is treated as an enhanced feature of 299 

the target patch. However, this enhanced information might misguide the learning process since 300 

the label of the selected atlas patch might not correspond well with the true label of the target 301 

patch. To tackle this issue, instead of directly combining the atlas with the target intensity patch, 302 

we design an atlas-unique pathway to process each atlas patch independently.  303 

For each atlas-unique pathway, we concatenate the target intensity patch and the atlas patch 304 

(i.e., intensity and label atlas patches) together as input to our FCN. The reason for adding atlas 305 

label patch is that the label represents strong semantic information, which can better guide the 306 

learning process. An example of the atlas-unique pathway is highlighted in cyan band in Figure 307 

3. The structure of each atlas-unique pathway is an FCN. In the proposed model, we have several 308 

atlas-unique pathways, each processing a single atlas patch. Note that all pathways are processed 309 

independently and the weights between different pathways are not shared. The reason for 310 

designing the model in such way is that we want to build the relationship between the target 311 

patch and each atlas label patch, while taking into account the fact that different atlases have 312 

different mappings between the target patch and its label patch. In the proposed model, we order 313 

the atlas patches by the decreasing similarity, where the top atlas-unique pathway includes the 314 

most similar atlas patch, and the second pathway includes the second most similar atlas patch, 315 

etc.  316 

3.2.2 Target-patch pathway 317 

The target-patch pathway is used to learn the features of the target patch, as shown in the 318 

gray band in Figure 3. It is designed based on a U-Net model. We select U-Net as a basic 319 

architecture in the target-patch pathway, since U-Net architecture can combine the shadow layer 320 

feature with deep layer feature. Shadow layer features can help compensate the information loss 321 

caused by max pooling operation. Moreover, the proposed architecture will fuse the atlas feature 322 

in the latter layers, so that the U-Net structure can combine pure target information (without atlas 323 

information) into the latter layer to increase the weights of target patch features. 324 

3.2.3. Atlas-aware fusion pathway 325 

For each atlas, we create an atlas-unique pathway, along which the atlas patches are 326 

propagated. Hence, we create multiple independent atlas-unique pathways, each associated with 327 
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a single atlas. To ultimately merge all atlas features with the target image feature, an atlas-aware 328 

fusion procedure is applied in the MA-FCN by using a convolution operation. Specifically, for 329 

all the atlas-unique pathways, the feature maps in each level are concatenated together following 330 

several convolutions. Then, a convolution layer with 1 × 1 × 1  kernel is used to fuse them 331 

together, which is denoted by ⨁ in Figure 3. As the size of convolution kernel is one, the atlas-332 

aware fusion is similar to a weighted sum of the learned feature maps of atlases. Unlike existing 333 

methods that define the weight based on the similarity, the weights in our framework are learned 334 

automatically by the model itself. In this paper, we use atlas-aware fusion in a hierarchical 335 

manner, instead of just using it at the very end of the model in order to make full use of the 336 

image features of the model. Specifically, we use atlas-aware fusion at each image scale (e.g., 337 

preceding each pooling layer and also following each deconvolution layer). Different image 338 

scales contain different image features. For example, in the first three layers of the model, the 339 

features contain lots of original intensity related information. But after several max pooling 340 

operations, the features may contain more advanced information such as edge. 341 

3.2.4. Loss function 342 

In the training stage, the output of the MA-FCN is the probability map of each class of the 343 

output patch. Suppose we have N voxels, �̂�(𝑖), 𝑖 = 1,2, … , 𝑁, denotes the probability of voxel 𝑖. 344 

If the class label for the corresponding golden standard is 𝑢, the loss function is defined as 345 

Equation 3: 346 

 𝐿 = −
1

𝑁
∑ ∑ 𝐼(𝑦(𝑖), 𝑢)log (�̂�(𝑖))

𝐶

𝑢=1

𝑁

𝑖=1

 (3) 

Where 𝐼(𝑦(𝑖), 𝑢) means the similarity between 𝑦(𝑖) and 𝑢. 𝐼(𝑦(𝑖), 𝑢) = {
0 𝑦(𝑖) ≠ 𝑢

1 𝑦(𝑖) = 𝑢
, and 𝑦(𝑖) is 347 

the predicted label value. We use stochastic gradient descent with the standard back-propagation 348 

in [52] to minimize the loss function 𝐿. 349 

4. Experiments and Results 350 

We evaluated the proposed method on the LONI LBPA401 [55] dataset and SATA MICCAI 351 

2013 challenge dataset2 [56]. LONI dataset and SATA dataset are the two widely-used datasets 352 

                                                           
1 http://www.loni.ucla.edu/Atlases/LPBA40 
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for evaluating 2D [11, 24, 57] or 3D [22, 58, 59] labeling algorithms. They contain different 353 

anatomical regions of the brain, which can provide several ways for demonstrating the validity of 354 

our proposed method. Both datasets include different anatomical regions of the brain. The 355 

LONI_LPBA40 dataset contains 40 T1-weighted MR brain images with 54 manually labeled 356 

ROIs, provided by the Laboratory of Neuro Imaging (LONI) from UCLA [55]. Most of the ROIs 357 

are distributed within cortical regions of the brain. Here, we used the images and their 358 

corresponding labels in our experiments. The SATA dataset is provided by MICCAI 2013 359 

segmentation challenge workshop, in which 35 subjects (each with both intensity image and 360 

label map) are provided with 14 manually labeled ROIs. These 14 ROIs are inner regions of the 361 

brain, which cover accumbens, amygdala, caudate, hippocampus, pallidum, thalamus and 362 

putamen on both hemispheres. Both raw images and non-rigidly aligned images are provided by 363 

this dataset. Our goal in this section is to demonstrate the capability of our proposed framework 364 

in dealing with various challenges in brain image labeling.  365 

We used CAFFE [60] framework to train our MA-FCN. The kernel weights were initialized 366 

by Xavier function, and stochastic gradient descent (SGD) was used for backpropagation. We set 367 

the start learning rate to 0.01 and used inverse learning policy, where gamma was set to 0.0001, 368 

momentum to 0.9, and the weight decay to 0.00005. These hyper parameters are chosen by trial 369 

and error, and we also use the training and validation errors to help infer the choice of hyper-370 

parameters. 371 

Our proposed method was implemented on GPU server (GeForce GTX TITAN X, RAM 372 

12GB, 8 Intel(R) Core(TM) i7-6700K CPU@4.00GHz). For LONI dataset, the training batch 373 

size is 16, and for SATA dataset, the training batch size is 64. 374 

We used Dice Similarity Coefficient (DSC) and Hausdorff Distances (HD) [61] to measures 375 

the degree of overlap between two ROIs for assessing the labeling accuracy. DSC is calculated 376 

using Equation 4, where | ∙ | denotes the volume of an ROI, 𝑆1, 𝑆2 are two regions in the brain, 377 

and ∩  denotes the intersection operator. The Hausdorff Distance between sets A and B is 378 

calculated using Equation 5 and Equation 6, where ||𝑎 − 𝑏|| is Euclidean distance. 379 

 𝐷𝑆𝐶(𝑆1, 𝑆2) = 2 × |𝑆1 ∩ 𝑆2|/(|𝑆1| + |𝑆2|) (4) 

 𝐻𝐷(𝐴, 𝐵) = 𝑚𝑎𝑥(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴) (5) 

                                                                                                                                                                                             
2 https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page 

mailto:CPU@4.00GHz
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 ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

||𝑎 − 𝑏|| (6) 

4.1. Evaluation on LONI LPBA40 dataset 380 

Four-fold cross-validation is used to validate the proposed method. Specifically, in each 381 

experiment, one-fold (10 images) is randomly selected as atlases, two image folds are used for 382 

training, and the remaining fold is used for testing. The training patch size is 24 × 24 × 24, and 383 

we select 8100 patches from each training image. We don’t use data augmentation strategies 384 

such as flipping or rotating the cropped training patches. We increase the number of the data by 385 

densely cropping training patches from original MR image. Specifically, 150 patches are selected 386 

from each ROI, with 120 from ROI boundaries and 30 from the inside of each ROI. In the testing 387 

stage, to ensure that the testing patch can cover the entire image and have a sufficient overlap 388 

with the neighboring patches, the step size should be defined at least less than half the patch size; 389 

otherwise, there will be only one prediction for some locations. We sample the testing image 390 

with a fixed step size where patches are visited with a step size of 11 voxels. Since each voxel 391 

belongs to several overlapping patches, we use majority voting to get a final label value from all 392 

overlapping predicted label patches. For selecting candidate atlas patches, the size of the search 393 

neighborhood is set to 12 voxels, larger than the patch size in all three directions. Typically, the 394 

search region size is usually 1-2 times bigger than that of the patch size [9]. In our case, we 395 

chose the search region 1 time bigger than the patch size. For the LONI dataset, if we define the 396 

search region as 1 time bigger than the patch size, the computing time would be very high. So, 397 

we reduced the search region size. We had compared the similar patch selection result by 12 398 

voxels larger and 24 voxels larger, and found that 87% of the selected locations remained 399 

unchanged. In the proposed architecture, the number of candidate atlas patches is set to 𝐾=3. 400 

We compare our proposed method with U-Net (Ronneberger, Fischer et al. 2015) and FCN 401 

(Long, Shelhamer et al. 2015) architectures. The structure of the used U-Net is same as the 402 

target-patch pathway, which is shown in gray band in Figure 3. The structure of FCN is same as 403 

the atlas-unique pathway, which is shown in cyan band in Figure 3. For fair comparison, both the 404 

U-Net and FCN architectures share the same number of parameters in proposed structure. 405 

Specifically, in each layer, the number of the convolution kernels is 4 times the number of 406 

kernels in each pathway. Also, both models input 3D patches of the same size (without 407 

corresponding atlas patch compared with the input of MA-FCN). The hyper parameters such as 408 
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learning rata, gamma, momentum, and the weight decay are set similarly to MA-FCN. We 409 

evaluated U-Net and FCN architectures on SATA dataset as baseline methods. Table 1 displays 410 

the mean and standard deviation of DSC for all 54 ROIs. The proposed method achieves 1.8% 411 

improvement over U-Net and 2.3% over FCN, respectively. For the HD, proposed model is 412 

smaller than both of them. Figure 4 displays the results of our method in comparison with the 413 

FCN and U-Net on all 54 ROIs. The symbol ‘+’ indicates that MA-FCN has a statistically 414 

significant (p<0.05 by paired t-test) improvement compared with the conventional FCN method 415 

in 29 ROIs, while the symbol ‘*’ indicates that MA-FCN has a statistically significant (p<0.05 416 

by t-test) improvement compared with the U-Net in 28 ROIs. Figure 5 shows the visual 417 

comparison of the proposed MA-FCN with FCN and U-Net. The labeling result of the region 418 

inside the yellow box shows that, with the integration of multiple atlases, the labeling ability of 419 

our model is improved. In Figure 5 and 6, the labeling result produced by our proposed method 420 

is smoother than the ground truth. Since the ground truth is manually labeled, the discontinuity 421 

error might be occurred between adjacent slices. However, the smoother result is more 422 

biologically feasible, and our method has not reproduced this discontinuity error. Therefore, our 423 

labeling performance is not attributed by simple overfitting the data. Moreover, we also teste the 424 

trained model by using the training image, and achieve the labeling DSC of 84.3% on LONI 425 

dataset. This demonstrates that the labeling results are not overfitting the dataset. 426 



17 

 

 427 

Figure 4: DSC for each ROI by FCN, U-Net, JLF, HSPBL and MA-FCN, respectively. MA-428 

FCN outperforms both the conventional FCN and U-Net in all ROIs. The symbol ‘+’ 429 

indicates statistically significant improvement (p<0.05 by paired t-test) with respect to the 430 

conventional FCN. The symbol ‘*’ indicates statistically significant improvement (p<0.05 431 

by paired t-test) with respect to U-Net. The symbol ‘’ indicates statistically significant 432 

improvement (p<0.05 by paired t-test) with respect to the JLF. The symbol ‘⚫’ indicates 433 

statistically significant improvement (p<0.05 by paired t-test) with respect to the HSPBL. 434 
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 435 

Figure 5: Visual comparison of labeling results by HSPBL, JLF, 3D patch-based FCN, U-436 

Net, and MA-FCN for a representative subject. Our method produces more accurate labels 437 

for the regions inside the yellow box. 438 

4.2. Evaluation on SATA MICCAI 2013 dataset 439 

7-fold cross-validation is used in this experiment. Specifically, we divide 35 subjects into 7 440 

groups, each group containing 5 subjects. Next, we randomly select 2 folds as atlas images, 4 441 

folds as our training set, and the remaining fold as our test set. Since the number of ROIs to label 442 

is smaller than that in LONI dataset, we set the training patch size to 12 × 12 × 12, and select 443 

4200 patches from each training image. Note that 300 patches are selected from each ROI, 444 

including 240 around the boundary and 60 inside the ROI. We evenly visit patches with a step 445 

size of 5 voxels. For selecting the candidate atlas patches, the size of the search neighborhood is 446 

set to 12 voxels larger than the patch size in all three directions. The number of candidate atlas 447 

patches is set to 𝐾=3. 448 

The mean and standard deviation of DSC for all comparison methods are listed in Table 1. 449 

In terms of DSC, our proposed method has a 0.8% improvement compared with U-Net and 1.2% 450 

improvement compared with FCN. The HD of the proposed model is smaller than both 451 

comparison models. Figure 6 gives visual comparison of our labeling results with the golden 452 

standard. The labeling result of the region inside the yellow box shows that, with the integration 453 

of multiple atlases, the labeling ability of our model is improved. 454 
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 455 

Figure 6: Visual comparison of labeling results by HSPBL, JLF, 3D patch-based FCN, U-456 

Net, and MA-FCN for a representative subject from SATA dataset. Our method produces 457 

more accurate labels for the regions inside the yellow box. 458 

4.3. Parameter tuning  459 

4.3.1 Patch size 460 

In order to evaluate the influence of the patch size on labeling ROIs with different sizes, we 461 

selected 12 representative ROIs with different volume sizes from the LONI_LPBA40 dataset and 462 

6 representative ROIs with different volume sizes from SATA MICCAI 2013 dataset. 463 

Specifically, for LONI dataset, these ROIs include the right/left inferior frontal gyrus (IFG), 464 

right/left precentral gyrus (PG), right/left precuneus (PC), right/left para hippocampus gyrus 465 

(PHG), right/left caudate (CD) and right/left hippocampus (HC). The volumes of right/left IFG 466 

and left/right PG contain about 25,000 voxels, the volumes of right/left PC and PHG contain 467 

about 10,000 voxels, and the volumes of right/left CD and HC contain about 5,000 voxels. For 468 

SATA dataset, these ROIs include the right/left accumbens (AC), right/left caudate (CA) and 469 

right/left putamen (PU). The right/left AC contains about 500 voxels, the right/left CA contains 470 

about 3000 voxels, and the right/left PU contains about 8000 voxels. 471 

We varied the patch size between 8 × 8 × 8 and 28 × 28 × 28 for the LONI dataset by 4-472 

fold cross-validation. Figure 7 shows the labeling performance using different patch sizes. We 473 

note that the performance has been improved when increasing the patch size from 8 to 12 and 474 

then remains stable when the patch size falls between 12 and 24. However, when the patch size 475 

exceeds 24, the labeling accuracy starts to decrease. This is mainly because a small patch 476 

contains less structural information while two patches from different locations may look similar. 477 

This may cause the model to fail in distinguishing between them. Conversely, using larger 478 
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patches would decrease similarity with the selected atlas patches. The larger the patch size, the 479 

more structure is included in the patch, so the dissimilarity between target patch and selected 480 

atlas patches is increased. For the target patch, the number of the wrong label will increase (if the 481 

atlas label is directly used as target patch label), thereby causing a drop in the labeling accuracy. 482 

We also varied the patch size between 8 × 8 × 8 and 24 × 24 × 24 for the SATA dataset 483 

by 7-fold cross-validation. Figure 8 shows the labeling performance using different patch sizes. 484 

The performance increases from patch size 8 to 12 for all ROIs and keeps stable from 12 to 20 485 

on large and mediate ROIs, but decreases in small ROIs. When the patch size keeps increasing, 486 

the labeling accuracy decreases in all ROIs. The reason that the labeling accuracy of small ROI 487 

keeps decreasing from patch size 12 is because of small size of those ROIs. If the patch size is 488 

large, those small ROIs only account for a small portion of the patch, thus causing the poor 489 

learning in these ROIs. 490 

 491 

Figure 7: The influence of using different label patch sizes on labeling 12 representative ROIs on 492 

the LONI_LPBA40 dataset. By enlarging the patch size between8 × 8 × 8 and 12 × 12 × 12, 493 

the performance largely increases, and then remains stable between patch sizes of 12 × 12 × 12 494 

and 24 × 24 × 24. As the patch size continues to increase, the performance decreases. Note that 495 

the DSC is the average value across all four-fold cross-validation. 496 
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 497 

Figure 8: The influence of using different label patch sizes on labeling 6 representative ROIs on 498 

the SATA MICCAI 2013 dataset. By enlarging the patch size between 8 × 8 × 8 and 12 × 12 ×499 

12, the performance largely increases on all ROIs, while remaining stable between patch sizes of 500 

12 × 12 × 12 and 20 × 20 × 20on mediate and large ROIs but beginning decreasing for small 501 

ROIs. As the patch size continues to increase, the performance decreases. The DSC is the 502 

average of all the 35 testing data by seven-fold cross-validation. 503 

4.3.2 The number of atlas-unique pathways 504 

In the proposed method, the top 𝐾 similar candidate atlas patches are selected from affine-505 

aligned atlases as input to the atlas-unique pathways for helping improve the labeling 506 

performance. We evaluated the performance by tuning the parameter 𝐾  on both LONI and 507 

SATA datasets. The value of 𝐾 ranges from 0 to 4. Figure 9 shows the evaluation result with 508 

respect to the number of the atlas-unique pathways. We can clearly see that the performance of 509 

our model increases significantly from 0 atlas-unique pathways to 1 atlas-unique pathway, 510 

indicating that the atlas and label information did aid in boosting the labeling quality. As the 511 

number of patches increases, the labeling quality is refined, but the memory and processing time 512 

cost also increase. To balance the performance and the memory cost (and also processing time), 513 

we use 3 atlas-unique pathways in our model. 514 
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 515 

Figure 9: Evaluation on the number of atlas-unique pathways using both LONI and SATA 516 

dataset, in terms of DSC (%). The performance increases with the increase of the number of 517 

candidate atlas patches. 518 

4.4. Comparison with state-of-the-art methods 519 

To evaluate the labeling performance, we compare our proposed method with two state-of-520 

the-art methods on both LONI and SATA datasets. The comparison methods include 1) HSPBL 521 

[11] and JLF [20] (antsJointFusion command in ANTs toolbox). JLF is a registration-based 522 

labeling method, and HSPBL is a patch-based labeling method. The detailed comparisons are 523 

listed in Table 1. We reproduced all results shown in Table 1. Both methods use leave-one-out 524 

strategy to evaluate all the test data and the configure parameters are same as the original papers. 525 

For LONI dataset, our proposed MA-FCN improved the labeling accuracy by 2% in 526 

comparison with JLF. Compared with the HSPBL method, our proposed method achieves 2.72% 527 

improvement. Figure 4 displays the results of our method in comparison with the HSPBL and 528 

JLF on all 54 ROIs. The symbol ‘⚫’ indicates that MA-FCN has a statistically significant 529 

(p<0.05 by paired t-test) improvement compared with the HSPBL method in 31 ROIs, while the 530 

symbol ‘’ indicates that MA-FCN has a statistically significant (p<0.05 by t-test) improvement 531 

compared with the JLF in 23 ROIs. Figure 5 shows the visual comparison of the proposed MA-532 

FCN with HSPBL and JLF on LONI dataset. For SATA dataset, our proposed MA-FCN 533 

improved the labeling accuracy by 1.81% in comparison with JLF and 2.91% more than the 534 

HSPBL method. For the Hausdorff distance, our method has the smallest value for both datasets. 535 

Figure 6 gives visual comparison of our labeling results with the HSPBL and JLF on SATA 536 

dataset. 537 

Table 1. Comparison with state-of-the-art methods on two datasets. 538 
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LONI LPBA40 

Method HSPBL 

 

JLF FCN U-Net MA-FCN 

HD(voxel) 22.95±4.81 17.59±3.14 21.50±4.69 16.25±4.00 14.11±3.22 

DSC(%) 78.47±2.33 79.19±0.98 78.88±1.07 79.42±1.12 81.19±1.06 

SATA 

Method HSPBL JLF FCN U-Net MA-FCN 

HD(voxel) 4.18±1.73 3.84±1.30 3.34±0.92 2.76±0.81 2.38±0.71 

DSC(%) 86.13±2.75 87.23±1.91 87.82±1.37 88.25±1.42 89.04±1.30 

The average testing time is 7 minutes for each subject. In particular, 5 minutes are used for 539 

preparing the test patches on CPU and about 2 minutes used for inferencing the test patches by 540 

the trained model on the GPU platform. For the registration-based method [20], the average 541 

labeling time for one subject is 120 minutes on CPU. Our proposed method is much faster than 542 

registration-based method. For the patch-based method [11], the labeling time is 40 minutes. 543 

Notably, our method is faster. For example, for ConvNet-based methods, the average labeling 544 

time is 2 minutes. On the other hand, although ConvNet-based methods are faster than MA-FCN, 545 

MA-FCN can achieve higher labeling accuracy, as indicated in Section 4.1. The specific time 546 

usage and memory cost is listed in Table 2. The sign “-” means no this step in the method. 547 

Table 2.  The comparison of time usage and memory cost for different methods 548 

 Affine reg. Deform reg. Patch selection Label fusion Inference Training 

Memory <1G <1G <1G 3G 1G 12G 

 CPU CPU CPU CPU GPU GPU 

HSPBL 8 min (4 threads) 240 min (4 threads) - 40 min - - 

JLF 8 min (4 threads) 240 min (4 threads) - 120 min - - 

FCN - - - - 90 s 12 h 

U-Net - - - - 90 s 14 h 

MA-FCN 8 min (4 threads) - 5 min (2 threads) - 140 s 20 h 

5. Discussion 549 

In this paper, we proposed an automated labeling framework of brain images, by integrating 550 

multiple-atlas based labeling approaches into an FCN architecture. Previously, several neural 551 

network-based methods aimed to integrate data from multiple sources or different modalities by 552 
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concatenating them together for network training [54, 62-64]. Our proposed MA-FCN falls into 553 

the same category, but it has more appealing aspects. For instance, Fang et al. [54] simply 554 

concatenate the training patch, atlas intensity patches, and label maps together as inputs to the U-555 

Net, whereas the atlas information is propagated independently and fused together in our MA-556 

FCN architecture.  557 

The proposed MA-FCN outperformed U-Net [54] as it increased the labeling accuracy by 558 

0.8%. We note that atlas label patches are selected from the atlas, not from the target image, 559 

hence the label values might not perfectly match with the ground-truth label of the target patch. 560 

To address this issue, we defined the atlas-unique pathway in our FCN, where label information 561 

can be propagated independently. Guided by the ground truth, the label can be refined by the 562 

convolution operation. Then, the refined label maps are fused into target patch to get the final 563 

label maps. 564 

The label map is a strong semantic information that is leveraged and integrated into our 565 

proposed deep learning architecture. Both the feature information from the target-patch pathway 566 

and the atlas-unique pathway make contributions to the labeling works in the MA-FCN. Here, 567 

we further validate their importance in the framework, by conducting a labeling experiment 568 

using our proposed method without the target-patch pathway, and leaving only the atlas-aware 569 

fusion and the atlas-unique pathways. The labeling performance for the LONI-LBPA 40 is 570 

reduced to 76.91 ± 1.21%, compared with the MA-FCN method with all three components 571 

included (81.19±1.06%) as shown in Table 1. Meanwhile, the labeling performance for U-Net 572 

FCN is 79.42±1.12%, which can also be considered as the MA-FCN method using only the 573 

component of target-patch pathway. Therefore, this experiment validates that all three 574 

components help improve the labeling performance for the MA-FCN method. 575 

In Rousseau et al. [28], they found that accurate correspondences derived from non-rigid 576 

registration could improve the labeling performance. Here, we evaluate the performance of our 577 

proposed architecture by replacing the affine registration with non-rigid registration. For the 578 

SATA dataset, the organizer had already provided non-rigid registration results. For the LONI 579 

dataset, we use SyN registration method integrated in ANTs software to non-rigidly register 580 

atlases to the target image. The DSC on SATA dataset is 89.27±1.07%, and the performance on 581 

LONI dataset is 81.81%. These results show that non-rigid registration can slightly improve the 582 

label performance of our proposed architecture than affine registration. 583 
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Despite its appealing aspects, our MA-FCN method is limited by a large memory cost when 584 

compared with the conventional FCN and U-Net architectures. Although the added similar atlas 585 

patches improve the labeling performance, the memory cost increases largely. For example, the 586 

memory cost is almost two times the ordinary FCN for a MA-FCN with three pathways. 587 

Moreover, even though our MA-FCN method needs fewer iterations to converge, the training 588 

time for each iteration increase as the complexity of network architecture increases, which leads 589 

to a longer training time. Future work will focus on how to reduce the parameters of the network. 590 

Alternatively, we will consider using ResNet [65, 66] structure as a backbone structure in our 591 

MA-FCN method. ResNet structure is proved to be more efficient and uses less memory than the 592 

general convolutional network. 593 

6. Conclusion 594 

In this work, we have proposed a novel multi-atlas guided fully convolutional networks 595 

(MA-FCN) for brain labeling. Different from conventional ConvNet methods, we integrated 596 

atlas intensity and label information through new pathways embedded in the proposed FCN 597 

architecture. The MA-FCN contains three propagation pathways: atlas-unique pathway, atlas-598 

aware fusion pathway, and target-patch pathway. The atlas-uniquepathway can amend the 599 

wrong labels in the atlas by using the convolution operation. The atlas-aware fusion pathway 600 

gives each voxel in the candidate atlas patch a weight and fuses them together at the voxel level. 601 

Last, the target-patch pathway propagates the target patch and the fused information. In this 602 

way, MA-FCN combines the advantages of both multi-atlas-based and ConvNet labeling 603 

methods. Our method does not require non-rigid registration, but it can still achieve better or 604 

comparable results with the state-of-the-art multi-atlas-based methods on LONI dataset and 605 

much better performance on SATA dataset. Moreover, the idea of our proposed architecture can 606 

also be easily applied to other ConvNet methods such as RNN [67] or LSTM [68].  607 
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