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Abstract  

Metabolic bone diseases comprise a diverse group of disorders characterized by alterations in skeletal 

homeostasis, and are often associated with abnormal circulating concentrations of calcium, phosphate 

or vitamin D metabolites. These diseases commonly have a genetic basis and represent either a 

monogenic disorder due a germline or somatic single gene mutation, or an oligogenic or polygenic 

disorder that involves variants in more than one gene. Germline single gene mutations causing 

Mendelian diseases typically have a high penetrance, whereas the genetic variations causing 

oligogenic or polygenic disorders are each associated with smaller effects with additional 

contributions from environmental factors. Recognition of familial monogenic disorders is of clinical 

importance to facilitate timely investigations and management of the patient and any affected 

relatives. The diagnosis of monogenic metabolic bone disease requires careful clinical evaluation of 

the large diversity of symptoms and signs associated with these disorders. Thus, the clinician must 

pursue a systematic approach beginning with a detailed history and physical examination, followed by 

appropriate laboratory and skeletal imaging evaluations. Finally, the clinician must understand the 

increasing number and complexity of molecular genetic tests available to ensure their appropriate use 

and interpretation.  
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Introduction 

 

Metabolic bone diseases represent a diverse group of skeletal conditions characterized by alterations 

in bone cell activity, bone matrix proteins, or systemic mineral homeostasis (Table 1) [1, 2]. Many 

metabolic bone diseases have a genetic basis, which may be a germline single gene abnormality (i.e. a 

monogenic or Mendelian disorder), a somatic single gene defect (i.e. a post-zygotic mosaic disorder) 

or involve several genetic variants (i.e. oligogenic or polygenic disorders) [3]. Genetic mutations 

causing Mendelian diseases usually have a large effect (i.e. penetrance), whereas oligogenic or 

polygenic disorders are associated with several genetic variations, each of which may have smaller 

effects with greater or smaller contributions from environmental factors (i.e. multifactorial disorders) 

[3]. Whilst many monogenic disorders result from rare mutations affecting the coding sequence of the 

responsible gene, the majority of common genetic variants identified in association with polygenic 

traits are located in non-coding regions, usually in proximity to candidate genes implicated in the 

respective disorders [4]. Furthermore, there is substantial overlap between the genes responsible for 

monogenic skeletal diseases and those contributing to polygenic bone phenotypes. The elucidation of 

these loci has provided insights into the molecular pathogenesis of skeletal disease, and highlighted 

novel therapeutic targets [5-7]. This review discusses the genetics of metabolic bone diseases, and 

outlines the clinical and genetic approach to evaluating these disorders. 

 

Genetics of metabolic bone diseases 

 

Inheritance 

Metabolic bone diseases may be caused by single-gene mutations or represent digenic or complex 

polygenic traits [1, 3, 8]. Inheritance of monogenic diseases occurs as one of six traits: autosomal 

dominant (e.g. familial hypocalciuric hypercalcaemia (FHH) due to mutations of the calcium-sensing 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3701


 
This article is protected by copyright. All rights reserved. 

receptor (CaS receptor) signalling pathway [9]); autosomal recessive (e.g. vitamin D-dependent 

rickets types 1 and 2 from mutations of the renal 1-hydroxylase (CYP27B1) and vitamin D receptor 

(VDR) genes, respectively [10]); X-linked recessive (e.g. Dent’s disease involving chloride channel 5 

(CLC-5) [11]); X-linked dominant (e.g. X-linked hypophosphatemic (XLH) rickets from mutations of 

a phosphate endopeptidase on the X chromosome (PHEX) gene [10]); Y-linked (e.g. azoospermia and 

oligospermia) [12]; and non-Mendelian mitochondrial defects (e.g. hypoparathyroidism in Kearns-

Sayre syndrome and mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes 

(MELAS) syndrome) [13, 14]. Monogenic metabolic bone diseases may also be caused by sporadic 

postzygotic mosaicism (e.g. McCune-Albright syndrome (MAS)) (Table 1) [15]. Digenic inheritance 

has been reported in a family with hereditary hypophosphataemic rickets with hypercalciuria 

(HHRH), who harbor heterozygous mutations of the SLC34A1 and SLC34A3 genes, encoding the 

renal sodium-phosphate co-transporters type 2a and 2c, respectively [8]. The major metabolic bone 

disorder representing a complex polygenic trait is osteoporosis, and >200 loci have been associated 

with this common disorder [16, 17]. However, the majority of loci for osteoporosis likely remain to be 

elucidated. Osteoporosis may rarely occur as a monogenic condition e.g. X-linked osteoporosis due to 

mutations of the Plastin 3 (PLS3) gene [18], or early-onset osteoporosis due to heterozygous 

mutations of the Wnt family member 1 (WNT1) gene (Table 1) [19]. 

 

Genetic heterogeneity  

Many phenotypically similar metabolic bone disorders are caused by mutations in a variety of 

different genes. For example, 85-90% of osteogenesis imperfecta (OI) cases are due to mutations in 

the genes encoding type 1 collagen (i.e. COL1A1 and COL1A2) [20], with the remaining 10-15% of 

OI cases being caused by mutations affecting genes involved in post-translational processing of 

collagen (e.g. cartilage-associated protein (CRTAP) [21], osteoblast differentiation and function (e.g. 

WNT1) [19, 22], or bone mineralization (e.g. interferon induced transmembrane protein 5 (IFITM5) 

(Table 1) [23, 24]. Similarly, hypophosphataemic rickets may be caused by mutations of genes 

encoding phosphatonins like fibroblast growth factor-23 (FGF-23), or osteoblast and osteocyte 

proteins that mediate the expression and secretion of FGF-23 (e.g. PHEX, dentin matrix protein 1 
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(DMP1), and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1)) [25-28], or by mutations 

affecting renal sodium phosphate co-transporters (e.g. SLC34A3) (Table 1) [29, 30]. In addition, FHH, 

which is a disorder of extracellular calcium homeostasis, has been shown to comprise three types, 

which are caused by germline loss-of-function mutations affecting the CaS receptor, G-protein 

subunit-11 (G11), and adaptor-related protein complex-2 -subunit (AP2), respectively (Table 1)  

[31-33]. 

Mutations within a single gene may give rise to seemingly distinctive skeletal phenotypes 

[(e.g. familial expansile osteolysis (FEO), expansile skeletal hyperphosphatasia (ESH), and early-

onset familial Paget’s disease of bone (PDB)], which are rapid remodeling skeletal disorders arising 

from mutations in the signal peptide of receptor activator of NF-κB (RANK) [34, 35]. In some 

metabolic bone diseases, the severity may be determined by mutant allele dosage and whether a 

mutation is carried in the heterozygous or homozygous state. For example, the severe perinatal and 

infantile forms of hypophosphatasia, an inborn-error-of-metabolism characterized by alkaline 

phosphatase (ALP) deficiency, are inherited in an autosomal recessive manner, whilst later-onset and 

more mild forms are typically inherited in an autosomal dominant fashion (Table 1) [36]. Moreover, 

some disorders of mineral metabolism are caused by loss- or gain-of-function mutations affecting the 

same gene. Thus, loss-of-function CaS receptor mutations cause FHH or neonatal severe 

hyperparathyroidism (NSHPT), whereas gain-of-function CaS receptor mutations cause autosomal 

dominant hypocalcaemia (ADH) or Bartter syndrome type V [31, 37, 38]. Furthermore, parental 

imprinting, which results in non-Mendelian inheritance of a monogenic disorder, may influence the 

phenotypic consequences of a specific mutation. For example, maternally inherited inactivating 

coding-region mutations of G-protein subunit αs (Gαs), which is encoded by the GNAS gene, cause 

pseudohypoparathyroidism type 1a (PHP1a), which is characterised by PTH resistance together with 

Albright’s hereditary osteodystrophy (AHO) [39]; whereas, paternally inherited inactivating coding-

region GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), which is characterised by 

AHO without PTH resistance (Table 1)  [39]. The phenotype of MAS, which is caused by somatic 

activating Gαs mutations, is also dependent on parental imprinting, with acromegaly occurring in 

MAS patients who harbour mutations affecting the maternal Gαs allele [40]. Given this apparent 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1881
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genetic/phenotypic complexity despite genetic “homogeneity”, establishing the genetic cause can be 

challenging for the evaluation of patients and family members with bone and mineral disorders. 

 

Molecular insights from monogenic and polygenic diseases 

Classical gene-discovery approaches for monogenic disorders have involved studying affected 

kindreds for co-segregation with polymorphic genetic markers to define the chromosomal location, 

followed by DNA sequence analysis of genes located within the candidate region [3]. This approach 

has been superseded by whole-exome and whole-genome sequence analysis of affected patients or 

kindreds [41, 42]. In contrast, the genetic investigation of complex polygenic disorders such as 

osteoporosis has utilized genome-wide association studies (GWAS), which involve large populations 

of cases and controls [5, 6, 16, 17]. Such studies typically involve direct or imputed genotyping of 

large numbers of common (e.g. minor allele frequency >5%) and infrequent (e.g. minor allele 

frequency 1-5%) single nucleotide polymorphisms/variants (SNPs/SNVs) to identify genetic loci 

enriched for the trait [3, 43]. The genetic investigation of monogenic diseases has provided a 

fundamental understanding of the molecular regulation of bone mass and maintenance of skeletal 

microarchitecture. For example, studies of mutations affecting several Wnt pathway components have 

demonstrated that Wnt signaling plays a key anabolic role in the skeleton (Figure 1) [44, 45]. Thus, 

autosomal-recessive loss-of-function mutations of the LRP5 gene, which encodes a key Wnt co-

receptor (Figure 1), result in osteoporosis-pseudoglioma syndrome, which is characterized by severe 

juvenile osteoporosis and congenital or childhood-onset blindness [46]. In contrast, heterozygous 

activating mutations in LRP5 [47] and LRP6 [48], which encode the cognate co-receptors LRP5 and 

LRP6, respectively, both lead to autosomal dominant high bone mass. Additionally, individuals with 

autosomal recessive loss-of-function mutations of the Wnt-β-catenin inhibitor sclerostin (SOST) 

manifest sclerosteosis, type 1, which is characterized by progressive bone overgrowth throughout life 

[49, 50]; whilst patients harbouring a homozygous 52kb deletion containing an enhancer element 

downstream of the SOST gene develop van Buchem disease, which has a similar but milder skeletal 

phenotype compared to sclerosteosis, type 1 [51, 52]. Moreover, bi-allelic loss-of-function mutations 

of WNT1 have been shown to cause an autosomal recessive form of OI, whilst heterozygous carriers 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3704
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of such WNT1 missense mutations develop autosomal dominant early-onset osteoporosis (Figure 1) 

[19, 53]. Additionally, bi-allelic truncating mutations in secreted frizzled-related protein 4 (sFRP-4) 

(Figure 1), which encodes a soluble Wnt inhibitor, have been reported in patients with Pyle’s disease, 

a disorder characterized by cortical bone thinning, limb deformity and fracture [54]. These key roles 

for Wnt signalling in bone biology are supported by the findings from GWAS studies, which have 

identified that many Wnt pathway components (>15 genes), including LRP5 and SOST are candidate 

genes for bone mineral density (BMD) [16, 17], and that WNT16 is a key determinant of cortical bone 

strength [55, 56].
 
 

 

Application of genetic discoveries to the development of targeted therapies 

A key aim of the genetic characterization of metabolic bone disorders has been to identify genes, 

molecules and pathways that may be targeted therapeutically. Thus, the identification of the bone cell 

OPG/RANKL/RANK/NF-κB signalling pathway led to the development of the monoclonal antibody 

denosumab, which blocks RANK ligand (RANKL), thereby inhibiting osteoclast-mediated bone 

resorption [5]. Denosumab is now widely used for the treatment of osteoporosis as it significantly 

reduces fracture risk in women with postmenopausal osteoporosis [57]. The multinational approval in 

2015 of the bone-targeted enzyme-replacement biologic asfotase alfa to treat hypophosphatasia has 

emphasized the importance of determining the genetic and molecular basis for a metabolic bone 

disease [36]. The identification that PHEX mutations cause FGF-23 excess, which in turn is 

responsible for the phosphate wasting in XLH [58, 59], has led to the approval in 2018 of burosumab, 

which is an anti-FGF-23 monoclonal antibody, for the treatment of XLH rickets. Burosumab has been 

shown to improve serum phosphate concentrations and decrease the severity of rickets in children 

with XLH [60]. Assessing treatment response according to the genetic aetiology has been investigated 

in patients with early-onset low-turnover osteoporosis due to WNT1 or PLS3 mutations who were 

shown to respond to teriparatide therapy [61]. Now, several drugs in development are directed at the 

Wnt pathway. This includes anti-sclerostin antibodies (e.g. romosozumab), which increase bone 

formation whilst inhibiting bone resorption [62]. An evaluation of romosozumab in phase 3 clinical 

trials has shown that it is a potent bone anabolic agent for postmenopausal osteoporosis [63, 64]. 
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Clinical approach to the patient with a metabolic bone disease 

 

Medical history and physical examination 

The diagnosis of genetic forms of metabolic bone diseases begins by acquiring information from the 

patient’s medical history and physical examination [3]. The “history of present illness” provides 

critical clues concerning aetiology, pathogenesis and prognosis, as well as guiding diagnosis and 

therapy. Establishing whether the signs and symptoms have been lifelong, or begun recently may 

prompt different diagnostic considerations and interventions. Thus, lifelong fractures which have 

occurred following minor trauma may suggest a diagnosis of OI [20]. Whereas, the combined 

occurrence of fractures and renal calculi in early adulthood may potentially be a presenting feature of 

primary hyperparathyroidism caused by the multiple endocrine neoplasia (MEN) type 1 syndrome 

[65]. Moreover, it is important to review prior medical records, radiographs, and other investigations 

such as the results of plasma and urinary biochemistry, to aid diagnosis and prognostication [3]. 

Physical assessment should include: measurement of body proportions, limb lengths and head 

circumference; an examination of the spine for scoliosis or kyphosis; and joint hypermobility with a 

determination of the Beighton  score [66]. Physical examination can show a variety of findings for 

diagnosis e.g. : blue or gray sclerae found in OI; café-au-lait spots or other pigmentary cutaneous 

lesions that are associated with disorders of FGF-23 excess such as MAS or the epidermal nevus 

syndrome; angiofibromas or collagenomas that may be associated with MEN type 1; premature loss 

of deciduous teeth that occurs in hypophosphatasia; hallux valgus which is found in fibrodysplasia 

ossificans progressiva; alopecia that occurs in vitamin D-dependent rickets, type 2; brachydactyly 

which is found in PHP1a and PPHP; syndactyly that occurs in sclerosteosis types 1 and 2; torus 

palatinus which is found in disorders of high bone mass due to LRP5 or LRP6 mutations; or numerous 
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surgical scars which may reveal a past medical history of surgical treatments to remove endocrine 

tumours associated with the MEN syndromes [10, 20, 36, 39, 48, 50, 65, 67-69]. For some genetic 

bone diseases, a constellation of physical features indicates the category for diagnosis; e.g. rickets 

featuring craniotabes at birth and soon after a rachitic rosary (enlargement of the costochondral 

junctions) appearing during the first year of life [10]. Childhood-onset rickets causes bowed legs, 

short stature, flared wrists and ankles from metaphyseal widening [10]. Knock-knee deformities may 

occur instead of bowed legs if the rachitic disturbance occurs during the adolescent growth spurt [3]. 

In adults, skeletal deformation originating from metabolic bone disorders in childhood can cause 

substantial morbidity. Bowing of the lower limbs predisposes to osteoarthritis, especially affecting the 

knees. Without a complete physical examination, these important problems may go unnoticed.  

 

Family history 

Assessment of the family history is essential for establishing the mode of inheritance of monogenic 

metabolic bone diseases, and medical records from living or deceased affected family members may 

establish the diagnosis, guide prognostication, and indicate a safe and effective treatment [3]. In 

autosomal dominant disease, the affected person often has one affected parent, and the disease occurs 

in both sexes and is transmitted by either the father or mother. In autosomal recessive diseases, which 

can affect both sexes, the proband is born to parents who are usually asymptomatic “carriers” and 

sometimes related (i.e. consanguineous). In X-linked recessive diseases, usually only males are 

affected, parents are unaffected yet the mother is an asymptomatic carrier, and there is no male-to-

male transmission. In X-linked dominant diseases, both males and females can be affected, although 

the females are often more mildly and variably affected than males, and 50% of offspring (girls and 

boys) from an affected woman will have the disease, and 100% of the daughters but 0% of sons of an 

affected man will have the disease. In Y-linked diseases, only males are affected and unless 

representing a sporadic case they have an affected father (patrilineal inheritance) and all sons of an 

affected male will have the disease. Mitochondrial inherited disorders (non-Mendelian) can affect 

both sexes. However, these disorders are only transmitted by an affected mother (matrilineal 
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inheritance) in her egg mitochondrial DNA, and not through the paternal line in the sperm, as the 

small volume of sperm precludes them from contributing mitochondria to the zygote [3]. These 

patterns of inheritance may be complicated by: non-penetrance or variable expression in autosomal 

dominant disorders (e.g. in MEN1) [65]; imprinting whereby expression of an autosomal dominant 

disorder is conditioned by whether it is maternally or paternally transmitted (e.g. PHP1a versus 

PPHP) [39]; anticipation, whereby some dominant disorders become more severe (or have earlier 

onset) in successive generations; pseudo-dominant inheritance of autosomal recessive disorders 

reflecting repeated consanguineous marriages in successive generations; and mosaicism in which an 

individual has two or more populations of cells with different genotypes because of post-zygotic 

mutations during their development from a single fertilized egg (e.g. McCune-Albright syndrome). In 

the special circumstance of germline mosaicism within eggs or sperm arising from somatic mutation 

during gametogenesis, these may be confusion about the diagnosis and recurrence risk confusion 

because of seemingly unaffected parents having multiple affected offspring that would be consistent 

with autosomal recessive inheritance, but actually reflects an autosomal dominant disorder (e.g. OI 

type II) [70]. Hence, these inheritance patterns, which can help to diagnose a genetic disorder and 

identify individuals at risk, can come from a detailed family history [3]. 

 

Clinical utility of genetic investigations 

 

Establishing the genetic basis of a metabolic bone disease may aid diagnosis, treatment and 

prognostication; identify the need for screening of associated clinical features not initially apparent; 

enable appropriate genetic counselling and testing of first-degree asymptomatic relatives; and 

facilitate pre-conception and/or pre-natal genetic evaluation (Figure 2). Genetic testing may also aid 

risk profiling. For example, osteoporosis-associated SNPs have been reported to predict fracture risk 

in patients taking bisphosphonates [71], and other studies have identified potential genetic markers of 

bisphosphonate-induced osteonecrosis of the jaw [72].  
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For patients presenting with a likely genetic metabolic bone disease, several factors require 

consideration before organizing genetic testing (Figure 2). These include the phenotype of the patient, 

the likely mode of inheritance, the potential genetic aetiology (e.g., aneuploidy, copy number 

variation (CNV), or single gene defect), and availability of additional pedigree members (Figure 2). 

For example, DNA sequencing of ‘trios’ (i.e. both parents and the affected proband) may facilitate the 

identification of compound heterozygous or de novo mutations [73]. Selecting the most appropriate 

genetic test will increase the likelihood of achieving a genetic diagnosis. For example, direct DNA 

sequencing methods which detect nucleotide abnormalities (e.g. substitutions, micro-deletions and 

micro-insertions) that cause most monogenic metabolic bone disorders frequently do not detect whole 

or partial gene deletions that are associated with some monogenic syndromes, and are also not be 

optimal for identifying large chromosomal abnormalities (e.g. 22q11.2 microdeletion in DiGeorge 

syndrome), whose detection requires alternative approaches (Figure 2 and Table 2) [74]. For other 

monogenic disorders, it is also important to consider analysis of a panel of genes if genetic 

heterogeneity is likely (e.g. in FHH or OI) [9, 20]. Thus, it is important to emphasize that genetic 

testing which fails to identify an abnormality does not exclude a genetic disease, but rather may 

reflect: an alternative genetic aetiology to the one being tested; limitations of the employed genetic 

methodology (i.e. inadequate resolution or coverage); or incorrect assumptions regarding the clinical 

phenotype or mode of inheritance [3]. As a consequence, it may be necessary to undertake sequential 

or simultaneous genetic tests to ensure a complete evaluation, although such testing may be limited by 

cost and local availability. 

 

Types of genetic tests available to the clinician 

 

Cytogenetic and molecular cytogenetic analyses 

Karyotyping represents the initial test for major chromosomal abnormalities including aneuploidy or 

large insertions, deletions, duplications, inversions, or reciprocal translocations, but has a resolution 

limited to ~5-10Mb of DNA (Table 2) [74, 75]. It retains an important place in the diagnosis of Turner 

and Klinefelter syndrome, each of which may manifest a form of osteoporosis [76, 77]. Fluorescence 
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in-situ hybridization (FISH) employs DNA probes that hybridize to specific target regions, which 

allow the detection of specific chromosomal deletions, duplications, translocations or inversions 

(Table 2). The utility of FISH is limited to detecting abnormalities involving pre-determined genomic 

regions (e.g. detection of 22q11.2 deletion in DiGeorge syndrome). Multiplex-ligation dependent 

probe amplification (MLPA) detects complete or partial gene deletions by using a pool of custom-

designed probes to amplify specific genomic regions of interest (Table 2). MLPA is used in the 

diagnostic evaluation of monogenic disorders associated with such genetic alterations (e.g. MEN1) 

[78]. Modifications of the MLPA technique may also be used. For example, in establishing the 

diagnosis of pseudohypoparathyroidism type 1b (PHP1b), methylation-specific MLPA (MS-MLPA) 

may be employed to detect genetic (e.g. deletions) or epigenetic (e.g. altered patterns of methylation) 

abnormalities within the differentially methylated regions (DMRs) of the GNAS locus, although 

alternate methods such as CpG bisulphite pyrosequencing are frequently used to confirm the presence 

of specific methylation defects [79]. Microarray-comparative genomic hybridization (aCGH) is 

undertaken for the genome-wide detection of small chromosomal abnormalities (e.g. copy number 

variants (CNVs)) (Table 2) and is increasingly used as a first-line investigation for patients with 

multiple congenital abnormalities, which include skeletal manifestations and/or neurodevelopmental 

delay [80, 81]. However, it is important to note that all individuals harbor many small CNVs without 

discernable adverse impact on health, whilst several potentially pathogenic CNVs do not cause 

disease in all individuals (i.e. reduced penetrance). Finally, SNP arrays may detect CNVs as well as 

facilitating genome-wide genotyping (Table 2). For example, deletions spanning several adjacent 

SNPs included on the array may reveal loss of heterozygosity (LOH), whilst copy number gains (e.g. 

duplication) may be indicated by increased numbers of different genotypes [74]. SNP arrays may also 

help localize recessive disorders in the offspring of consanguineous parents by facilitating 

homozygosity mapping [82], whilst regions of LOH can also indicate uniparental isodisomy, which 

may be relevant to the diagnosis of imprinting disorders such as PHP1b [83, 84]. 

  

DNA sequence analysis 
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Sanger sequencing remains the gold standard for detecting DNA sequence variants due to the high 

accuracy of the DNA polymerase (i.e. base accuracy of >99.99%) employed during DNA 

amplification [41, 85]. However, it remains labour intensive and is typically reserved for disorders 

with low genetic heterogeneity (e.g. single- or pauci-gene disorders), an example being 

hypophosphatasia caused only by TNSALP/ALPL mutations [86]. Single gene testing by Sanger 

sequencing is increasingly being replaced by next-generation sequencing (NGS) approaches, which 

facilitates the simultaneous sequencing of large amounts of genetic material. Such NGS methodology 

has provided a paradigm shift in the investigation and diagnosis of genetic disease. Currently, the 

three most widely employed uses of NGS are: whole genome sequencing (WGS); whole exome 

sequencing (WES), and disease-targeted gene panel sequencing (Table 2). WGS determines the DNA 

sequence of the entire genome including coding and non-coding regions, and can identify SNVs, 

small insertions or deletions (‘indels’), and CNVs [3]. In contrast, WES analyses the 1-2% of the 

genome that encodes the ~20,000 protein-coding genes (i.e. the ‘exome’), which are expected to 

harbor most disease-associated mutations [3]. WES has been the mainstay of highly successful 

disease-gene discovery studies over the past decade, resulting in the identification of several genes 

responsible for metabolic bone disorders (e.g. WNT1 mutations as causes of osteoporosis and OI [19]; 

SFRP4 mutations in Pyle’s disease [54]; AP2 mutations in FHH type 3 [33]; PLS3 mutations in X-

linked osteoporosis [18]; BMP1 mutations causing increased BMD and recurrent fractures [87]; and 

CYP3A4 mutations in vitamin D-dependent rickets, type 3 [88]).
 

Disease-targeted sequencing 

represents the most widely utilized NGS method in clinical practice, as it can be designed to 

simultaneously analyze large collections of genes (e.g. <10 to >150 genes) associated with a specific 

disorder [41, 85, 89]. Such NGS disease-targeted panels have been established for genetically 

heterogeneous disorders including OI and other skeletal disorders, as well as for hypophosphataemic 

rickets and calcium-sensing disorders [90-92]. 

 

Genetic tests to detect mosaicism 

Some metabolic bone disorders only manifest as somatic mosaicism (e.g. GNAS mutations in 

McCune-Albright syndrome) [67]. However, other conditions (e.g. OI type II) may also rarely occur 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1337
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as germline mosaicism, arising from somatic mutation during gametogenesis, and may cause 

diagnostic confusion. In this setting, apparently unaffected parents (with one carrying the mutation 

limited to their gametes) may give rise to more than one affected child, suggesting possible autosomal 

recessive inheritance, in contrast to the underlying autosomal dominant inheritance pattern
 
[93].

 

Detection of mosaicism has been enhanced by improved genome-wide testing strategies (e.g. aCGH, 

SNP arrays, droplet digital PCR and NGS approaches), which can provide sensitive methods for the 

detection of low-level mosaicism (e.g. 5% for SNP array) [70, 94, 95]. However, choosing the optimal 

test depends on the clinical phenotype, the type of mutation suspected (e.g. SNV, CNV, aneuploidy), 

the likely extent of mosaicism, and its tissue distribution. Typically, circulating lymphocyte DNA will 

suffice, but analysis of other affected tissues may be required (e.g. fibroblasts or bone) [96, 97]. 

 

Genetic Tests for Prenatal diagnosis 

Pre-natal genetic testing may be undertaken at pre-implantation or pre-natal stages, and has been used 

to detect severe skeletal disorders such as perinatal lethal OI [98]. Pre-implantation genetic diagnosis 

(PGD) uses a single cell taken from the developing embryo several days after in vitro fertilization 

(IVF) to detect chromosomal abnormalities or single gene defects, thereby allowing selection of the 

unaffected embryos for implantation [99]. In contrast, pre-natal genetic testing is used once pregnancy 

is established to identify fetuses at risk of genetic disease [99]. Typically, this involves invasive 

methods such as chorionic villous sampling (CVS) or amniocentesis to obtain cells for genetic 

evaluation [99]. This may include karyotyping for the detection of aneuploidy, FISH or aCGH to 

identify smaller chromosomal abnormalities or DNA sequencing to identify single gene defects 

associated with monogenic disease. Recent progress in the detection of cell-free circulating fetal DNA 

in the maternal circulation (e.g. after ~10 weeks gestation) now offers the potential for non-invasive 

prenatal genetic diagnosis (NIPD) and/or testing (NIPT) [100]. Thus, a maternal blood sample may 

allow screening for aneuploidy and fetal sex determination, which is important for X-linked disorders, 

and may also be used to detect monogenic disorders; however, this is limited to paternally inherited 

mutations or those arising de novo, as the sample may contain maternal cell-free DNA, and hence the 
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detected abnormality cannot be reliably assigned to the fetus as the methodology cannot distinguish 

between fetal and “contaminating” maternal DNA in the sample [100].  

 

Data interpretation and incidental findings 

The advent of high-content genetic testing employing NGS approaches has revolutionized the 

investigation and diagnosis of genetic disease. However, such approaches may also present clinical 

and ethical challenges [101]. For example, the simultaneous sequencing of large numbers of genes 

(e.g. disease-targeted gene panels, WES and WGS) inevitably identifies variants of uncertain 

significance (VUS), whose relevance to the clinical phenotype is ambiguous [102, 103]. Indeed, the 

methods employed to assess variant effects are frequently imprecise leading to inaccurate 

interpretation, although the provision of recent large-scale population level sequence databases 

facilitate improved estimates of variant pathogenicity and penetrance [104, 105]. In addition, high-

content genetic testing may identify clinically relevant genetic abnormalities unrelated to the 

phenotype under investigation (i.e. incidental findings (IFs)) and these may have important health 

implications for the patient and their family. Hence, the possibility of identifying ambiguous or 

incidental results should be part of the informed consent prior to genetic testing (Figure 2).  

 

Conclusion 

 

Many metabolic bone diseases have a genetic basis, which may be a germline single gene abnormality 

(i.e. a monogenic or Mendelian disorder), a somatic single gene defect (i.e. a post-zygotic mosaic 

disorder), or involve several genetic variants (i.e. oligogenic or polygenic disorders). Recognition of 

these heritable disorders is clinically important, as it can facilitate relevant and timely investigation 

and treatment for the patients and families. Recent advances in genetics and DNA sequencing 

methods have resulted in new ways to detect genetic abnormalities. Therefore, it is increasingly 

important for the clinician to gain an appreciation of these complex genetic tests and to combine this 

with the fundamental skills of history taking and physical examination to ensure they are used for the 

benefit of patients. 
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Table 1. Examples of monogenic metabolic bone disorders, modes of inheritance and genetic 

aetiology 

 
Mode of inheritance/ Disease Gene(s) Chromosomal 

location 

References 

Autosomal Dominant    

Osteogenesis imperfecta (OI), types I-IV COL1A1, COL1A2 17q21.33, 7q21.3 [20] 

Osteogenesis imperfecta (OI), type V IFITM5 11p15.5 [23, 24] 

Autosomal dominant hypophosphataemic rickets FGF23 12p13.32 [25] 

Autosomal dominant high bone mass, type 1 LRP5 11q13.2 [47] 

Autosomal dominant high bone mass, type 2 LRP6 12p13.2 [48] 

Early-onset osteoporosis WNT1 12q13.12 [19] 

Familial hypocalciuric hypercalcaemia (FHH), 

types 1-3 

CASR, GNA11, AP2S1 3q21.1, 19p13.3, 

19q13.3 

[31-33] 

Autosomal dominant hypocalcaemia (ADH), 

types 1-2 

CASR, GNA11 3q21.1, 19p13.3 [32, 37] 

Familial expansile osteolysis TNFRSF11A 18q21.33 [34, 35] 

Hypophosphatasia TNSALP/ALPL 1p36.12 [36] 

Vitamin D-dependent rickets, type 3 CYP3A4 7q22.1 [88] 

Pseudohypoparathyroidism, type 1a (PHP1a)* GNAS 20q13.3 [39] 

Pseudopseudohypoparathyroidism (PPHP)* GNAS 20q13.3 [39] 

Pseudohypoparathyroidism, type 1b (PHP1b)* GNAS, NESP55, STX16 20q13.3 [39] 

    

Autosomal Recessive    

Osteogenesis imperfecta (OI), type VI SERPINF1 17p13.3 [106] 

Osteogenesis imperfecta (OI), type VII CRTAP 3p22.3 [21] 

Osteogenesis imperfecta (OI), type VIII P3H1/LEPRE1 1p34.2 [107] 

Osteogenesis imperfecta (OI), type XV WNT1 12q13.12 [19] 

Hypophosphatasia TNSALP/ALPL 1p36.12 [36] 

Neonatal severe hyperparathyroidism (NSHPT) CASR 3q21.1 [31] 

Vitamin D-dependent rickets, type 1 CYP27B1 12q14.1 [10] 

Vitamin D-dependent rickets, type 2 VDR 12q13.11 [10] 

Autosomal recessive hypophosphataemic rickets DMP1, ENPP1 4q22.1, 6q23.2 [27, 28] 

Hereditary hypophosphataemic rickets with 

hypercalciuria 

SLC34A3 9q34.3 [29, 30] 

Osteoporosis-pseudoglioma syndrome LRP5 11q13.2 [46] 

Sclerosteosis, type 1 SOST 17q21.31 [49] 

Sclerosteosis, type 2 LRP4 11p11.2 [50] 

Pyle’s disease SFRP4 7p14.1 [54] 

Juvenile Paget disease TNFRSF11B 8q24.12 [108] 

    

X-linked Dominant    

X-linked hypophosphatemic (XLH) rickets PHEX Xp22.11 [26] 

    

X-linked recessive    

X-linked osteoporosis PLS3 Xq23 [18] 

Dent disease, type 1 CLCN5 Xp11.23 [11] 

    

Mitochondrial    

Mitochondrial encephalomyopathy with lactic 

acidosis and stoke-like episodes (MELAS) 

Mitochondrial genome - [13] 

Kearns-Sayre syndrome Mitochondrial genome - [14] 

    

Mosaicism    

McCune-Albright syndrome (polyostotic fibrous 

dysplasia)* 

GNAS 20q13.3 [15] 

Osteogenesis imperfecta (OI)§ COL1A1/COL1A2 17q21.33, 7q21.3  

 

*Parentally imprinted. 

§Autosomal disorder manifesting as post-zygotic somatic mosaicism in the developing fetus, or arising from germline 

mosaicism in an apparently unaffected parent. 
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Table 2: Examples of genetic tests, their molecular resolution and utility 

Genetic Test Resolution Abnormalities detected Additional Notes 

Detection of Chromosomal Abnormalities including Copy Number Variations (CNVs) 

Karyotype: G-banding (trypsin-Giemsa 

staining) 

5-10Mb Aneuploidy  

Large chromosomal deletions, duplications, 

translocations, inversions, insertions 

Limited resolution 

Requirement to study many cells to detect mosaicism 

 

Fluorescence in situ hybridization 

(FISH) 

50kb - 2Mb (dependent on size 

of probes employed) 

Structural chromosomal abnormalities (e.g. 

microdeletions, translocations)  

Labour-intensive 

Low resolution limits its use 

Unsuitable where unknown genetic aetiology 

Multiplex-ligation probe amplification Probe dependent 

50-70 nucleotides 

Single exon deletion or 

duplication possible 

Copy number variations (CNVs) including 

(partial) gene deletions or duplications 

 

Low cost, technically simple method 

Simultaneous evaluation of multiple genomic regions  

Not suitable for genome-wide approaches  

Not suitable for analysis of single cells 

Array Comparative genomic 

hybridization (aCGH) 

10Kb (high resolution) 

1Mb (low resolution) 

(Dependent on probes set)  

Genome-wide copy number variations 

(CNVs) 

 

Inability to detect balanced translocations 

Useful for detection of low level mosaicism 

 

Single Nucleotide Polymorphism (SNP) 

array 

~50-400Kb 

(Dependent on probe set) 

Genome-wide detection of SNP genotypes 

Copy Number Variations (CNVs) 

 

Inability to detect balanced translocation 

Useful for detection of low level mosaicism 

Detection of copy number neutral regions or absence of 

heterozygosity (i.e. due to uniparental disomy) 

Detection of Monogenic Disorders (and Copy Number Variations (CNVs)) 

First Generation Sequencing (Sanger)     

Single gene test Single nucleotide  

(exonic regions and intron/exon 

boundaries of candidate gene) 

Single nucleotide variants (SNVs) 

Small insertions of deletions (‘indels’) 

Relative high cost/base 

May miss large deletions/duplications 

Unsuitable where unknown genetic aetiology 

Next Generation Sequencing     

Disease-targeted gene panels Single nucleotide 

(exonic regions and intron/exon 

boundaries of candidate genes) 

Single nucleotide variants (SNVs) 

Small insertions of deletions (‘indels’) 

May lack complete coverage of exomic regions (may require 

Sanger sequencing to fill in ‘gaps’) 

Increased likelihood of identifying variants of uncertain 

significance (VUS) as number of genes increases 

Unsuitable where unknown genetic aetiology 

Whole exome sequencing (WES) Single nucleotide 

(all exonic regions and 

intron/exon boundaries ) 

Single nucleotide variants (SNVs) 

*Small insertions of deletions (‘indels’)  

Copy Number Variations (CNVs) 

 

Not all exons may be covered/captured 

Difficulties with GC-rich regions and presence of homologous 

regions/pseudogenes 

*Small indels may not be captured 

Bioinformatic expertise required for data analysis 

High likelihood of incidental findings and VUSs 

Detection of CNVs requires additional data analysis (i.e. loss of 
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heterozygosity mapping across exonic regions) 

Suitable for disease associated gene-discovery 

Whole Genome Sequencing (WGS) Single nucleotide Single nucleotide variants (SNVs) 

Small insertions of deletions (‘indels’) 

Copy Number Variations (CNVs) 

(Translocations/rearrangements) 

 

Relative high cost 

Large data sets generated and complex data analysis requiring 

bioinformatic expertise  

High likelihood of incidental findings and VUSs 

CNV analysis possible but may present specific challenges 

Suitable for disease associated gene-discovery 

Abbreviations: CNVs, copy number variants; FISH, fluorescence in-situ hybridization; Ifs, incidental findings; LOH, loss of heterozygosity; WES, whole exome sequencing; 

WGS, whole genome sequencing. Adapted from Genetics of Bone Biology and Skeletal Disease (2018). Edited by Thakker, Whyte, Eisman, Igarashi, Second Edition. 

Academic Press. p.14 [3].  
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Figure 1. Schematic representation of Wnt signalling pathway components reported to be mutated in 

disorders of bone development and skeletal homeostasis. Activation of the canonical Wnt pathway 

increases bone mass, and this is mediated by the binding of extracellular Wnt ligands (dark green) to a 

transmembrane receptor complex comprising the Wnt co-receptor LRP5 or LRP6 (LRP5/6, light blue) 

and a member of the frizzled (FZD) family (dark blue). In contrast, inhibition of the canonical Wnt 

pathway decreases bone mass [44, 45]. This inhibition is mediated by extracellular factors such as 

sclerostin (SOST, orange) and Dickkopf-related protein 1 (DKK1, yellow), which bind to the LRP5/6 

co-receptor thereby preventing activation by Wnt ligands, as well as recruiting inhibitory 

transmembrane proteins such as: LRP4, which is a SOST-interacting protein (light green); and the 

Kremen proteins (pink), which are high-affinity DKK1 receptors that functionally cooperate with 

DKK1 to decrease Wnt signalling [109]. Secreted-frizzled-related proteins (SFRPs, purple) also 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3701
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inhibit the canonical Wnt pathway by sequestering Wnt ligands. The importance of the canonical Wnt 

pathway for the regulation of bone mass has been highlighted by loss-of-function mutations affecting 

SOST and LRP4, and by gain-of-function mutations of LRP5 and LRP6, which lead to the disorder 

called high bone mass [47, 49, 51, 110]; and also by loss-of-function mutations of LRP5 and the Wnt1 

ligand, which lead to monogenic osteoporosis disorders [19, 46]. 
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Figure 2. Flowchart outlining considerations for genetic testing in patients with metabolic bone 

disease. 




