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Intact Connectional Morphometricity Learning
using Multi-View Morphological Brain Networks
with Application to Autism Spectrum Disorder
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Abstract. The morphology of anatomical brain regions can be affected
by neurological disorders, including dementia and schizophrenia, to var-
ious degrees. Hence, identifying the morphological signature of a spe-
cific brain disorder can improve diagnosis and better explain how neu-
roanatomical changes associate with function and cognition. To capture
this signature, a landmark study introduced, brain morphometricity, a
global metric defined as the proportion of phenotypic variation that
can be explained by brain morphology derived from structural brain
MRI scans. However, this metric is limited to investigating morpholog-
ical changes using low-order measurements (e.g., regional volumes) and
overlooks how these changes can be related to each other (i.e., how mor-
phological changes in region A are influenced by changes in region B).
Furthermore, it is derived from a pre-defined anatomical similarity ma-
trix using a Gaussian function, which might not be robust to outliers and
constrains the locality of data to a fixed bandwidth. To address these
limitations, we propose the intact connectional brain morphometricity
(ICBM), a metric that captures the variation of connectional changes in
brain morphology. In particular, we use multi-view morphological brain
networks estimated from multiple cortical attributes (e.g., cortical thick-
ness) to learn an intact space that first integrates the morphological
network views into a unified space. Next, we learn a multi-view mor-
phological similarity matrix in the intact space by adaptively assigning
neighbors for each data sample based on local connectivity. The learned
similarity capturing the shared traits across morphological brain network
views is then used to derive our ICBM via a linear mixed effect model.
Our framework shows the potential of the proposed ICBM in capturing
the connectional neuroanatomical signature of brain disorders such as
Autism Spectrum Disorder.

1 Introduction

Brain disorders affect the brain construct on multiple levels including neural ac-
tivity quantified using functional magnetic resonance imaging (MRI) and brain
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tissue morphology measured using structural T1-weighted MRI. While several
studies focused on identifying the functional signature (or fingerprint) of brain
disorders [1–3], a few works investigated the morphological fingerprint of a spe-
cific brain disorder (Alzheimer’s disease, Autism Spectrum Disorder, Parkinson’s
disease). To fill this gap, [4] proposed a statistical metric called brain ‘morpho-
metricity’ (BM) that describes the associations between brain morphology and
multiple risk factors such as age and gender. Using structural MRI, volumetric
measurements of noncortical structures and thickness measurements of cortical
regions were generated. To capture the similarity between brain morphologies
of brains drawn from distinct groups (e.g., normal controls and ASD patients),
they computed a similarity matrix for each of these measurements separately,
and then averaged them to produce the global anatomical similarity matrix. Ulti-
mately, a Linear Mixed Effect model (LME) was applied to estimate the variance
captured by the similarity matrix to unravel the morphological signature of a
specific phenotypic trait (e.g., clinical diagnosis).

However, the proposed morphometricity metric is limited to investigating
morphological changes using low-order measurements (e.g., regional volumes)
and overlooks how these changes can be related to each other (i.e., how mor-
phological changes in region A are influenced by changes in region B). In other
words, it does not look at morphological connectivity of anatomical regions of
interest (ROIs), where a morphological connection quantifies the (dis)similarity
in shape between two brain ROIs –i.e., how their morphologies are related. This
can be modeled using multi-view morphological brain networks (MBN) as pro-
posed in [5–8]. These showed great potential for brain disorder diagnosis [5–7]
and morphological connectional biomarker identification [8] using supervised [5,
6] or unsupervised learning [7] techniques trained on structural T1-weighted MRI
data. More importantly, each view-specific MBN models the relationship in mor-
phology between brain regions using a specific measurement (e.g., curvature).

To fill this gap, we unprecedentedly propose to use multi-view MBNs for
‘connectional brain morphometricity’ (CBM) estimation. We note that in the
landmark work [4] of BM, the similarity matrix is computed using a pre-defined
similarity function such as Gaussian metric, which (i) may not be robust to out-
liers, (ii) may not handle well multi-view data drawn from multiple sources, and
(iii) may fail to capture data sample distributions with varying bandwidths. To
address these limitations, we propose to learn the data similarity matrix by lev-
ering the intact-awareness similarity learning model developed in [9]. More pre-
cisely, the proposed approach aims to recover an intact space [10] that captures
the complementarity between multiple data views. A practical example of this is
the medical diagnosis of neurological diseases, such as dementia. Each morpho-
logical feature (e.g., cortical thickness) alone captures insufficient information
and thus cannot comprehensively describe the brain atrophy, which can only be
fully recovered by integrating all the features. To leverage the complementary of
multi-view MBNs, we propose a novel intact connectional brain morphometric-
ity (ICBM) learning framework to identify the connectional morphology-driven
fingerprint of specific traits. Specifically, we use the intactness-aware similarity



learning method [9] to estimate the similarity that has the maximum depen-
dence with its intact space, where shared traits across views are well captured.
First, we learn the complementarity between different MBNs by constructing an
intact connectomic space. Within a joint framework, we simultaneously learn a
multi-view morphological similarity matrix in the intact space by adaptively as-
signing neighbors for each data sample based on local connectivity. The learned
similarity capturing the shared traits across morphological brain network views
is then used to derive our ICBM via a linear mixed effect model. The main
contributions of our work can be summarized as follows:

– We propose to learn a morphological intact space that models the com-
plementarity between different morphological brain networks by integrating
them in one space, thereby catching partial information from each individual
view.

– We learn the multi-view morphological similarity matrix that is in harmony
with the morphological intact space of multi-view MBNs.

– We introduce the intact connectional brain morphometricity, a metric that
could reveal novel insights into morphological connectivity fingerprinting
brain disorders.

2 Intact Connectional Brain Morphometricity Learning

In the following, we present the main steps of our intact connectional brain mor-
phometricity (ICBM) learning framework. To clarify the reading, we summarized
the major mathematical notation in Table 1. Fig 1 illustrates the proposed
pipeline for estimating the intact connectional morphometricity in three major
steps: 1) construction of multi-view morphological networks, 2) learning of the
intact multi-view similarity matrix, and 3) estimation of the ICBM using LME
model.

Multi-view morphological network. Inspired by the foundational works
of [7, 8], we define a morphological brain network V as a graph comprising a
set of nodes, each node representing a brain ROI. The connection between two
nodes quantifies the dissimilarity in shape between two ROIs i and j by comput-
ing the absolute difference between ROI-based average morphological measure-
ments (e.g., mean curvature). By diversifying the morphological measurements,
we generate a set of MBNs Mv = {V 1, V 2, . . . , V k}, each capturing a specific
view of the morphological brain construct. Since each MBN can be defined as
a symmetric matrix, we only vectorize the off-diagonal upper triangular part to
generate a feature vector Fks for each subject s and each view k (Fig. 1–A).

Intact morphological similarity learning. This step is the core of our
framework as it describes the connectional similarity between the morphological
views. Basically, we first propose to learn an intact space that represents the
complementary information of multiple views. As reported in [10], an individual
view is insufficient for learning, thus integrating multiple views is necessary to
learn a comprehensive representation of the data. Given specific views Vi and



Fig. 1: Proposed framework for intact connectional brain morphometricity
(ICBM) learning. (A) Feature extraction from different multi-view morpholog-
ical brain networks, each driven from a specific morphological brain measure-
ment (e.g., curvature). Multi-view feature vectors are concatenated to create a
multi-view training matrix including all subjects. (B) Intact similarity matrix
construction. We learn an intact connectomic space, which captures the comple-
mentarity between all views {Fk}, and where the intact similarity matrix S is
jointly learned. (C) ICBM estimation. Given the learned similarity matrix along
with the phenotype vector (e.g., subject label as normal control or autistic) and
the population covariance matrix, we compute ICBM using linear mixed effect
(LME) model.

Vj generated from the intact space X, the view insufficiency can be expressed by
I(X; Vj |Vi) that measures how much information is shared between the intact
space X and the newly generated view Vj given the known view Vi. Given,
multiple viewsMv generated from the complete intact space X, the information



Table 1: Major mathematical notations used in this paper.

Mathematical notation Definition

n number of subjects

Vk brain network of the k view of subject n in Rnr×nr

Mv set of subject-specific multi-view morphological networks

Fk matrix including features vectors extracted from the kth brain network view k of all subjects

Fk
s feature vector extracted from the brain network of the k-th view for subject s

Xn a sample in the intact space X represented by K feature vectors Fk in Rdkf

where dkf is the feature dimension of the k-th view

Wk a mapping function of a specific feature view Fk, representing all subjects in X
Sc connectional similarity matrix in Rn×n

m2
c learned intact connectional brain morphometricity

y the phenotype vector that describes the clinical state of samples (e.g., healthy or disordered)
Σ the covariance matrix that contains data of covariate variables such as age and gender
fe the LME fixed effect vector

re ∼ N(0, vaSc) a random effect vector resulting from a zero-mean multivariate Gaussian distribution
with a covariance matrix Sc

ε the noise vector with variance ve

obtained to learn X is measured by:

I(X; V1,V2, . . . ,Vk) =

k∑
i=1

I(X; Vi−1,Vi−2, . . . ,V1) (1)

Thus, learning X can be formulated as a minimization problem based on Eq.
1 so that X = minX L(X;V 1, , V k) where L(.) is the loss function l(.) over the
samples on different views. Considering Wk a mapping function of a specific
feature view Fk representing all subjects in the intact space X, the intact space
X learning is formulated as follows:

min
X,Wk

1

K

K∑
k=1

∥∥Fk −WkX
∥∥2

F
+ λ1 ‖X‖2F (2)

where λ1 ‖X‖2F is a regularization term used to penalize the intact space X and
λ1 is a non-negative parameter.

Following the learning of the intact space X, one can learn an intact similarity
matrix Sc between subjects across views by maximizing its dependence with
the intact space X. This results in connecting the data points based on their
locality –i.e., only the nearest neighbors observations of a specific point can be
connected to this point rather than all other observations. Hence, the multi-view
morphological similarity learning can be formulated as follow:

min
Sc

λ2

n∑
i=1

n∑
j=1

‖Xi −Xj‖1 Scij + γ ‖Sc‖2F (3)

where γ ‖Sc‖2F is used to prevent Sc from converging to identity matrix. λ2 and
γ are non-negative parameters. Additionally, in order to handle noisy samples,
we adopted the l1 distance instead of l2.



Since the connectional similarity matrix Sc is derived from the intact con-
nectomic space X, we combine both models of Eq. 2 and Eq. 3 into a joint
alternating optimization framework where the learning of the intact space is
influenced by the learning of the similarity matrix and vice versa:

min
X,Wk,Sc

1

K

K∑
k=1

∥∥Fk −WkX
∥∥2

F
+ λ2

n∑
i=1

n∑
j=1

||Xi −Xj ||1Scij + γ ‖Sc‖2F (4)

Intact Connectional Brain Morphometricity estimation. Next, we pro-
pose to use the learned intact morphological similarity matrix Sc to estimate the
intact connectional morphometricity. Specifically, we are using the Restricted
Maximum Likelihood (ReML) [11] to fit the Linear Mixed Effect (LME) model
described as follows:

y = Σ ∗ fe + re + ε, (5)

Where y denotes the phenotype vector that describes the clinical state of
samples (e.g., healthy or disordered subject), Σ is the covariance matrix that
contains data of covariate variables such as age and gender, fe is the fixed effect
vector, re ∼ N(0, vaS

c) is a random effect vector resulted from a zero-mean
multivariate Gaussian distribution with a covariance matrix Sc, and ε denotes
the noise vector with variance ve. We then define the intact connectional brain
morphometricity mc as:

mc =
va

va + ve
=
va
vc

(6)

Where va is the variance captured by Sc and vc is the phenotypic variance.
The proposed ICBM can thus described as the proportion of phenotypic variation
that can be explained by morphological brain connectivity.

3 Results and Discussion

Data parameters. We evaluate the proposed framework on 341 subjects (155
ASD and 186 NC) from Autism Brain Imaging Data Exchange (ABIDE)1, each
represented using four morphological brain networks constructed using the fol-
lowing cortical measurements in the right and left hemispheres: mean maximum
principal curvature, mean cortical thickness, mean sulcal depth, mean of aver-
age curvature. For more details about MBN construction strategy, we kindly
refer the reader to [8, 6]. Three parameters were tuned using grid search: the
dimension of the intact space, λ2 is a non-negative trade-off parameter and nk
is the number of nearest neighbor of a specific sample in X. Specifically, using
a grid search strategy we tuned one parameter by fixing the others using 5-fold
cross-validation for the left and the right hemispheres, independently.

1 http://fcon 1000.projects.nitrc.org/indi/abide/



Estimating ICBM using different combinations of brain network
views. Given our 4 brain network views, we first constructed all possible com-
binations using 2, 3, and 4 views, respectively. This allows to investigate the
ICBM using different combinations of views as mapped onto the intact space.
For instance, using two views, we generate C2

4 ICBMs, each for a specific pair of
views. Next, we report in Fig. 2 the average ICBM across all pairings along with
the standard deviation. For comparing the estimated intact connectional brain
morphometricity across hemispheres, we report in Fig. 2–A ICBM estimates
when tuning the parameters for the left hemisphere (LH) and then fixing them
for the right hemisphere (RH), whereas in Fig. 2–B, the ICBM parameters are
tuned using the RH.

Fig. 2: Intact connectional brain morphometricity (ICBM) estimates using three
different combinations of brain four views: mean maximum principal curvature,
mean cortical thickness, mean sulcal depth, mean of average curvature. (A)
ICBM estimated while fixing the model parameters using the left hemisphere
(LH). (B) ICBM estimated while fixing the model parameters using the right
hemisphere (RH). Blue bars display ICBM for the LH and orange bars display
ICBM for the RH.

Fig 2 shows the association between multi-view morphological networks and
ASD, assessed using the ICBM. Specifically, our preliminary analyses indicate
that this particular clinical condition is not significantly morphometric since all
intact connectional brain morphometricity estimates were smaller than 0.8 as
explained in [4]. Fig 2 also shows that the right hemisphere (orange bars) is
more morphometric than the left hemisphere on a ‘connectional’ level. This is
in line with the findings of [7], where MBNs derived from the right hemisphere
produced the best classification accuracy in distinguishing between ASD and NC
subjects, which might indicate that right hemispheric connectional features have
more discriminative power than the left hemisphere when leveraging high-order
morphological information such as correlation between cortical measurements.
We also note that both Fig 2–A and Fig 2–B exhibit similar trends where the



estimated of ICBM for RH is higher than LH for three- and four-view based com-
binations. As for two-view based combination, we note that ICBN is somewhat
invariant across cortical hemispheres.

4 Conclusion

In this work, we introduced the intact connectional brain morphometricity, a
metric that is learned using multi-view morphological brain network data for
identified the connectional morphometric fingerprint of a specific trait (e.g.,
autism spectrum disorder). Our preliminary results revealed that autism is not
significantly morphometric on a connectional level. However, we found that the
right hemisphere is more morphometric than the left one. In our future work,
we will evaluate the proposed ICBM learning framework on other disordered
datasets (e.g., dementia). It would be also interesting to compare conventional
brain morphometricity [4] to the connectional one.
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