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Abstract: Shape memory alloys (SMAs) are smart materials used in robotics because of its light weight
and high force-to-weight ratio. The low energy efficiency, up to 5%, has limited their use for large
actuators. However, they have shown advantages in the design of mini-robots because of the limited
volume required for the actuation system. The present study reports the design and construction
of a mini compliant joint (MCJ) with a 2 degrees of freedom (DOFs) intersecting axis. The MCJ
prototype has a 20 mm external diameter surrounding a cavity of 8 mm, weighs 2 g, is 20 mm high
and can perform an angle rotation of 30◦ in less than 260 ms. It uses SMA NiTi wires in antagonistic
configuration and springs to reduce the energy consumption and minimise heat production. The
design methods and experimental results of the manufactured prototype are reported and discussed.

Keywords: 2 DOFs compliant joint; SMA wires in antagonistic configuration; robotics

1. Introduction

The design and construction of a mini-snake-like robot (SLR), particularly for endoscopy,
is challenging because of the narrow space available and the total length of the gastrointestinal
tract. If the design includes a hollow centre, traditional instruments for biopsy or intervention can
be used, which represents an important requirement for the clinical user. Several designs have been
reported for SLR devices, most rely on cable-transmission with remote motors controlling each joint,
using various control strategies [1–4]. Clinically, a few SLR have been developed for Minimal Access
Surgery (MAS). Choi et al. [5] designed an 8 mm mini-endoscope, 104 mm in length, composed of
7 passive segments, and attached to a spring backbone. The system is equipped with three cables
used for actuating the endoscope. The SLR for colonoscope reported by Hu et al. [6], which measures
12 × 600 mm, consists of sections, each actuated remotely by two cables driven by two DC (Direct
Current) servomotors.

The design of a SLR using external motors and cables for actuation has certain advantages,
including low weight and inertial moment. However, on the downside, each cable has to extend
the entire length of the robot for effective control. Additionally, each DOF requires two cables (or
a cable/spring combination), which would increase cable friction and the external diameter [7–10].
For medical applications, the ideal design can be obtained by an actuation system embedded inside
the robot [11]. The key issues then concern size and performance of the actuator, which has to meet
three requirements: (i) high torque-force-to-weight ratio; (ii) articulated actuation to allow the robot to
adapt readily to its surrounding environment; (iii) back-drivability and flexibility allowing passive
adaptation of robot shape to that of the surrounding environment without any active control.

A traditional DC or a piezoelectric motor [12–18], would not be the ideal if the design involves
embedding each motor within the robot because of weight and size issues. In contrast, SMA wires,
widely used to design joints with multiple DOFs provide a better solution [19]. They can be used in

Materials 2018, 11, 2014; doi:10.3390/ma11102014 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-8130-9701
https://orcid.org/0000-0003-0764-5947
http://dx.doi.org/10.3390/ma11102014
http://www.mdpi.com/journal/materials


Materials 2018, 11, 2014 2 of 13

various configurations, including: (i) antagonistic [20–22], (ii) with elastic joint [23] and (iii) mixed
antagonistic-elastic joint [24,25]. For neurosurgical applications, Ho et al. [26] proposed an SMA
actuator based on an active link consisting of two segments: 9 × 13 mm and 10 × 12 mm with a
pulley to amplify the SMA movement. In this system, the slow response time (12 to 20 s) required
to bend the joint from 0◦ to 30◦ limits the mechanical bandwidth performance. In the antagonistic
configuration, SMA wires can be used with a spring in series for each SMA [27,28]. A recent study [29]
proposed to use SMA wires in antagonist configuration serializing two springs, one for each SMA in
order to improve SMA reliability by reducing stress. The joint has 2 DOFs with intersecting axes and
the SMA wires are in a straight configuration. However, the time to reach a designated configuration is
increased because the springs are directly connected to the SMA wires. Additionally, it impacts on the
total length of the actuator. Manfredi et al. [30] reported a mini rotary actuator by using SMA wires in
antagonistic configuration with on-board position and torque sensors. This study described the use of
SMA wires for mini robotics applications requiring a high mechanical bandwidth, up to 10 Hz, with a
low power consumption.

The present study concerns a novel patented [31] mechanical design of a hollow joint for
the construction of a SLR-endoscope based on use of SMA wires in an antagonistic configuration
and intersecting axis. Its design consists of a primary and secondary transmission decoupled by
a symmetrical torsional spring to improve the performance in terms of energy efficiency and heat
reduction. The frame is a simple and compact homo-kinetic hollow joint with a light but stiff structure.
The output torque varies with the diameter of the SMA wires used, although to ensure a high
mechanical bandwidth this should not exceed 100 µm. The joint was constructed by using a 3D
printer and open-loop step response experiments are reported.

The described design offers three advantages compared with the previous reported studies
of rotary actuators by using SMA in antagonistic configuration: (i) internal cavity for cabling
or instruments channels, (ii) compact design by using pulleys to reduce the overall length and
provision of 2 DOFs; (iii) inclusion of a torsional spring to confer a compliant behaviour with a
low power consumption.

2. The Mini Compliant Joint Design

The joint design is symmetric with 2 DOFs using 2 SMA wires in an antagonistic configuration
with a torsional spring for each DOF; thus, comprised of 4 wires and 2 springs in total as it is shown
in Figure 1. The torsional spring decouples the SMA wires from external forces, thereby providing
a flexible and passive compliant behaviour, with reduced energy consumption, diminished heat
generation and a safe stable mechanism [32]. Additionally, the spring reduces the impact of any
external torque on the system increasing the SMA life [29]. With the SMA wire in antagonistic
configuration, the operative range of each joint is related to the length of the wire, which can be
εS = 5–7% of its total length [33]. To reduce the length of the joint, the SMA wire is coiled inside the
frame using pulleys (accommodating the wire around the shape of the frame) in order to decrease the
friction, hence increase overall efficiency.

The actuator is composed of three main parts as shown in Figure 1: an upper frame (Frame 1),
a lower frame (Frame 2) and a central frame (Joint frame), which functions as a link between the upper
and the lower frames. As the configuration is symmetric, only the upper frame is described. Each
frame has a pulley actuated by means of the 2 SMA wires in antagonist configuration. The pulley is
linked to the central frame by a torsional spring resulting in a passive compliant joint as shown in
Figure 2b and described in detail in Section 2.1. The joint design was optimised by Finite Element
Analysis (FEA) to define the thickness and shape to reduce the weight of the joint, before its initial
production by a 3D printer. In the final version, the external diameter and length are equal and measure
20 mm. The weight of the frame without the electronic system is 2 g.

Both SMA wires can be independently controlled to achieve the desired angle and to change
the stiffness of the system by regulating the temperature of each wire. The stiffness can be adjusted
by pulling simultaneously the two SMA wires in an antagonistic configuration, adjusting the force
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applied by each wire, although this requires precise control of the current provided to each SMA wire.
The choice of the spring properties defines the stiffness of the system of the compliant joint.

The torsional spring located between the two pulleys decouples the primary from the secondary
pulley. The torsional pulley can provide a maximal torque of 3 Nmm.

Figure 1. Frame of the 2 DOFs MCJ. CAD design, 20 × 20 mm and an internal hollow area of 8 mm
diameter. It has two intersecting axes, roll (β1) and pitch (β2) (counter-clockwise rotation around the X
axis and counter-clockwise rotation around the Y axis), each joint is actuated by means of two SMAs
wires in antagonist configuration with a torsional spring to decouple the joint in order to achieve
a compliant mechanism, reduce the heat and increase the efficiency of the system. The 1st DOF is
controlled by activating SMA3 (clockwise) and SMA4 (counter-clockwise), while the 2nd DOF by SMA1

(clockwise) and SMA2 (counter-clockwise).

Figure 2. (a) Joint with 2 DOFs, where β1 and β2 are the angles around the 2 intersecting axes X and Y,
with a desired range of 30◦; 2RS is the diameter and 2R0 the length of the joint. FS1 is the force produced
by SMA1 with a clockwise rotation, and SMA2 produces a force FS2 and a counter-clockwise rotation.
(b) Joint working principle, where a torque τSM is the result of two forces FS1 and FS2. The output
torque, τO is decoupled from τSM by means of a torsional spring to reduce the energy consumption
and stress on the SMA wires.

2.1. Working Principle

The joint has 2 DOFs with 2 intersecting axes, X and Y as shown in Figure 2a. A pair of SMA
wires in antagonistic configuration is required to control each axis; 4 SMA wires in total to assemble
the joint. The working principle of each axes is showed in Figure 2b and Equation (1) describes the
statics when τS = −τO:
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τS = (FS2 − FS1)× RS = K× α = −τO (1)

K =
−τO

αMAX
=

τS
αMAX

(2)

where FS1 and FS2 are the forces produced by each SMA wire, τO is the output torque, τS is the resultant
torque produced by the SMA wires antagonist configuration, K the torsional spring elastic constant
(considering the Hooke’s law for a linear spring), RS and β are the radius (6 mm) and the angle of
the torsional pulley, R0 is half of the joint length (10 mm), α the angle of the torsional spring, αMAX
the maximal compliance angle. Equation (2) defines K of the torsional spring to achieve the maximal
compliance angle αMAX .

When the power supply is off, an SMA wire provides a residual force of about FMAX/3 [24,34],
where FMAX is the maximal contracting force, which equates to a residual torque of τS/3. This residual
force has been experimentally investigated in Section 3.3.

FS = FMAX −
1
3

FMAX =
2
3

FMAX (3)

This allows the joint to have a residual compliance of αMAX/3 with no need for external power
and a consequent reduction of energy consumption. Each joint can provide an output torque τO as
described by the equation:

(
2
3

FMAX)RS = τMAX (4)

which is reduced by circa 1/3 due to a residual strain of the opposite antagonistic SMA wire when
it is not powered. The residual torque can be adjusted by controlling the temperature of the SMA to
increase joint stiffness.

The performance of the system is determined by a balanced interaction of three parameters:
diameter of the SMA wire dSMA, diameter of the pulley 2RS, and the joint length 2R0, which in turn
determine the output torque τO , the output force F0, the angular motion range βMAX , the arc range
of motion LMAX , the mechanical bandwidth fMAX of the system, the angular velocity ωMAX and the
radial velocity vMAX .

Increase in dSMA decreases τO, ωMAX and the radial velocity vMAX. Additionally fMAX will be
reduced because the thicker wire increases the response time. Both the βMAX and the LMAX will not
be altered.

Increase of the pulley diameter 2RS, reduces the output parameters fMAX , βMAX , LMAX , ωMAX ;
vMAX will be reduced but the τO will increase because of the higher cantilever configuration.

R0 increases directly both LMAX and vMAX without any effect on the other parameters. Table 1
shows the correlation between the system design parameters and the system output performances.

Table 1. Correlation of the system design parameters.

dSMA RS R0

τO ↑ ↑ =
fMAX ↓ ↓ =
βMAX = ↓ =
LMAX = ↓ ↑
ωMAX ↓ ↓ =
vMAX ↓ ↓ ↑

2.2. Design of SMA Wires

The length of the wire is crucial to the overall design since this impacts on the range of motion of
the joint ±βMAX . If a reasonable range of joint motion needed is of 30◦, the extension of the SMA wire
is described by the equation:
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∆L = 2βMAXRS (5)

where ∆L is the SMA elongation, ±βMAX is the joint range, and RS is the radius of the SMA pulley.
Assuming βMAX = 15◦ = 15× π/180 radians, and RS = 2 mm, ∆L is described by:

∆L = 2× 15× π/180× 2

= 1.03 mm
(6)

and elongation described by Equation (6):

∆L = εL (7)

L =
∆L
ε

=
1.05
0.03

= 35 mm

(8)

Hence 35 mm is the required minimum SMA wire length, with ε = 3% being considered as a
precautionary limit. The reason for this consideration is also related to the mechanical stability of SMA
wires. This mechanical behaviour has not been addressed in this study although this is related to the
strain that can be recovered when the SMA is activated therefore the range of motion of the actuator.
Several studies on SMA fatigue have shown limited degradation with a maximal strain of 4% after
5 × 105 cycles [35,36].

To achieve a compromise between a low power consumption but a good mechanical bandwidth,
SMA wires used in this design have a low temperature profile of 70 ◦C (Flexinol R© produced by
Dynalloy R© Inc., Irvine, CA, USA) with a mechanical performance, heating and cooling time, reported
in Table 2. SMA wires with higher temperature profile have a higher mechanical bandwidth although
they require a higher activation current. This phenomenon is related to the higher difference in
temperature between the SMA wires and the environment, which increases the heat dissipation and
therefore it reduces the deactivation time, TOFF in Figure 3a. The robust nature of the frame, permits
use of different wire gauges. To achieve a high bandwidth, the SMA wires selected have a diameter
of 50, 76, 100 µm because the switch on-off time varies according to diameter of wire, i.e., 1.0–0.3
to 1.0–0.5, and 1.0–0.8 s. Thicker SMA wires can be employed but would incur increased energy
consumption and reduction of mechanical bandwidth [30].

An SMA wire of length L and diameter d, will have a volume proportional to L× d and a surface
to d2, therefore unit surface per volume is proportional to d−1. A narrow wire is desirable because the
heat generated is proportional to the surface area of the wire.

Figure 4a reports two graphs taken from the Dynalloy R© SMA wires datasheet, d vs. TOFF time,
and d vs. FOUT . To achieve a mechanical bandwidth of 1 Hz, the SMA wire requires a diameter of
d < 100 µm (Figure 4a-top graph; it can produce a force of FOUT < 1.5 N (Figure 4a-bottom graph),
thus achieving a good mechanical bandwidth.

Table 2. SMA wires performances in terms of heating, cooling time, and output force, used in the
proposed joint design in antagonist configuration.

Size dSMA Total Length Time ON/OFF Force

(mil) (µm) (mm) (s) (mN)

2.00 50.8 40 1–0.3 350
3.00 76.2 40 1–0.5 800
4.00 101.6 40 1–0.8 1500
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Figure 3. (a) SMA wire Flexinol R© produced by Dynalloy R© Inc. performance in terms of SMA
wire diameter vs. Force (top graph) and SMA wire diameter vs. TOFF (bottom graph). To achieve a
mechanical bandwidth above 1 Hz, the SMA wire diameter should not exceed d < 100 µm. (b) In the
worst scenario, up to 95% of the power supplies the SMA wires. Control algorithm, signal processing
and sensors use only a minimal amount of the overall energy available to the system. However, this
increases when the SMA wires are not activated and the mechanical system is moving passively by the
compliance behaviour provided by the torsional springs. The advantage of this passive mechanical
solution is that when the SMA wires are not active, the energy consumption sink from the actuation
system is zero. (c) Proposed distributed control hardware using a parallel bus (e.g., I2C) and power,
to achieve a modular system and to simplify the cabling of the robot. Each module is able to control
one joint by using a closed-loop position control. This hardware is connected to an external PC and
data exchanged by means of an I2C communication bus.

Figure 4. (a) Prototype of the miniaturised compliant 2 DOFs 3D printed joint composed of frame 1 and
2, a joint frame, pulleys and four SMA wires. (b) MCJ time vs. amplitude when a step voltage profile
from 0 to 3.5 V is applied to each SMA wire, performing a position control moving the joint clockwise
(top graph), SMA3-ON, SMA4-OFF, and counter-clockwise (bottom graph), SMA3-OFF, SMA4-ON,
showing mean and standard deviation values of the angle position.
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The mechanical property of the spring was selected to have a compliance range up to ±10◦ when
the maximal torque τMAX is applied to the system.

The overall size of the joint is reduced by using pulleys although they can increase the fatigue
stress of the SMA wires, with a consequent reduction of the life time of the joint. The bending stress
produced by a pulley is described by the following equation:

εmax =
d/2

RS + d/2
(9)

where εmax represents the maximal normal strain.

2.3. Powering and Heating

One issue of SMA is its low energy efficiency, up to 5–7%, which has limited its use in actuator
systems. The low efficiency induces heat generation which in turn alters the resistance of the SMA,
described by:

ρ = ρ0L (10)

where ρ0 is the resistance per cm, L is the wire length, and ρ is the resistance of the whole wire. In the
worst case scenario at full power up to 95 % of this energy is lost as heat in the SMA wires.

Table 3 illustrates the resistance values of the wires used in the design. The power consumption
of the actuator is not a constant value, because it depends on the heat dissipation, being higher initially
and then reducing slightly [37]. In the present experiments, the power reached 212–525–700 mW
(Table 4). Future R&D will be directed to optimization of the control to increase the efficiency of the
SMA. In a robot design the compliant behaviour of the component actuators reduces the need for
keeping the SMA wire active due to the passive mechanical behaviour of the springs, which reduces
the energy required for locomotion (Figure 3). In addition, previous studies reported by the authors
have shown a low power consumption by a rotary actuator whilst maintaining a desired angular
position [30,38,39].

Table 3. SMA resistance for a 40 mm wire long, which is the worst scenario when both SMA wires are
activated.

dSMA Resistance Length Resistance

(mil) (µm) (ohm/cm) (mm) (ohm)

2.00 50 4.72 40 18.9
3.00 76 1.97 40 7.87
4.00 100 1.18 40 4.72

Table 4. SMA powering experiment text.

Size Current Voltage Power

(milliinch) (µm) (mA) (V) (mW)

2.00 50 85 2.5 212
3.00 76 150 3.0 525
4.00 100 200 3.5 700

3. Results

3.1. Frame Prototype

The design intentionally achieved a light joint with a high output torque. Hence particular
attention was paid to produce a light but robust frame. The first prototypes were constructed by
3D printing (Stratasys Ltd. R©, Eden Prairie, MN, USA), using Polyjet RGD525 polymer (Table 5).
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This approach enabled construction and testing of several prototypes, with the frame weight being
gradually reduced by removing material in the unstressed sections as indicated by the FEA.

Table 5. Mechanical properties of the Polyjet RGD525 used for the manufacturing of the frame.

Units Metric Units Imperial

Tensile Strength MPa 70–80 psi 10,000–11,500
Elongation at Break % 10–15 % 10–15

Modulus of Elasticity MPa 3200–3500 psi 465,000–510,000
Flexural Strength MPa 110–130 psi 16,000–19,000
Flexural Moduls MPa 3100–3500 psi 4,500,000–510,000

Polymerized Density g/cm3 1.17–1.18

The analysis was performed using SolidWorks simulation software (2016). External forces were
applied to 2 sections of the frame. One section is the SMA wires with connection to the main pulley
because of the stress produced by the wires when activated. The other is top section of the frame to
which one or more MCJs will be connected. In the analysis, the bottom section of the MCJ is defined as
fixed. Figure 5 shows the FEA of the MCJ applying 2 forces of 10 N each, superior to and lateral to the
frame (violet force in the figure) and the fixed section (green force). The simulation reports the ESTR
and URES values, ESTR representing the equivalent strain and the URES, the U value of the resultant
of the displacement in millimetres.

The frame weight of the final prototype is 2 g. In order to reduce the joint friction, four miniature
pins (thickness of 1.5 mm) were constructed using Delrin R©. Pulleys around the frame served to reduce
both the overall length of the actuator and the friction SMA wires fixed to each frame. This allowed
coiling of the wires around the frame. The size of the pulley influences the level of friction and hence
the efficiency of the joint. Increase in diameter would reduce friction, although this would be at the
expense of internal joint space. The joint frame is connected to the upper and lower frame by means of
4 frame support metal pins.

Figure 5. FEA: two forces of 10 N each, are applied on the top and lateral side of the joint, as shown in
the figure. The left picture depicts the strain stress, and the right, the displacement.

3.2. Electronic and Control

As with the mechanical design, the electronic control needs to be located in each independent
joint, embedding all the required hardware to control the 2 DOFs as shown in Figure 3c. For this
reason, the electronic system must consist of a distributed nature, using a parallel bus to exchange
control data.
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A preliminary prototype of the control hardware has been implemented with an off-the-shelf
electronic board to investigate the performance of the MCJ. It consists of a 16 bits DSP (Digital Signal
Processor) Microchip, where the low-level control is implemented in C code. It uses an open-loop
control that changes the duty cycle of the PWM (Pulse Width Modulation) of the output voltage to
each SMA wire. The firmware receives commands from an external PC (Personal Computer) through
an I2C bus protocol. Four wires are needed for the actuator: two providing power, and two for a serial
communication bus. Four MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) and current
sensors are used to regulate the power for each wire. In the snake configuration made with several
Miniature Compliant Joints (MCJs), a mid-level control will be implemented in a main control board at
the distal end of the robot. In view of the requirement for fast advanced computation, high-level control
e.g., as inverse kinematics, navigation and image processing, will be provided by an external PC.

3.3. SMA Force and Current Profile

Experiments to define the residual strain and force have been performed. An SMA wire with a
diameter of 100 µm at room temperature has been tested by using an Instron R© 5564 dual columns
(High Wycombe, Buckinghamshire, UK). One end of the SMA wires was attached to the force cell
(50 N) and to an external power supply. The other end was connected to a grounded base. The rest
position was considered as the length of the SMA wire after heated with 150 mA for 5 s and cooled
down for 1 min. The Instron was programmed to provide a ramp position profile with a speed of
0.05 mm/s from the original position up to a strain of 4%. The experiments were repeated 5 times
each and the mean value plotted into the graph as shown in Figure 6, when no current (blue line) and
200 mA of current (red line) was applied. It is shown that the maximal force produced by the wire
when activated (5.35 N) is more than 3 times higher than the residual maximal force produced by the
SMA wire when it is not activated (1.56 N). This residual force is used to design the actuator to keep a
commanded position reducing the needed power and performing a compliant behaviour, as described
in Section 2.1.

Figure 6. (a) Stress vs. strain profile of an SMA wire with a diameter of 100 µm when the wire is not
activated (blue line) and when it is activated with 200 mA of current. (b) Experimental set up for testing
of the SMA wire by connecting one end to both an external power supply and the Instron. The other
end is grounded.

Figure 6a shows the characteristic hysteresis profile of SMA wires. The blue line shows wire when
not activated (in the martensite). The external force produced by the Instron stretches the wire with
a limited recovery of the original shape on unloading. The activated wire shown by the red line is
associated with an increase in the temperature and transition from martensite to austenite. The increase
of the external force stretches the SMA wire. When the Instron force is reduced, the phase wire changes
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from the austenite to the martensite phase. This transition is responsible for the hysteresis in the force
vs. strain profile.

3.4. Angle Position Profile

Figure 4a shows final prototype constructed by 3D printing and tested using three different SMA
wires to assess the mechanical performance of the actuator. Only 1 DOF was activated and tested since
the design has a symmetry and the mechanical principle is the same. The prototype compliant actuator
consists of three parts: upper frame (Frame 1) and lower frame (Frame 2) both with a diameter of
20 mm, and a length of 11 mm, and a linker (15.2 mm diameter), which connects both frames by four
1.5 mm pins and two torsional springs, as shown in Figure 4a. All the experiments were performed
at room temperature and by using low temperature (LT) standard Flexinol R© actuator SMA wires
produced by Dynalloy R© Inc. (Irvine, CA, USA). The power provided for each 40 mm wire is shown in
Table 4. The mean response time of the system is below 260 ms, which is also the time taken to achieve
an angle of 30◦. During these preliminary experiments, no heating problems were encountered.

Figure 4b shows a rotation angle profile exhibiting a good mechanical bandwidth and range of
motion. The experiments were performed three times for each angle profile, and the graphs report
mean values and standard deviation. The MCJ is actuated by supplying each 100 µm SMA wire
with a 3.5 V step voltage profile and a maximal current of 200 mA. A power ground is connected
to the junction of the 2 SMA wires next to the pulley inside the joint frame. Both angle profiles
(counter-clockwise and clockwise), show a similar performance. The asymmetric profile is related to a
small difference in the length of each activated SMA wire, which translates into different resistances
and therefore different current supplied. This limitation can be avoided by the use of a closed-loop
control with and on-board position sensor [30].

4. Discussion and Conclusions

A 2 DOFs joint (20 × 20 mm), with an internal diameter of 8 mm, and weighing 2 g is described.
It is actuated by 4 SMA wires in antagonistic configuration with 2 torsional springs and a range of
30◦. The preliminary experiments have shown that the actuator design provide a good performance,
including mechanical bandwidth, power supply, and light weight.

The experiments with different SMA wires confirmed generation of a wide range of forces needed
to cope with different frame robustness. SMA has a low energy efficiency that can vary from 5% to 7%,
therefore there is a requirement for an efficient system of heat dissipation. Several considerations were
necessary to achieve the final design to minimise overheating. The MCj’s frame can be made of metal
and can be used to dissipate the heat produced considering that the mass of the SMA wires is negligible
compared to that of the joint. An advantage of this design in reducing the heat production is the use of
a passive compliant system by means of a torsional pulley. This solution allows the SMA wires not
always to be active, reducing overheating, without compromising its compliant behaviour. Even so,
the overall temperature needs to be monitored. The low-level control can monitor the temperature
and reduce the performance in the event of overheating. A flexible skin is also needed to protect the
mechanism of the joint and to avoid any electrical leakage with an external material. Also, the pulleys
where the SMA wire is in contact require to be constructed from non-electrically conductive material.

When more joints are connected, to form a tethered snake-like robot, the high-level locomotion
control can reduce the overall heat using different strategies, by considering a residual torque of each
joint when the power is off. Another strategy would be avoiding simultaneous activation of all the
joints; instead it will ensure sequential activation or activation only of the advancing joints at the tip
of endoscope. In essence, the environment will not be affected by overheat for the following reasons:
(i) the SMA wires are not exposed and are not touching the external environment; (ii) the negligible
mass of the SMA wires compared to the frame allows to dissipate the excessive temperature by using
metal; (iii) the passive compliant mechanism reduces the need for keeping the SMA wires always
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active; (iv) we have proved in a previous study that the required energy to keep a desired angular
position with SMA in antagonistic configuration is low [30].

The frame was confirmed to be mechanically stable without any evidence of mechanical backlash.
The system for coiling the SMA inside the frame requires improvement, possibly by using a different
material for the pulleys together with improved manufacturing to reduce the friction and to ensure
smooth rotational movements and durability, e.g., by using a miniaturised ball bearing inside each
pulley. Other improvements are needed in relation to (i) manufacturing process and (ii) the electronics
system including actuation control strategy.

The manufacturing process can be improved by using different materials (e.g., aluminium,
titanium), which are lighter and stronger, to reduce the weight and increase heat dissipation.
The current experiments have confirmed that the SMA wires can be coiled inside the frame by means
of small pulleys to reduce the friction and the overall dimensions of the joint. In this context, the size
and friction of the pulley is crucial to the smooth performance of the actuator.

Different control strategies can be implemented. This includes the use of a sensor-less position
and torque joint control [30,37]. The efficiency and the system dynamics can also be improved by
adjusting the current provided to each wire. This will however require cooperative control of the
antagonist SMA wires to adjust the stiffness of the actuator. The efficiency and the system dynamics
will benefit from improved control of the current provided to the wire. The energy consumption of
each joint requires a tether to supply the power needed, which can also be used to stream video images
captured by an on-board camera.

5. Patents

Aspects of this technology are protected by GB Patent Application GB201407490D0.
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The following abbreviations are used in this manuscript:

SMA Shape Memory Alloy
MCA Mini Compliant Joint
DOF Degree of Freedom
MAS Minimal Access Surgery
SLR Snake Like Robot
FEA Finite Element Analysis
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