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Abstract  

Hypoxic pulmonary vasoconstriction (HPV), which aids ventilation-perfusion matching in the 

lungs, is triggered by mechanisms intrinsic to pulmonary arterial smooth muscles. The unique 

sensitivity of these muscles to hypoxia is conferred by mitochondrial cytochrome c oxidase subunit 

4 isoform 2, the inhibition of which has been proposed to trigger HPV through increased generation 

of mitochondrial reactive oxygen species. Contrary to this model, we have shown that the LKB1-

AMPK-α1 signaling pathway is critical to HPV. Here, spectral Doppler-ultrasound revealed that 

deletion of the AMPK-α1 catalytic subunit blocked HPV in mice during mild (8% O2) and severe 

(5% O2) hypoxia, whereas AMPK-α2 deletion attenuated HPV only during severe hypoxia. By 

contrast, neither of these genetic manipulations affected serotonin-induced reductions in 

pulmonary vascular flow. HPV was also attenuated by reduced expression of LKB1, a kinase that 

activates AMPK during energy stress, but not after deletion of CaMKK2, a kinase that activates 

AMPK in response to increases in cytoplasmic Ca2+. Fluorescence imaging of acutely isolated 

pulmonary arterial myocytes revealed that AMPK-α1 or AMPK-α2 deletion did not affect 

mitochondrial membrane potential during normoxia or hypoxia. However, deletion of AMPK-α1, 

but not of AMPK-α2, blocked hypoxia from inhibiting KV1.5, the classical “oxygen-sensing” K+ 

channel in pulmonary arterial myocytes. We conclude that LKB1-AMPK-α1 signaling pathways 

downstream of mitochondria are critical for the induction of HPV, in a manner also supported by 

AMPK-α2 during severe hypoxia.  
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Hypoxic pulmonary vasoconstriction (HPV) (1) diverts blood flow from oxygen-deprived to 

oxygen-rich areas of the lung, thus matching perfusion with ventilation (2). However when 

triggered by prolonged and widespread hypoxia, such as during ascent to altitude (3) or disease 

(such as cystic fibrosis), HPV can cause hypoxic pulmonary hypertension (HPH) leading to right 

heart failure (4). 

HPV is initiated by airway hypoxia rather than by vascular hypoxaemia (5), through constriction 

of pre-capillary resistance arteries by signalling pathways that are intrinsic to their smooth muscle 

and endothelial cells (6-8), and are independent of blood-borne mediators or the autonomic nervous 

system (9, 10). The initiation phase of acute HPV is driven by smooth muscle constriction, which 

is later augmented by an endothelium-derived vasoconstrictor (6, 11). The threshold for HPV is 

≈80 mm Hg O2 (12), beyond which the magnitude of HPV increases with the degree of hypoxia. 

The unique oxygen-sensitivity of pulmonary arterial myocytes is conferred by mitochondrial 

cytochrome c oxidase subunit 4 isoform 2 (COX4I2), the deletion of which blocks HPV (13). HPV 

has been proposed to be triggered by increases in mitochondrial reactive oxygen species (ROS) 

upon inhibition of mitochondrial metabolism at the COX-COX4I2 complex (13). In this respect, 

however, it is evident that COX-COX4I2 deletion will not only compromise mitochondrial ROS 

production during hypoxia, but will also raise the threshold at which hypoxia evokes increases in 

the cytoplasmic AMP:ATP / ADP:ATP ratios (13). This is critical because we previously proposed 

that HPV is mediated not by ROS but by the AMP-activated protein kinase (AMPK) (14). 

Supporting this notion, small molecule AMPK activators induce pulmonary artery constriction by 

mechanisms similar to those employed by hypoxia (14), and each of these stimuli are mutually 

exclusive with respect to inhibition of KV1.5 (15), the archetypal oxygen-sensing potassium 

channel in pulmonary arterial myocytes (8, 16). That said, ROS have been proposed to activate 

AMPK directly (17, 18), although this view has been controversial (19, 20).  
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AMPK is a cellular energy sensor that occurs as heterotrimeric complexes comprising one catalytic 

α subunit (1/2) in combination with one β (1/2) and one  subunit (1/2/3); these subunit 

isoforms generate up to 12 different combinations, with different sensitivities to metabolic stress 

and the capacity to regulate different downstream targets (21). In response to metabolic stresses 

such as hypoxia and mitochondrial poisons, binding of AMP to the γ subunit increases AMPK 

activity by up to 10-fold through allosteric activation. However, it is the upstream kinase liver 

kinase B1 (LKB1) that is most critical to AMPK activation under these conditions. LKB1 is thought 

to be constitutively active (22, 23). Upon binding of AMP and/or ADP to the AMPK γ subunit, 

phosphorylation of Thr172 on the  subunit is enhanced, and dephosphorylation of Thr172 inhibited, 

yielding up to a 100-fold increase in AMPK activity through a net increase in phosphorylation of 

Thr172 by LKB1. All three of these effects are blocked by high concentrations of ATP. AMPK 

activation may also be triggered independently of metabolic stresses, through increases in 

intracellular Ca2+ and increases in Thr172 phosphorylation mediated by the calmodulin-dependent 

kinase, CaMKK2 (21). Once activated, AMPK phosphorylates targets that switch off non-essential 

ATP-consuming processes and switch on catabolic pathways generating ATP, thereby 

compensating for deficits in ATP supply caused by, for example, inhibition of mitochondrial 

oxidative phosphorylation.  

We sought to determine whether AMPK signalling pathways within pulmonary arterial myocytes 

initiate HPV downstream of mitochondria, by studying transgenic mice deficient in LKB1, 

CaMKK2 or AMPK. Our findings show that activation of the LKB1-AMPK-1 signalling pathway 

within pulmonary arterial smooth muscles is critical for the initiation of HPV. 
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Results  

We sought to determine the role of AMPK in the induction of HPV, the initiating phase of which 

is primarily driven by mechanisms of constriction intrinsic to pulmonary arterial myocytes (6). The 

genes encoding the AMPK-α1 (Prkaa1) or AMPK-α2 (Prkaa2) catalytic subunits were 

conditionally deleted (Fig. S1), by crossing floxed mice with those expressing Cre recombinase 

from the transgelin promoter. AMPK-α1 and AMPK-α2 knockout mice did not exhibit overt 

phenotypes, although mild left, but not right, ventricular myopathy was evident after AMPK-α2 

deletion alone (Table S1). This finding is consistent with previous reports of a dominant role for 

AMPK-α2 in the regulation of cardiomyocyte metabolism and growth (24, 25).  

However, AMPK-α1 or AMPK-α2 deletion attenuated HPV, which was monitored using spectral 

Doppler ultrasound analysis of systolic peak velocity and velocity time integral (VTI) within the 

main pulmonary artery. This method provides an index of dynamic changes in pulmonary vascular 

flow (26). Only AMPK-α1 deletion markedly attenuated HPV in mice exposed to both mild (8% 

O2; Fig. S2A and S2B) and severe hypoxia (5% O2; Fig. 1A, 1B, 1C and 1D; Fig. S2A and S2B; 

Fig. S3A and S3B). Moreover, the magnitude of HPV increased with the severity of hypoxia in 

floxed, control mice but not in AMPK-α1 knockouts (Fig. 1A; Fig. S2A and S2B). By contrast, 

AMPK-α2 deletion attenuated HPV evoked by severe (5% O2; Fig. 1A, 1C and 1D) but not mild 

(8% O2) hypoxia (Fig. S2A and S2B; Fig. S3A and S3B). Furthermore, the degree to which HPV 

was attenuated during severe hypoxia appeared to be slightly more marked for AMPK-α1 than for 

AMPK-α2 knockouts, although this difference was not significant (Fig. 1D; Fig. S2A and S2B; 

Fig. S3A and S3B). Collectively, these data suggest that AMPK-α1 may be critical to the induction 

of HPV, whereas AMPK-α2 supports HPV in some other way during severe hypoxia. In contrast, 

neither AMPK-α1 nor AMPK-α2 deletion affected increases in pulmonary vascular reactivity 

induced by intravenous injection of serotonin (Fig. 1E, 1F, 1G and 1H; Fig. S3C and S3D), a 
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pulmonary-selective vasoconstrictor (27) that promotes pulmonary hypertension by different 

mechanisms to hypoxia (28). Moreover, AMPK-α1 and AMPK-α2 deletion inhibited pulmonary 

vascular responses during hypoxia, but did not affect either resting systemic arterial blood pressures 

or hypoxia-evoked decreases in systemic arterial blood pressures (29). Thus, deletion of AMPK-α1 

and AMPK-α2 subunits within arterial myocytes selectively inhibits HPV. This view is supported 

by the findings of others, which have established that neither AMPK-α1 nor AMPK-α2 deletion 

impacts normoxic or ischemic contracture of cardiac muscles (24, 30), and that there is substantial 

redundancy of function with respect to the regulation by AMPK-α1 and AMPK-α2 of cardiac 

metabolism and growth (24, 25, 31).    

We could not generate viable homozygous deletion of the gene encoding LKB1 (Stk11) using the 

trangelin-Cre promoter, but did assess HPV in a strain of mice bearing homozygous floxed alleles 

of Stk11, which globally exhibit hypomorphic (≈90% reduced) expression of LKB1 (32). Spectral 

Doppler analysis of pulmonary arterial systolic waveforms revealed that HPV was markedly 

attenuated during exposure of these mice to severe hypoxia (5% O2; Fig. 1D; Fig. S3A and S3B; 

Fig. S4A). By contrast, global CaMKK2 deletion did not affect hypoxia-evoked reductions in peak 

velocity (Fig. 1D; Fig. S3A and S3B; Fig. S4B). Therefore, HPV is mediated by LKB1-AMPK 

signaling independently of the Ca2+/CaMKK2 pathway. Supporting this view, a previous study 

using the hypomorphic LKB1 model used here has shown that LKB1 deficiency compromises 

cardiac metabolism but not cardiac contractility, ischemic contracture or recovery from ischemia 

(33). 

In isolated pulmonary arterial myocytes, mitochondrial membrane potentials were not affected 

following deletion of either AMPK-α1 or AMPK-α2 (Fig. 2A and 2B). These gene deletions also 

did not affect mitochondrial membrane hyperpolarization evoked by hypoxia or oligomycin, which 

was of similar magnitude to that observed by others (13) (Fig. 2C, 2D, 2E and 2F). Consequently, 
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hypoxia will increase AMP:ATP ratios in pulmonary arterial myocytes (14), that will in turn lead 

to rapid AMPK activation (1-2 min) (34). Consistent with this scenario and a requirement for 

AMPK, AMPK-1 deletion in acutely isolated pulmonary arterial myocytes attenuated KV1.5 

current inhibition in response to severe hypoxia (≈6% pO2) (Fig. 3A, 3B, 3C, 3D, 3E, 3F and 3G; 

Fig. S5A, S5B and S5C), oligomycin and the AMPK-1 selective activator C13 (35) (Fig. 3G). 

These effects were not due to baseline changes in KV current amplitudes or kinetics (Table S2). 

AMPK-2 deletion did not affect KV1.5 current inhibition during hypoxia (Fig. 3C, 3F and 3G), 

supporting the view that AMPK-1 and not AMPK-2 drives HPV. The presence of KV1.5 

currents was confirmed using the selective KV1.5 channel blocker DPO-1 (Fig. 3G and Fig. S6A, 

S6B, S6C, S6D, S6E and S6F). Therefore, with respect to KV1.5 current regulation there is no 

redundancy in the system. Support for this view is provided by the fact that while AMPK-1 

blocked KV1.5 inhibition during hypoxia, AMPK-2 deletion did not even affect the time course 

of KV1.5 inhibition ( Fig. S7A, S7B, S7C and S7D), the onset of which was evident at 1 min and 

reached a maximum between 2-5min of hypoxia. However, the true time course for KV1.5 

inhibition during hypoxia will likely be faster because the time for complete superfusate exchange 

and equilibration within the experimental chamber was ≈3-5 min (Fig. S7A, S7B, S7C and S7D). 

Thus, during hypoxia AMPK-1 but not AMPK-2 mediates reductions in KV1.5 channel activity 

in pulmonary arterial myocytes during hypoxia, downstream of mitochondrial inhibition.  

In contrast to the apparent selectivity of KV1.5 regulation by endogenous AMPK-1 in mouse 

pulmonary arterial myocytes, we have previously shown that exogenous application of 

recombinant heterotrimers comprising either AMPK-1 or AMPK-2 can phosphorylate and 

regulate KV1.5 in rat pulmonary arterial myocytes and human KV1.5 expressed in HEK293 cells 

(15). We have now confirmed sequences surrounding Ser559 and Ser592 of the human KV1.5 alpha 
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subunit (Fig. 4A) as reasonable fits to the AMPK recognition motif using SCANSITE4, as well as 

an algorithm available on GitHub (https://github.com/BrunetLabAMPK/AMPK_motif_analyzer) 

(37, 38). These motifs lack the expected hydrophobic residue at position P-5, although Ser592 does 

have a large uncharged side chain (Asn) at this position. To identify the AMPK recognition sites 

that were phosphorylated, we treated the  subunit of the channel from transfected HEK293 cells 

with protein phosphatase to remove endogenous phosphate groups, before incubating 

immunoprecipitates with bacterially expressed AMPK (221 complex) (36). The stoichiometry 

of phosphorylation using [γ-32P]ATP was estimated to be 3 moles/mole for wild-type KV1.5, 

indicative of multiple sites of phosphorylation (Fig. 4B and 4C). Moreover, the stoichiometry of 

phosphorylation was reduced on mutating Ser559 (2.1 moles/mole) or Ser592 (1.2 moles/mole) to 

alanine, whereas mutation of both sites had a similar effect to mutating Ser592 alone, which was 

also reflected in the average fold change in phosphorylation relative to wild-type with S559A, 

S592A and S559A/S592A (Fig. 4A, 4B, 4C and 4D). Thus, AMPK directly phosphorylates the  

subunit of KV1.5 at Ser592, and to a lesser extent at Ser559. To assess the role of these sites in KV1.5 

regulation by AMPK, we examined the effect of the AMPK-1 selective agonist C13 on HEK-293 

cells transiently expressing wild-type Kv1.5  subunit and Kv1.5  subunits incorporating these 

single and double mutations. C13 inhibited steady-state currents carried by wild type human KV1.5 

α subunits (Fig. 4E and 4F). This inhibition was virtually abolished by the S559A/S592A double 

mutation (Fig. 4E, 4F and 4G) and by the S559A mutation (Fig. 4G), and to a lesser extent by the 

S592A single mutation (Fig. 4G). In short, Ser559 phosphorylation confers similar KV1.5 current 

inhibition as the S559A/S592A double mutation whereas S592A is less effective, despite the 

greater effect of the S592A mutation on channel phosphorylation than the S559A mutation.  
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Discussion 

The present investigation showed that divergent LKB1-AMPK signalling pathways coordinated 

HPV downstream of mitochondria. HPV was suppressed by deletion of either AMPK-α1 or 

AMPK-α2, whereas reductions in KV1.5 channel activity in pulmonary arterial myocytes during 

hypoxia were blocked by deletion of AMPK-1 alone. Furthermore, only AMPK-α1 deletion in 

smooth muscles blocked the induction and progressive augmentation of HPV by mild and severe 

hypoxia. By contrast, AMPK-α2 deletion attenuated HPV only during severe hypoxia, indicative 

of a role for AMPK-α2 containing heterotrimers in supporting HPV during severe hypoxic stress. 

Outcomes are therefore consistent with our previous studies using the non-selective AMPK 

antagonist compound C (39), although any action of this agent should be considered with caution 

because compound C inhibits at least ten other kinases more potently than AMPK (40). 

Nevertheless, it is notable that in isolated rat pulmonary artery rings two phases of constriction are 

evident during hypoxia, both of which are initiated concomitantly and are thus superimposed on 

each other (12). Phases 1 and 2 of HPV are attenuated in pulmonary arteries pre-incubated with 

compound C, although only the attenuation of Phase 2 is statistically significant (39). However, it 

is open to debate whether the Phase 1 constriction represents a component of the true physiological 

response of pulmonary arteries in-situ in the lung, given that HPV in the rat lung is abolished by 

agents that inhibit Phase 2 but not Phase 1 of HPV in acutely isolated pulmonary arteries (12).  

Although the mode of action by which AMPK-2 complexes support HPV remains unclear, there 

is no redundancy of function with respect to either the induction by AMPK-α1 of myocyte 

contraction during hypoxia or the inhibition of KV1.5. This lack of redundancy is surprising 

because intracellular dialysis of AMPK heterotrimers containing either AMPK-α1 or AMPK-α2 

inhibit KV1.5 in rat pulmonary arterial myocytes (15). This suggests that subcellular location rather 
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than intrinsic target specificity must determine outcomes, with AMPK-1 complexes in some way 

“tethered” proximal to the KV1.5  subunit. Unfortunately, AMPK antibodies that are currently 

available are not sufficiently specific to directly test this idea. Although we cannot be certain that 

AMPK phosphorylates KV1.5 directly in hypoxic pulmonary arterial myocytes, given that KV1.5 

has been reported to be regulated through tyrosine phosphorylation (41, 42), our data do show that 

AMPK phosphorylates and regulates KV1.5 through serine not tyrosine residues. In short, while 

multiple kinase pathways may impact KV1.5 activities in pulmonary arterial myocytes, the 

AMPK-dependent pathway is critical to HPV.   

The induction of HPV requires LKB1 but is triggered independently of the Ca2+/CaMKK2 

pathway, highlighting that AMPK activation occurs in response to energy stress rather than changes 

in cytoplasmic Ca2+. This finding suggests that hypoxia-evoked increases in AMP:ATP/ ADP:ATP 

ratios (14, 19, 20) are critical to the process of AMPK activation by hypoxia in pulmonary arterial 

myocytes. Although a requirement for LKB1 does not rule out a role for mitochondrial ROS in 

HPV (13, 17, 18), it provides further support for the view that mitochondrial ROS do not activate 

AMPK directly, although ROS may do so indirectly by inhibiting mitochondrial oxidative 

phosphorylation (17, 18). In this context, the possibility that ROS-dependent increases in 

cytoplasmic Ca2+ concentration might contribute to AMPK activation (43) seems more remote, 

given that CaMKK2 is not required for HPV. 

It would appear, therefore, that the induction of HPV is primarily governed by the following 

factors. First, Cox4I2 is selectively expressed in pulmonary arterial smooth muscles, which unlike 

COX4I1, does not confer COX inhibition by ATP (44, 45), such that the rate of oxygen 

consumption and thus ATP supply through mitochondrial oxidative phosphorylation will not 

increase during hypoxia as ATP levels fall (45-48). Expression of AMPK subunits, particularly 
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that of AMPK-α1, is higher in pulmonary than in systemic arterial smooth muscles (14). Moreover, 

our data also highlight the potential for the regulation of different targets by divergent AMPK 

signaling pathways, in a manner that may be facilitated by the selective expression and subcellular 

targeting of multiple heterotrimeric AMPK subunit combinations. 

Thus, our observations implicate AMPK activation as the primary mediator of acute hypoxic 

pulmonary hypertension consequent to widespread airway hypoxia, an idea consistent with the 

effects of siRNA knockdown of AMPK in cultured pulmonary arterial myocytes and 

pharmacological interventions in-vivo (49). Moreover, arterial myocyte proliferation during 

hypoxia and thus hypoxic pulmonary hypertension has been suggested to result from the coordinate 

regulation by AMPK-α1 and AMPK-α2 of autophagy initiation and inhibition of apoptosis, 

respectively (49). Paradoxically, however, others have proposed that mTORC2-dependent 

reductions in total AMPK may facilitate myocyte proliferation and thus hypoxic- and 

idiopathic-pulmonary hypertension through mTORC1 activation (50), in a manner that may be 

exacerbated by endothelial AMPK insufficiency (51). One possible explanation for these contrary 

findings could be that the progression of pulmonary hypertension is governed by temporal 

fluctuations in AMPK activity and/or expression, a scenario that will require further studies for 

validation.  

The present investigation shows that LKB1-AMPK signalling pathways mediate HPV subsequent 

to the inhibition of oxidative phosphorylation during hypoxia (13), through the phosphorylation 

and regulation of targets, such as KV1.5, outside of those canonical pathways by which AMPK 

coordinates cell-autonomous metabolic homeostasis. Therefore, excess AMPK activity or 

expression may predispose individuals to increases in pulmonary vascular perfusion pressure at 

high altitudes, and may contribute to the initiation, as well as the progression, of hypoxic 

pulmonary hypertension (52).  
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Materials and Methods 

Mice 

Experiments were performed in accordance with the regulations of the United Kingdom Animals 

(Scientific Procedures) Act of 1986. All studies and breeding were approved by the University of 

Edinburgh and performed under UK Home Office project licenses. Both male and female mice 

were used, and all were on a C57/Bl6 background. Numbers of mice (≥ 3 per measure) used are 

indicated for each experiment. 

Gene deletion 

Global, dual knockout of the genes encoding AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) is 

embryonic lethal. We therefore employed conditional deletion of the genes for the AMPK-α1 or 

AMPK-α2 subunits, using mice in which the sequence encoding the catalytic site of either or both 

of the α subunits was flanked by loxP sequences (53). To direct AMPK deletion to cells of the 

smooth muscle lineage, these were crossed with mice in which Cre recombinase was under the 

control of the transgelin (smooth muscle protein 22α) promoter (The Jackson Laboratory, Bar 

Harbor, ME, USA [stock number 017491, Tg(Tagln-cre)1Her/J in C57BL/6:129SJL background]). 

These transgelin-Cre mice do not exhibit Cre expression in endothelial cells, and therefore provide 

for selective gene deletion in smooth muscle. It should be noted, however, that transient 

developmental expression of transgelin has been observed in atrial and ventricular myocytes. 

Therefore, genomic recombination will also occur in these cells although they do not express 

transgelin in the adult (54). However neither atrial nor ventricular myocytes contribute directly or 

indirectly to acute hypoxic pulmonary vasoconstriction. Therefore, while imperfect, the use of 

transgelin-Cre mice provided us with the necessary level of specificity to determine the role of 

AMPK in the response to hypoxia of pulmonary arterial myocytes. 
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We detected the presence of wild-type or floxed alleles and CRE recombinase by PCR. 10 µl 

samples were run on 2% agarose gels with 12.5 µl GoTag Green Master Mix M712B (Promega) 

in TBE buffer against a 100 bp DNA ladder (GeneRulerTM, Fermentas) using a Model 200/2.0 

Power Supply (Bio-Rad). Gels were imaged using a Genius Bio Imaging System and GeneSnap 

software (Syngene). We used four primers for Cre (Transgene 5’ 

GCGGTCTGGCAGTAAAAACTATC 3’and 5’ GTGAAACAGCATTGCTGTCACTT 3’; 

internal positive control 5’ CTAGGCCACAGAATTGAAAGATCT 3’ and 5’ 

GTAGGTGGAATTTCTAGCATCATCC 3’; expected size for WT=324 bp, expected size for 

Cre=100 bp). Two primers were used for each AMPK catalytic subunit: α1-forward 5’ 

TATTGCTGCCATTAGGCTAC 3’, α1-reverse: 5’ 

GACCTGACAGAATAGGATATGCCCAACCTC 3’ (WT=588bp, Floxed=682bp); α2-forward 5’ 

GCTTAGCACGTTACCCTGGATGG 3’, α2-reverse: 5’ GTTATCAGCCCAACTAATTACAC 3’ 

(WT=204 bp, Floxed=250 bp).  

The presence of a wild-type or floxed Stk11 allele, which encodes for LKB1, was detected using 

two primers, p200, 5’-CCAGCCTTCTGACTCTCAGG-3’ and p201, 5’-

GTAGGTATTCCAGGCCGTCA-3’. Deletion of LKB1 in smooth muscle proved to be embryonic 

lethal. Therefore we studied homozygous LKB1 floxed (STK11flx/flx) mice, which are hypomorphic 

for LKB1 in all cell types and exhibit ≥90% lower LKB1 expression than LKB1+/+ littermates (32).  

To genotype CaMKK2 WT and CaMKK2 knockouts, the presence of a wild-type allele was 

detected using two primers, KKBeta1, 5’CAGCACTCAGCTCCAATCAA3’, and KKBeta2, 5’

GCCACCTATTGCC TTGTTTG3’, to generate an expected band of 347bp. To detect CaMKKβ 

knockout, a KK2-1 primer was used with KK2-3, 5’TAAGCACAAGCAC TCATTCC3, to 

generate an expected band of 470bp.  
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The PCR protocol used for all genotype primers was: 92ºC for 5min, 92ºC for 45s, 56ºC for 45sec, 

72ºC for 60s, and 72ºC for 7min for 35 cycles and then 4ºC as the holding temperature. 

RNA from control tissues (lung) and arterial smooth muscle was extracted using the High Pure 

RNA Tissue Kit (Roche) following the manufacturer’s guidelines, and the concentration 

determined using the Nanodrop 1000 spectrophotometer (ThermoScientific). Thereafter cDNA 

synthesis was carried out using the Transcriptor High Fidelity cDNA synthesis Kit (Roche) 

following the manufacturers’ instructions. 

Smooth muscle cell isolation 

Adult mice (2-6 months of age) were sacrificed by cervical dislocation. The heart and lungs were 

removed en bloc and placed in physiological salt solution (PSS) of the following composition NaCl 

135, KCl 5, MgCl2 1, CaCl2 1, glucose 10, HEPES 10 (pH 7.4). Single smooth muscle cells were 

isolated from 2nd-3rd order branches of the main intrapulmonary artery. For cell isolation, 

endothelium denuded arteries were transferred into a nominally calcium free PSS containing (in 

mg/mL): 1 papain (Sigma), 0.8 Dithio-DL-threitol (Sigma) and 0.7 bovine serum albumin (Sigma) 

and pre-incubated at 37oC for 6 min. The tissue was then washed three times in cold PSS without 

enzymes, and single smooth muscle cells isolated by gentle trituration with a fire-polished Pasteur 

pipette. Cells were stored in suspension at 4oC until required. 

PCR analysis 

2 µl of cDNA in RNase free water was made up to 20 µl with FastStart Universal SYBR Green 

Master (ROX, 10 µl, Roche), Ultra Pure Water (6.4 µl, SIGMA) and forward and reverse primers 

for AMPK-α1 and -α2. The sample was then centrifuged and 20 µl added to a MicroAmpTM Fast 

Optical 96-Well Reaction Plate (Greiner bio-one), the reaction plate sealed with an optical adhesive 

cover (Applied Biosystems) and the plate centrifuged. The reaction was then run on a sequence 

detection system (Applied Biosystems) using AmpliTaq Fast DNA Polymerase, with a 2min initial 
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step at 50oC, followed by a 10min step at 95oC, then 40x 15s steps at 95oC. This was followed by 

a dissociation stage with 15s at 95oC, 20s at 60oC and 15s at 95oC. Negative controls included 

control cell aspirants for which no reverse transcriptase was added, and aspiration of extracellular 

medium and PCR controls. None of the controls produced any detectable amplicon, ruling out 

genomic or other contamination.  

Ultrasound measurements 

Mice were rendered anaesthetised using Isoflurane, induced at level 5 and set to level 2 for 

procedures. Isoflurane was mixed with 21% O2 set at 1L/min for normoxia and either 12%, 8% or 

5% O2 for the hypoxic challenge (0.05% CO2, balanced with N2). Using the Vevo770 (Visualsonics 

Inc), RMV 707B transducer with a centre frequency of 30MHz, a Parasternal Long Axis (PLAX) 

view of the heart of anaesthetised mice was obtained, and then modified to bring the pulmonary 

artery into view for spectral wave Doppler measurements. Peak velocity (mm/s) and velocity time 

integral (VTI) of pulmonary arterial flow were used as a non-invasive approximation of changes 

in systolic pulmonary vascular resistance and pressure as described by others(26), and this was 

confirmed here by infusion of a pulmonary selective vasoconstrictor, serotonin, which was applied 

by intravenously through the tail vein(27, 52). Measurement of spectral Doppler velocities were 

taken under normoxia (21% O2; 0.05% CO2 balanced with N2) and during an acute hypoxic 

challenge (12%, 8% or 5% O2; 0.05% CO2 balanced with N2) of approximately ~2-5 minutes 

duration followed by a return to normoxia. 

Due to the base-to-apex contraction of the right ventricle (RV), it is difficult to accurately quantify 

RV function other than by fractional shortening, which was therefore assessed using a two 

dimensional echocardiographic measurement(55, 56). An M-mode across the anterior and posterior 

left ventricle walls was used to determine fractional shortening of the left ventricle from a standard 
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PLAX view. To determine RV fractional shortening an M-mode was analysed using ultrasound 

taken across the right ventricle free wall and the septum from a modified PLAX view(57). 

Mitochondrial imaging and mitochondrial membrane potential 

Fluorescence microscopy was used together with 100 nmol/L Mitotracker Green (490 nm 

excitation; 516 nm emission) and 100 nmol/L TMRE (Tetramethylrhodamine, ethyl ester; 549 nm 

excitation; 575 nm emission) or 10 µg/ml Rhodamine 123 (507 nm excitation; 529 nm emission); 

cells were incubated in PSS each at 37ºC for 30 minutes. Whole-cell Rhodamine 123 fluorescence 

was analysed before (baseline) and under specified conditions for a maximum of 15 minutes. Non-

quenching conditions were confirmed at the end of every experiment by adding the mitochondrial 

uncoupler carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 10 μmol/L). Images of 

the emitted fluorescence were acquired at 37ºC and 0.1 Hz, using a Zeiss Axiovert 200 with a Zeiss 

Plan-Apochromat 63x 1.4 n.a.oil immersion objective for TMRE/ Mitotracker Green or with Zeiss 

Fluar 40x 1.3 n.a oil immersion objective for Rhodamine 123. The microscope was coupled to a 

Hamamatsu Orca CCD camera and Sutter DG5 light source with appropriate filter sets. Analysis 

was completed using Volocity 5.5.1 image acquisition and analysis software. 

Electrophysiology  

K+ currents were recorded by whole-cell patch clamp and assessed using voltage ramps (-60mV to 

+60mV; HEK 293 cells) and single (-60 to +50mV; HEK293 cells) or multiple (-80 to +0mV, 

10mV increments; pulmonary arterial myocytes) voltage steps. Recordings were conducted at 37°C. 

The standard perfusate (pH 7.4) was composed of (mM): NaCl 135, KCl 5, MgCl2 1, CaCl2 1, 

glucose 10, HEPES 10 (pH 7.4). Patch pipettes had resistances 4-6 MΩ. Series resistance was 

monitored and compensated (60-80%) after achieving the whole-cell configuration. If a greater 

than 20% increase occurred during the recording, the experiment was terminated. The pipette 

solution (pH 7.2) consisted of (mM): KCl 140; EGTA 10; MgCl2 1; HEPES 10; Na2ATP 4, 
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Na3GTP 0.1. Cells were normally superfused at a rate of 1 mL/min when drug treatments were 

tested. To test the effects of hypoxia, cells were superfused at 3 mL/min with bath solution steadily 

bubbled with 95% N2 / 5% CO2 (hypoxia = 6.2 ± 0.3% O2 in the experimental chamber; as 

measured with an optical oxygen meter (FireStingO2, PyroScience). All experiments on pulmonary 

arterial myocyte potassium currents were recorded in the presence of paxilline (1 µmol/L) to block 

the large conductance voltage- and calcium-activated K+ channel. Signals were sampled at 10 kHz 

and low pass filtered at 2 kHz. Conductance values (G) were calculated from the equation G = I/(V 

− EK), where the Nernst equilibrium potential (EK) was calculated as −89 mV at 37 °C. 

Normalized conductance/voltage profiles for Kv currents were fitted to a single Boltzmann function 

with the form G = Gmax/(1 + exp[− (V – V0.5)/k]), where Gmax is the maximal conductance, V0.5 is 

the test potential for half-maximal conductance (G0.5), and k represents the slope of the activation 

curve. Data are expressed as I/I,max, where Imax is the current magnitude recorded at the onset of a 

given experimental intervention. Voltage-clamp acquisition and analysis protocols were performed 

using an Axopatch 200A amplifier/Digidata 1200 interface controlled by Clampex 10.0 software 

(Molecular Devices, Foster City, CA). Offline analysis was performed using Clampfit 10.0 

(Molecular Devices, Foster City, CA). 

HEK 293 cell transfection  

HEK 293 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 

10% (v/v) fetal bovine serum and 1% (v/v) penicillin/streptomycin. Cells were transfected with 

4μg of pcDNA3.1 encoding a wild type or mutant human Kv1.5 (KCNA5) using 10 μL of 

Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) and used 24-48h later. 

Phosphorylation assays 

AMPK recognition motifs were identified by medium stringency screen on SCANSITE4 

(https://scansite4.mit.edu/4.0/#home), then confirmed and scored on Github 
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(https://github.com/BrunetLabAMPK/AMPK_motif_analyzer), as previously described by others 

(38). We performed phosphorylation assays using AMPK purified from bacteria and 

phosphorylated with CaMKK2 (10 units/mL) in the presence of 200μmol/L AMP for 30 min at 30 

°C, as described previously (36). 

Statistical comparisons  

Mean ± SEM were compared using GraphPad Prism 6 and: T-test for paired observations; One-

way ANOVA with Dunnet or Bonferroni post hoc analysis for multiple comparison’s tests. P 

values < 0.05 were considered significant, assuming mice of a given genotype or cells thereof do 

not differ in their mean phenotype. 
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Fig. 1 The LKB1-AMPK but not the CaMKK2-AMPK signalling pathway is required for hypoxic 

pulmonary vasoconstriction. A-C, Upper panels show spectral Doppler analyses of peak velocity 

versus time for the systolic waveform within the main pulmonary artery of (A) AMPK-α1 and -α2 

floxed controls (AMPK-α1/α2 FLX) (B) AMPK-α1 knockout and (C) AMPK-α2 knockout mice 

during normoxia, hypoxia (12%, 8% or 5% O2) and recovery. Lower panels show example records 

of peak velocity during normoxia, hypoxia and recovery. D, Bar chart shows the mean ± SEM for 

the maximum change in peak velocity observed during 5% O2 for AMPK-α1/α2 FLX, C57Bl6, 

CaMKK2 KO, hypomorphic LKB1 floxed (LKB1 KD), AMPK-α1 KO and AMPK-α2 KO mice; 

n=3-7 mice/group, * P<0.05, ** P<0.01, *** P<0.001. E-G, Upper panels shows spectral Doppler 

analyses of peak velocity versus time for the systolic waveform within the main pulmonary artery 

of (E) AMPK-α1 and -α2 floxed controls (AMPK-α1/α2 FLX) (F) AMPK-α1 knockout and (G) 

AMPK-α2 knockout mice during intravenous injection of 5-HT (serotonin). H, Bar chart shows 

the mean ± SEM for the maximum change in peak velocity observed for AMPK-α1/α2 FLX, 

AMPK-α1 KO and AMPK-α2 KO mice; n=3-5 mice/group.  
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Fig. 2 Deletion of AMPK-α1 or AMPK-α2 does not affect mitochondrial membrane potential. A, 

Images show a bright-field image of a pulmonary arterial myocyte, deconvolved 3D 

reconstructions of a Z-stack of images of MitoTracker fluorescence, TMRE fluorescence and a 

merged image from AMPK-α1/α2 FLX, AMPK-α1 and AMPK-α2 knockout mice. B, Bar chart 

shows the mean ± SEM for TMRE fluorescence (n=23-34 cells from 4 mice/group). C-E, Records 

of Rhod123 fluorescence ratio (F/F0) plotted against time recorded from pulmonary arterial 

myocytes of (C) AMPK-α1/α2 FLX, (D) AMPK-α1 and (E) AMPK-α2 knockout mice during 

normoxia and hypoxia. The non-quenching mode was confirmed by adding the mitochondrial 

uncoupler FCCP (10 μmol/L). F, Bar charts show the mean±SEM for the maximum change in 

Rhod123 fluorescence during application of hypoxia (~6% O2) and oligomycin (3 µmol/L). n = 3-

6 cells from 3 mice/group. 
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Fig. 3 Deletion of AMPK-α1 but not AMPK-α2 prevents the inhibition of KV1.5 currents by 

hypoxia and mitochondrial poisons. A-C, Upper panels show the voltage steps applied and example 

records. Lower panels show raw records of KV currents activated at each voltage step during 

normoxia and hypoxia. D-F, Plots (mean ± SEM) for the current-voltage (I/Imax) relationship of 

steady-state KV currents recorded (average from last 20 ms of voltage step) during normoxia and 

hypoxia (≈6% O2) in acutely isolated pulmonary arterial myocytes from either (D) AMPK-α1/-α2 

floxed (control), (E) AMPK-α1 smooth muscle knockout (AMPK-α1 KO), or (F) AMPK-α2 

smooth muscle knockout (AMPK-α2 KO) mice. G, Bar charts show the mean ± SEM for the peak 

inhibition in KV current at 0mV (I/Imax) for pulmonary arterial myocytes from each genotype during 

hypoxia and following extracellular application of the mitochondrial poison oligomycin (3 µmol/L), 

the AMPK-α1 selective agonist C13 (30 µmol/L) and the selective KV1.5 blocker DPO-1 (1 

µmol/L); n = 4-9 cells from 3 mice/group; * P<0.05, ** P<0.01. 
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Fig. 4 AMPK inhibits recombinant KV1.5 by direct phosphorylation of two AMPK recognition 

motifs incorporating Ser559 and Ser592. A, Alignment of recognition motif for AMPK with 

sequences of KV1.5. Phosphorylation sites are marked in pink, β = basic residue, ϕ = hydrophobic 

residue. Schematic indicates position of residues within KV1.5 α subunit. Coomassie blue stain (B) 

and autoradiogram (C) show the effect of S559A (n = 3 independent experiments), S592A (n = 3 

independent experiments) and S559A/S592A (n = 2 independent experiments) mutations on KV1.5 

phosphorylation in cell-free assays by AMPK in the presence of AMP; ** P<0.01, *** P<0.001. 

D, Fold change in phosphorylation (mutant/wild type) of wild type KV1.5 and KV1.5 mutants 

incorporating S559A, S592A and S559A/S592A. E, Example records show the effects of C13 on 

whole-cell K+ currents, measured by voltage ramp and voltage step protocols, during extracellular 

application of 30µmol/L C13 in HEK293 cells expressing wild-type KV1.5 and the KV1.5 

S559A/S592A mutant. F, Time course for the reductions in whole-cell K+ currents carried by wild-

type and S559A/S592A mutant KV1.5 channels during extracellular application of 30µmol/L C13. 

G, Bar chart shows the mean ± SEM for reductions in steady-state K+ currents (average from last 

20 ms of voltage step)  carried by wild-type and mutant KV1.5 channels 5 min after extracellular 

application of 30µmol/L C13; n=5-7 cells/group; * P<0.05, *** P<0.001.  
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