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Abstract: An antikinetoplastid pharmacomodulation study at position 

3 of the recently described 3-bromo-8-nitroquinolin-2(1H)-one hit 

molecule was conducted. 24 derivatives were synthesized using the 

Suzuki-Miyaura cross-coupling reaction and evaluated in vitro 

toward both L. infantum axenic amastigotes and T. brucei brucei 

trypomastigotes. The results show that the introduction of a para-

carboxyphenyl group at position 3 of the scaffold leads to a selective 

antitrypanosomal hit molecule (21) with a lower reduction potential (-

0.56 V) than the initial hit (-0.45 V). Compound 21 displays a 

micromolar antitrypanosomal activity (IC50 = 1.5 µM) and a low 

cytotoxicity on the human HepG2 cell line (CC50 = 120 µM), reaching 

higher selectivity index (IS = 80) than the reference drug eflornithine. 

Contrary to the results previously obtained in this series, hit 

compound 21 is not active toward L. infantum and is not efficiently 

bioactivated by T. brucei brucei type I nitroreductase, which 

suggests the existence of an additional mechanism of action. 

Introduction 

Kinetoplastids are flagellated protozoan parasites responsible for 

lethal neglected tropical diseases such as human African 

trypanosomiasis (HAT) and visceral leishmaniasis (VL). They are 

characterised by the presence of a circular DNA called kinetoplast, 

adjacent to the flagellar basal body. Trypanosoma parasites are 

transmitted by the bite of an infected “tse tse fly” and are the 

causative agents of HAT, also known as “sleeping sickness”. There 

are many species of Trypanosoma, but only T. brucei gambiense 

and T. brucei rhodesiense are pathogenic for humans.[1] During the 

infection, metacylic trypomastigotes enter in the blood circulation via 

the bite of the “tse tse fly” and disseminate in the whole organism 

where they differentiate into bloodstream trypomastigotes: this is the 

hemolymphatic stage. After several weeks or months including 

symptoms such as headaches, anaemia and hepatosplenomegaly, 

trypomastigotes cross the blood-brain barrier (BBB) and cause 

damages to the central nervous system, leading to sleeping 

disorders, behavioural disorders, seizure, coma and finally death: 

this is the meningoencephalic stage.[2] Leishmania is another 

protozoan parasite, at the origin of leishmaniasis and transmitted by 

the bite of an infected sandfly. L. donovani and L. infantum are the 

two major species causing the most severe form of the disease: 

visceral leishmaniasis (VL).[3] Briefly, metacyclic promastigotes 

penetrate into the skin during the blood meal of an infected sandly. 

They are internalized by mononuclear phagocytic cells such as 

macrophages where they differentiate into amastigotes. Parasites 

multiply in these cells until their destruction and disseminate in many 

organs such as liver and spleen, leading to death.[4]  

HAT and VL represent more than 1 billion people at risk and are 

responsible for more than 55.000 new cases and 25.000 deaths 

each year.[5,6] These numbers are surely underestimated because 

of the difficulty to access to some rural areas and the unspecific 

symptoms in the early stages of the diseases. Currently, there are 

very few efficient and safe drugs available on the market against 

these neglected tropical diseases. Pentamidine and suramin are 

used for the treatment of the first stage of HAT but these molecules 

are highly toxic and need hospitalisation for the IV administration.[7] 

Melarsoprol, an arsenic containing-drug and a combination of 

eflornithine and nifurtimox are suitable for the second stage of HAT 

(Fig. 1).[8]. The same observation can be made with VL for which 

only Amphotericine B, miltefosine, antimonial derivatives, 

pentamidine and paromomycine are available. Among these drugs, 

miltefosine is the only orally available drug. These drugs are either 

expensive (liposomal amphotericin B), present severe side effects 

(nephrotoxicity of amphotericin B, teratogenicity of miltefosine…) or 
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show an increasing lack of efficacy due to the emergence of 

resistant parasites (antimony derivatives and miltefosine).[9] This 

global context calls for the discovery of new antikinetoplastid 

molecules. 

Figure 1. Structure, indication and route of administration of the 

antitrypanosomal drugs on the market. 

Unfortunately, today, there are only two new chemical entities in 

clinical trials against HAT and none against VL (Fig 2.).[10] 

Acoziborole is an orally-active benzoxaborole in phase IIb/III of 

clinical trials, this molecule is active against both stages of HAT.[11] 

Fexinidazole, a 5-nitroimidazole, was recently in phase II of clinical 

trials against VL but showed a lack of efficacy whereas it succeded 

to a phase IIIb study against HAT.[12,13] This molecule is rapidly 

metabolised in vivo into two metabolites (a sulfoxide and a sulfone 

derivative) which are still active against the trypanosoma parasites. 

Fexinidazole is selectively bioactivated by type I parasitic 

nitroreductases (NTR) leading to cytotoxic electrophilic metabolites, 

through a successive 2 electron reduction, such as nitroso and 

hydroxylamine derivatives.[14] There are two NTR identified in 

Leishmania (NTR1 and NTR2)[15,16] and only one in 

Trypanosoma.[17] These nitroreductases are absent from 

mammalian cells. Consequently, substrates of these enzymes can 

afford selective antikinetoplastid candidates. Unfortunately, no X-ray 

structure of these parasitic NTRs is available, which prevents the 

use of the classical rational medicinal chemistry approaches, such 

as docking, to design new substrates of these enzymes. 

Figure 2. Molecular structure of drug candidates acoziborole and fexinidazole 

(with its active metabolites). 

Our research team has been working on the synthesis of new 

antikinetoplastid molecules for several years. Starting from a 

chemical study about 2-substituted nitroquinoline derivatives with 

antiparasitic potential,[18] we identified a new antileishmanial hit: the 

8-nitroquinolin-2(1H)-one.[19] Pharmacomodulation studies at 

position 4 of this scaffold were then realized.[20,21] Recently, we 

described a comprehensive study of this pharmacophore via an 

electrochemistry-guided work and the development of a 

computational model, able to predict the redox potentials of each 

molecule in the series.[22] Thus, a new antikinetoplastid hit molecule 

was identified (Fig. 3). This molecule was not genotoxic in the comet 

assay and was selectively bioactivated by type 1 NTRs of L. 

donovani and T. brucei brucei.[22] 

Here, we present a pharmacomodulation study at position 3 of the 

scaffold, using the Suzuki-Miyaura or Sonogashira cross-coupling 

reaction. To explore SARs, twenty six molecules were synthesized 

and evaluated on both L. infantum axenic amastigotes and T. brucei 

brucei trypomastigotes. All molecules were also assessed for their 

cytotoxicity on the HepG2 human cell line. 

Figure 3. Structure and biological profile of the previously identified 

antikinetoplastid hit 3-bromo-8-nitroquinolin-2(1H)-one. 

Results and Discussion 

Chemistry 

In a first time, 3-bromo-8-nitroquinolin-2(1H)-one was prepared in 3 

steps, as presented in Scheme 1. [22] The nitration of the 2-

chloroquinoline mainly led to the 2-chloro-8-nitroquinoline 

intermediate which was transformed in a second step into the 

corresponding lactam, according to a previously reported 

procedure.[23] The 8-nitroquinolin-2(1H)-one was finally selectively 

halogenated at position 3 by refluxing in HBr (48%) in the presence 

of sodium bromate, as reported by O’Brien and co-workers.[24]  

Scheme 1. Synthesis of the initial antikinetoplastid hit. a) H2SO4, HNO3, rt, 2 h; 

b) CH3CN, HClO4, 100 °C, 72 h; c) NaBrO3, HBr, 100 °C, 5 h.

Then, the microwave-assisted Suzuki-Miyaura cross coupling 

reaction between 3-bromo-8-nitroquinolin-2(1H)-one and para-

methoxyphenylboronic acid was studied, looking for optimal 

conditions. (Table 1). Several parameters were then investigated 

such as the nature of the solvent, base, and Pd-catalyst or the 

reaction temperature. 
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Table 1. Optimization of the Suzuki-Miyaura cross-coupling reaction between 3-bromo-8-nitroquinolin-2(1H)-one and para-methoxyphenylboronic acid. 

 

 

 

 

 

 

Entry Solvent Base, 3 equiv. Catalyst Temperature 

(°C) 

Time (h) Yield (%)[a] 

1 DMF Na2CO3 Pd(OAc)2, 0.1 equiv. 150 1 43 

2 DMSO Na2CO3 Pd(OAc)2, 0.1 equiv. 150 1 - [b] 

3 Toluene Na2CO3 Pd(OAc)2, 0.1 equiv. 110 8 - [c] 

4 Dioxane Na2CO3 Pd(OAc), 0.1 equiv. 100 8 - [c] 

5 THF Na2CO3 Pd(OAc)2, 0.1 equiv. 66 8 - [c] 

6 DME Na2CO3 Pd(OAc)2, 0.1 equiv. 85 8 - [c] 

7 DMF/H2O (8/2) Na2CO3 Pd(OAc)2, 0.1 equiv. 100 1 46 

8 DMF/H2O (8/2) K2CO3 Pd(OAc)2, 0.1 equiv. 100 1 - [b] 

9 DMF/H2O (8/2) Cs2CO3 Pd(OAc)2, 0.1 equiv. 100 1 - [b] 

10 DMF Na2CO3 Pd(PPh3)4, 0.1 equiv. 150 1 26 

11 DME Na2CO3 Pd(PPh3)4, 0.1 equiv. 85 3 52 

12 DME K2CO3 Pd(PPh3)4, 0.1 equiv. 85 4 84 

13 DME K2CO3 Pd(PPh2)Cl2, 0.1 equiv. 85 8 - [c] 

14 DME K2CO3 Pd(dppf)Cl2, 0.1 equiv. 85 8 - [c] 

15 DME K2CO3 Pd(OAc)2, 0.1 equiv. 85 8 - [c] 

16 DME Cs2CO3 Pd(PPh3)4, 0.1 equiv. 85 2 88 

17 DME CsF Pd(PPh3)4, 0.1 equiv. 85 2 88 

18 DME Cs2CO3 Pd(PPh3)4, 0.05 equiv. 85 4 56 

[a] The yield was calculated after purification by chromatography on silica gel with adapted eluent; [b] Degradation of the substrate was observed on TLC [c] Only partial 

conversion of the substrate was observed on TLC. 
 

The first Suzuki-Miyaura reaction conditions (entry 1) were inspired 

from a previously described protocol to introduce aryl moiety at 

position 3 of the quinolinone ring.[25] This reaction was realized in 

DMF under microwave (MW) heating, using 3 equiv. of Na2CO3 as a 

base, 0.1 equiv. of Pd(OAc)2 as a catalyst and 1.2 equiv of p-

methoxyphenylboronic acid in a sealed tube, to afford the desired 

compound in 43 % yield. The first parameter studied was the nature 

of the solvent (entries 1-7). By using toluene, dioxane, THF, DME or 

DMSO, partial conversion or degradation of the substrate was 

observed whereas the use of a DMF/H2O mixture led to a 46% yield. 

Then, two others bases were studied (entries 8-9) but led to the 

degradation of the substrate within 1 h. In DMF, the replacement of 

Pd(OAc)2 by Pd(PPh3)4 decreased the yield of the reaction from 43% 

to 26% (entry 10). Then, adapting another previously described 

protocol using DME and Pd(PPh3)4 (entry 11), a slightly better yield 

was obtained.[26] This result was then improved by replacing 

Na2CO3 by K2CO3 which afford a yield of 84%. The nature of the 

catalyst was then studied (entries 13-15) but none of these assays 

led to an improvement in the reaction yield and only a few 

conversion was observed. Finally, the best results were obtained by 

using Cs2CO3 or CsF as a base (entries 16-17), which afford an 

efficient procedure of a Suzuki-Miyaura cross coupling reaction on 

this substrate. In the entry 18, the decrease of the amount of catalyst 

to 0.05 equiv. led to a lower reaction yield (56%) in comparison to 

entry 16, which was chosen as the best reaction conditions. 

Then, the procedure was extended to 19 other arylboronic acids, to 

afford new derivatives bearing a phenyl, thiophene, furane or 

pyridine moiety at position 3 of the scaffold (Scheme 2). The 

reactions yields were generally superior to 65% (for 14 derivatives) 

but were lower for 4-hydroxyphenylboronic acid and 4-

aminophenylboronic acid with respectively 37% and 41% yields. 
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Scheme 2. General procedure for the Suzuki-Miyaura cross coupling reaction 

between 3-bromo-8-nitroquinolin-2(1H)-one and various arylboronic acids. 

Three additional molecules (21-23) were synthesized by the 

saponification of compounds 18-20 into the carboxylic acid 

derivatives, using an excess of sodium hydroxide in an ethanol/water 

mixture (Scheme 3). Finally, compound 24 was obtained in two 

steps: O-methylation of 18, using methyl iodide in DMF under inert 

atmosphere, followed by a saponification with the same procedure 

as described for compounds 21-23 (Scheme3). 

 

 

 

Scheme 3. Preparation of compounds 21-24.  

In parallel, in a view to enlarge the chemical diversity at position 3 of 

the scaffold and introduce alkynyl moieties, a Sonogashira cross-

coupling reaction was set up. The initial conditions were adapted 

from a previously described protocol. [27] As presented in Table 2, 

after a brief optimization of the reaction between 3-bromo-8-

nitroquinolinone and phenylacetylene, DME was chosen as solvent, 

and the reaction was carried out at 15°C (entry 6). Interestingly, it 

was noted that temperature had a strong influence on the reaction. 

At 0 °C in DME, the reaction did not take place whereas it worked at 

15 and 25 °C, affording awaited compound 25.Surprisingly, it led to 

the unexpected 8-nitro-2-phenylfuro[2,3-b]quinoline 26 when heating 

at 40 °C in DME or DMF. Compound 27 was also obtained when 

trying to recrystallize 26 in acetonitrile, underlining the instability of 

this product. Such a consecutive Sonogashira coupling and 

cyclization reaction, leading to furo[2,3-b]pyridine derivatives, was 

already reported in the literature [28,29]  

The optimization of both Suzuki-Miyaura and Sonogashira cross-

coupling reactions led to the synthesis of 26 new molecules with an 

aryl or an alkynyl group at position 3 of the scaffold. Appart molecule 

25, which was considered too unstable, all these molecules were 

then evaluated in vitro to determine their antikinetoplastid potential. 

Compound 26 could not be evaluated because of a very poor 

aqueous solubility. Thus, only the Suzuki-Miyaura coupling products 

1- 23 could be assessed. 

 

 

 

 

 

 

 

 

 

 

Table 2. Optimization of the Sonogashira cross-coupling reaction on 3-bromo-

8-nitroquinolin-2(1H)-one substrate. 

 

[a] The yield was calculated after purification by chromatography on silica gel with 

adapted eluent; [b] Only partial conversion of the substrate was observed on TLC. 

 

Compound evaluation 

In a first time, the cytotoxicity of these molecules was assessed in 

vitro on the HepG2 human cell line and the corresponding cytotoxic 

concentration 50% (CC50) were compared to the one of the 

reference drug doxorubicin (Table 3).The biological results showed 

that compounds 1-11 presented a lack of solubility in aqueous 

medium and could not be tested. The water-solubility was improved 

with compounds 10, 12-17 and 21-23, bearing either a pyridine-3-yl 

or a phenyl moiety at position 3 of the scaffold, this latter being 

substituted by a hydrophilic group such as hydroxymethyl and 

aldehyde or an ionized carboxylic group. These molecules displayed 

a low cytotoxicity on HepG2 human cell line with CC50 > 25 µM, the 

compound bearing an aldehyde group in para position of the phenyl 

ring (15) was the most cytotoxic of this series with a CC50 = 30 µM.  

 

Then, all synthesized compounds were tested in vitro against 

Leishmania infantum axenic amastigotes. Their inhibitory 

concentration 50% (IC50) were determined and compared to the 

ones of two antileishmanial reference drugs (amphotericine B and 

miltefosine) and to the drug candidate fexinidazole.  

 

 

 

 

Entry Solvent 
Temperature 

(°C) 
Yield 25 (%)[a] Yield 26 (%)[a] 

Time 

(h) 

1 DMF 25°C -[b] -[b] 48 

2 THF 25°C -[b] -[b] 48 

3 Et3N 25°C -[b] -[b] 48 

4 DME 25°C 56 0 0.25 

5 DME 0 -[b] -[b] 48 

6 DME 15  72 0 1.5 

7 DME 40 0 51 0.5 

8 DMF 40 0 56 36 
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Table 3. In vitro antileishmanial, antitrypanosomal and cytotoxic activities of the synthesized compounds 1-25 and reference standards. 

 

 

Compound R (Yield %) 
IC50 L. infantum 

axenic amastigotes (µM) 

IC50 T. brucei brucei 

trypomastigotes (µM) 
CC50 HepG2 (µM) 

Antitrypanosomal 

selectivity Index[g] 

1 Phenyl (90) >12[a] 4.7 +/- 2.7 >12[a] >2 

2 4-OCH3-phenyl (88) >6[a] - >6[a] - 

3 4-OH-phenyl (37) >3[a] - >3[a] - 

4 4-NH2-phenyl (41) >3[a] - >3[a] - 

5 4-Cl-phenyl (73) >3[a] - >3[a] - 

6 4-F-phenyl (70) >6[a] - >6[a] - 

7 4-CF3-phenyl (60) >6[a] - >6[a] - 

8 Thiophen-3-yl (92) >6[a] - >6[a] - 

9 Furan-2-yl (65) >3[a] - >3[a] - 

10 Pyridin-3-yl (62) >50[a] 2.8 +/- 0.8 >25[a] >9 

11 Pyridin-4-yl (71) NS[b] - NS[b] - 

12 4-CH2OH-phenyl (77) >25[a] 1.9 +/- 0.3 >25[a] >13 

13 3-CH2OH-phenyl (87) 29.3 +/- 4.2 1.5 +/- 0.3 >25[a] >17 

14 2-CH2OH-phenyl (72) 22 +/- 2.0 7.2 +/- 0.6 >100[c] >14 

15 4-CHO-phenyl (51) 35 +/- 1.7 0.5 +/- 0.1 30 +/- 3.7 60 

16 3-CHO-phenyl (55) 10.2 +/- 0.6 5.6 +/- 0.4 >100[c] >18 

17 2-CHO-phenyl (65) 9.8 +/- 1.2 7.5 +/- 0.4 >50[a] >7 

18 4-COOCH3-phenyl (72) >12.5[a] - >12.5[a] - 

19 3-COOCH3-phenyl (71) NS[b] - NS[b] - 

20 2-COOCH3-phenyl (71) NS[b] - NS[b] - 

21 4-COOH-phenyl (65) >100[c] 1.5 +/- 0.2 120 +/- 7 80 

22 3- COOH-phenyl (60) >100[c] 7.5 +/- 1.0 >100[c] >13 

23 2- COOH-phenyl (66) >100[c] >50[a] >100[c] - 

Initial Hit[22] Br 7.1 +/- 1.5 1.9 +/- 0.44 92 +/- 13.0 48 

8-nitroquinolinone[22] H 15.5 +/- 0.5 23.4 +/- 5.7 164 +/- 28 7 

Doxorubicin[d] - - 0.2 +/- 0.02 - 

Amphotericin B[e] 0.06 +/- 0.001 - 7.0 +/- 0.25 - 

Miltefosine[e] 0.8 +/- 0.2 - 84.5 +/- 8.8 - 

Fexinidazole[e] [f] 3.3 +/- 0.7 0.4 +/- 0.18 >100[c] >250 

Suramin[f] - 0.03 +/- 0.009 >100[c] >3333 

Eflornithine[f] - 15.8 +/- 2.1 >100[c] >6 

[a] The product could not be tested at higher concentrations due to a poor solubility in aqueous medium; [b] The product was not soluble at any tested concentration; [c] The IC50 or CC50 
value was not reached at the highest tested concentration; [d] Doxorubicin was used as a cytotoxic reference drug; [e] Amphotericin B, Miltefosine and Fexinidazole were used as 
antileishmanial reference drugs or drug candidate; [f] Fexinidazole, Suramin and Eflornithine were used as anti-trypanosomal reference drugs or drug candidate; [g] Antitrypanosomal 
selectivity index was calculated according to the following formula : CC50 HepG2 / IC50 T. brucei brucei

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



FULL PAPER    

6 

 

Regarding antileishmanial activity, apart for aldehyde-containing 

compounds 16 and 17, the tested series appeared either poorly 

active (IC50 = 22 – 35 µM) or even totally inactive (IC50 > 100 µM for 

carboxylic group containing derivatives) toward L. infantum, in 

comparison with the reference drugs. Thus, introducing an aryl 

moiety at position 3 of the pharmacophore did not seem to favour 

antileishmanial activity. 

In a second time, only the compounds with appropriate aqueous 

soluble solubility were tested in vitro against T. brucei brucei 

trypomastigotes and compared to reference antitrypanosomal drugs 

(suramin and eflornithine) and the drug candidate fexinidazole. All 

tested molecules displayed good antitrypanosomal activity (0.5 µM ≤ 

IC50 ≤ 7.5 µM), better than the one of eflornithine (IC50
 = 15.8 µM) 

and approaching the one of fexinidazole (IC50
 = 0.4 µM). Interestingly, 

compounds substituted in ortho position of the phenyl ring (14, 17, 

23) displayed higher IC50 values than their analogues substituted in 

meta and para positions. Compounds with a para-substituted phenyl 

ring generally showed lower IC50 than their meta-substituted 

analogues, 15 being 11 times more potent than 16, and 21 5 times 

more potent than 22. Compounds 15 and 21 appeared as the most 

promising antitrypanosomal molecules in this series with respective 

IC50 values of 0.5 and 1.5 µM. Compound 21 appears as a new 

antitrypanosomal hit, with an activity against T. brucei brucei close to 

the one of the parent compound (IC50 = 1,9 µM) but with a better 

cytotoxicity profile, leading to a better selectivity index (80 versus 48 

for the initial hit). By comparison with reference drugs, compound 21 

appears less active than suramin but more active than eflornithine. 

Regarding fexinidazole, another nitroheterocycle, compound 21 

presents the same cytotoxic profile with CC50 = 120 µM and is three 

times less active than this drug candidate. Indeed, unlike 

fexinidazole and 3-bromo-8-nitroquinolin-2(1H)-one, compound 21 

displayed a selective antitrypanosomal activity, being inactive (IC50 > 

100 µM) against L. infantum. This is a first element indicating that 

molecule 21 shows a specific antiparasitic profile in the studied 

series. 

 

 

Figure 4. In vitro antiparasitic activities and cytotoxicity of compound 24. 

Finally, the O-methylated analogue 24 of hit compound 21 was 

synthesized and tested in vitro against both L. infantum and T. 

brucei brucei (Fig. 4). It was as active against T. brucei brucei as 21 

(IC50 = 2.2 µM). Molecule 24 was also active against L. infantum 

(IC50 = 12.8 µM) whereas 21 was not (IC50 > 100 µM). These results 

are surprising, considering that the hydrogen bond between the 

lactam function and the nitro group appeared mandatory for 

providing antileishmanial activity in 8-nitroquinolin-2(1H)-one series 

by increasing the reduction potential value [22]. This is a second 

element indicating that the introduction of an aryl group at position 3 

of the 8-nitroquinolin-2(1H)-one scaffold could lead to a new 

antikinetoplasid mechanism of action, in comparison with 3-bromo-8-

nitroquinolin-2(1H)-one. 

To assess if the antitrypanosomal nitroheterocycle 21 was 

bioactivated by the NTR of T. brucei brucei, its IC50 value was 

measured on both a wild type T. brucei brucei trypomastigotes strain 

and a NTR-overexpressing one (Table 4). The results were 

compared with the ones obtained for the initial hit.[22] This latter is 

clearly bioactivated by the trypanosomal NTR, being 4.5 more active 

against the strain overexpressing the NTR than on the wild type one, 

whereas 21 is only 1.3 time more active on the strain overexpressing 

the NTR. This result is a third element that suggests that 21, which is 

less intensively bioactivated by the trypanosomal NTR than the initial 

hit, could present another parasitic target. This assay also showed 

that compound 21 presents the same level of activity toward T. 

brucei brucei than the drug nifurtimox, used as a bioactivation 

control. 

Table 4. Study of the bioactivation of 21 by trypanosomal nitroreductase NTR. 

Compound 

IC50 T. brucei brucei 

trypomastigotes  

wild type strain (µM) 

IC50 T. brucei brucei 

trypomastigotes  

NTR over-expressing 

strain (µM). 

Fold 

change 

21 5.4 +/- 0.12 4.2 +/- 0.2 1.3 

Initial Hit 17.7 +/- 1.0 3.9 +/- 0.1 4.5 

Nifurtimox 1.9 +/- 0.05 0.6 +/- 0.05 3.1 

In parallel, an electrochemistry study was carried out by measuring 

in DMSO the reduction potentials of five 8-nitroquinolin-2(1H)-one 

derivatives bearing an aryl group at position 3, using cyclic 

voltammetry (Table 5). For all compounds, a reversible single-

electron reduction was observed (formation of an anion radical). The 

redox potentials of the new compounds bearing an aryl group at 

position 3 ranged between -0.53 V and – 0.59 V, higher than for the 

initial hit (-0.45 V) but quite close to the one of 8-nitroquinolin-2(1H)-

one (-0.54 V). As previously noted in the studied series [22], the O-

methylation of compound 21 leading to compound 24, is responsible 

for an important decrease in the redox potential value from -0.56 V 

to -0.93 V. This shift is mainly due to the removal of the 

intramolecular hydrogen bond between the lactam function and the 

nitro group. It can be concluded that the introduction of a phenyl ring 

at the position 3 of the scaffold has no significant impact on the 

redox potential of the studied series but that it allows to reach novel 

antitrypanosomal molecules that display lower reduction potential 

than the initial hit with the same level of efficacy. 

Thus, to understand the selective antitrypanosomal activity of 21, 

other parasitic targets should be explored. Among the parasitic 

targets that were recently reported in the literature concerning the 

antitrypanosomal activity of new diverse nitrohetrocycles, the S-

adenosylmethionine decarboxylase (AdoMetDC) was highlighted by 

a high-throughput mass spectrometry-based assay conducted on 

400.000 molecules [30] and is to consider. 
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Table 5. Effects of the substitution of the phenyl ring on reduction potentials in 

Suzuki-miyaura series. 

Compound Structure E° (V)[a] 

1 

 

-0.59 

7 

 

-0.53 

13 

 

- 0.53 

21 

 

-0.56 

24 

 

- 0.93 

Initial Hit 

 

- 0.45 

8-nitroquinolin-2(1H)-one 

 

- 0.54 

[a] Cyclic voltammetry conditions: DMSO/TBAPF6, SCE/GC, 1 electron 

reversible reduction, values are given in V versus NHE 

Conclusions 

An optimized Suzuki-Miyaura reaction at position 3 of 3-bromo-8-

nitroquinolin-2(1H)-one led to the synthesis of 24 new derivatives. 

These molecules were screened in vitro against L. infantum and T. 

brucei brucei to evaluate their antikinetoplastid potential. Among 

these molecules, a new selective antitrypanosomal hit 21, bearing a 

para-carboxyphenyl group, was identified. Compound 21 was not 

cytotoxic on the HepG2 human cell line (CC50 = 120 µM), displayed 

a good antitrypanosomal activity (IC50 = 1.5 µM, SI = 80), better than 

the one of the drug eflornithine and approaching the one of 

fexinidazole, a 5-nitroimidazole in phase III of clinical trials against 

HAT. Interestingly, 21 was inactive against L. infantum showing a 

parasitic selectivity among kinetoplastids. Unlike fexinidazole and 

the previously identified hit molecule in the series, this molecule was 

not efficiently metabolized by the type I trypanosomal NTR, 

suggesting a probable additional mechanism of action in this series. 

 

Experimental Section 

 

Chemistry 

All reagents and solvents were obtained from commercial sources 

(Fluorochem®, Sigma-Aldrich® or Alfa Aesar®) and used as received. 

The progress of the reactions was monitored by pre-coated thin layer 

chromatography (TLC) sheets ALUGRAM® SIL G/UV254 from Macherey-

Nagel and were visualized by ultraviolet light at 254 nm. The 1H and 13C 

NMR spectra were recorded on a Bruker UltraShield 300 MHz, a Bruker 

IconNMR 400 MHz, or a Bruker Avance NEO 600 MHz instrument, at the 

Laboratoire de Chimie de Coordination and data are presented as 

follows: chemical shifts in parts per million (δ) using tetramethylsilane 

(TMS) as reference, coupling constant in Hertz (Hz), multiplicity by 

abbreviations : (s) singlet, (d) doublet, (t) triplet, (q) quartet, (dd) doublets 

of doublets, (m) multiplet and (br s) broad singlet. Melting points are 

uncorrected and were measured on a Stuart Melting Point SMP3 

instrument. High-resolution mass measurements were done on a GCT 

Premier Spectrometer (DCI, CH4, HRMS) or Xevo G2 QTOF (Waters, 

ESI+, HRMS) instrument at the Université Paul Sabatier, Toulouse. 

Microwave reactions were realized in a CEM Discover® microwave 

reactor. 

3-bromo-8-nitroquinolin-2(1H)-one was prepared according to a 

previsouly reported procedure.[22] 

 
General procedure for the preparation of compounds 1-20 and 25 

One equiv. of 3-bromo-8-nitroquinolin-2(1H)-one (1.1 mmol, 300 mg), 3 

equiv. of cesium carbonate (3.3 mmol, 1.1 g), 0.1 equiv. of Pd(PPh3)4 

(0.12 mmol, 127 mg) and 1.2 equiv. of the appropriate phenylboronic 

acid were added in a sealed flask of 25 mL. Under Ar atmosphere, 10 mL 

of dry dimethoxyethane were then added. The reaction mixture was 

heated at 85°C in a microwave reactor during 2 h. The reaction mixture 

was poured into water and extracted 3 times with dichloromethane 

(3x100 mL). The organic layer was washed with water, dried over 

anhydrous MgSO4 and evaporated in vacuo. The crude residues were 

purified by chromatography on silica gel using adapted eluent and 

recrystallized if necessary to give compounds 1-20 and 25. 

 

8-nitro-3-phenylquinolin-2(1H)-one 1 (C15H10N2O3) was purified by 

chromatography on silica gel using dichloromethane/ethyl acetate (97/3) 

as eluent, isolated and recrystallized in acetonitrile to yield a yellow solid 

(264 mg, 0.99 mmol, 90%); Tdec: 177 °C, 1H NMR (CDCl3, 400 MHz): 
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7.31-7.35 (m, 1H, H6), 7.41-7.50 (m, 3H, H3’, H4’ and H5’), 7.75-7.77 (m, 

2H, H2’ and H6’), 7.91 (s, 1H, H4), 7.94 (dd, 1H, J=7.6 and 1.4 Hz, 

H5), 8.49 (dd, 1H, J=8.4 and 1.4 Hz, H7), 11.40 (br s, 1H, NH). 13C NMR 

(100 MHz, CDCl3) : 121.4 (CH), 122.7 (C), 127.3 (CH), 128.5 (2xCH), 

128.7 (2xCH), 129.1 (CH), 132.7 (C), 133.1 (C), 134.5 (C), 134.6 (C), 

135.6 (CH), 136.7 (CH), 161.0 (C). HRMS (DCI-CH4) calcd for 

C15H11N2O3 [M+H]+ = 267.0770, found 267.0762. 

3-(4-methoxyphenyl)-8-nitroquinolin-2(1H)-one 2 (C16H12N2O4) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate (95/5) as eluent, isolated and recrystallized in acetonitrile to yield 

an orange solid (287 mg, 0.97 mmol, 88%); m.p. 229 °C, 1H NMR (CDCl3, 

400 MHz): 3.87 (s, 3H, CH3), 6.99-7.02 (m, 2H, H3’ and H5’), 7.29-7.33 

(m, 1H, H6), 7.73-7.77 (m, 2H, H2’ and H6’), 7.87 (s, 1H, H4), 7.91 (dd, 

J=7.6 and 1.4 Hz, 1H, H5), 8.47 (dd, J=8.3 and 1.4 Hz, 1H, H7), 11.38 

(br s, 1H, NH). 13C NMR (CDCl3, 75 MHz) : 55.4 (CH3), 114.0 (2xCH), 

121.3 (CH), 122.9 (C), 125.6 (C), 126.9 (CH), 130.0 (2xCH), 132.7 (C), 

132.9 (C), 134.0 (C), 135.3 (CH), 135.4 (CH), 160.3 (C), 161.2 (C). 

HRMS (DCI-CH4) calcd for C16H13N2O4 [M+H]+ = 297.0875, found 

297.0864. 

3-(4-hydroxyphenyl)-8-nitroquinolin-2(1H)-one 3 (C15H10N2O4) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate (75/25) as eluent and isolated to yield an orange solid (115 mg, 

0.41 mmol, 37%); m.p. 266 °C, 1H NMR (DMSO-d6, 400 MHz) : 6.84-

6.88 (m, 2H, H3’ and H5’), 7.40-7.44 (m, 1H, H6), 7.67-7.71 (m, 2H, H2’ 

and H6’), 8.20 (dd, J= 7.7 and 1.4 Hz, 1H, H5), 8.26 (s, 1H, H4), 8.40 (dd, 

J= 8.3 and 1.4 Hz, 1H, H7), 9.74 (s, 1H, OH), 11.12 (br s, 1H, NH).  13C 

NMR (DMSO-d6, 75 MHz) : 115.4 (2xCH), 122.0 (CH), 122.8 (C), 125.8 

(C), 127.1 (CH), 130.4 (2xCH), 132.3 (C), 132.5 (C), 133.5 (C), 136.0 

(CH), 136.1 (CH), 158.5 (C), 160.8 (C). HRMS (DCI-CH4) calcd for 

C15H11N2O4 [M+H]+ = 283.0719, found 283.0706. 

3-(4-aminophenyl)-8-nitroquinolin-2(1H)-one 4 (C15H11N3O3) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate (95/5) as eluent and isolated to yield an orange solid (128 mg, 

0.45 mmol, 41%); m.p. 280 °C, 1H NMR (DMSO-d6, 400 MHz) : 5.44 (s, 

2H, NH2), 6.61-6.65 (m, 2H, H3’ and H5’), 7.37-7.41 (m, 1H, H6), 7.58-

7.62 (m, 2H, H2’ and H6’), 8.15-8.18 (m, 2H, H4 and H5), 8.36 (dd, 1H, 

J= 8.3 and 1.4 Hz, H7), 11.07 (br s, 1H, NH).  13C NMR (DMSO-d6, 100 

MHz) : 113.6 (2xCH), 121.9 (CH), 122.1 (C), 123.1 (C), 126.5 (C), 129.9 

(2xCH), 131.9 (C), 132.9 (C), 133.4 (C), 134.1 (CH), 135.8 (CH), 150.0 

(CH), 161.0 (C). HRMS (DCI-CH4) calcd for C15H12N3O3 [M+H]+ = 

282.0879, found 282.0874. 

3-(4-chlorophenyl)-8-nitroquinolin-2(1H)-one 5 (C15H9N2O3Cl) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate (97/3) as eluent and isolated to yield a yellow solid (241 mg, 0.80 

mmol, 73%); m.p. 222 °C, 1H NMR (CDCl3, 400 MHz) : 7.33-7.37 (m, 1H, 

H6), 7.40-7.42 (m, 2H, H3’ and H5’), 7.66-7.75 (m, 2H, H2’ and H6’), 7.92 

(s, 1H, H4), 7.95 (dd, 1H, J=7.6 and 1.5 Hz, H5), 8.51 (dd, 1H, J=8.4 and 

1.5 Hz, H7), 11.42 (br s, 1H, NH).   13C NMR (CDCl3, 100 MHz) : 121.6 

(CH), 122.4 (C), 126.9 (CH), 127.7 (CH), 128.7 (CH), 129.1 (CH), 129.7 

(CH), 132.8 (C), 133.1 (C), 133.2 (C), 134.4 (C), 135.7 (CH), 136.2 (C), 

137.3 (CH), 160.6 (C). HRMS (DCI-CH4) calcd for C15H10ClN2O3 [M+H]+ 

= 301.0380, found 301.0373. 

3-(4-fluorophenyl)-8-nitroquinolin-2(1H)-one 6 (C15H9N2O3F) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate (98/2) as eluent and isolated to yield a yellow solid (219 mg, 0.77 

mmol, 70%); m.p. 217 °C, 1H NMR (CDCl3, 400 MHz) : 7.12-7.20 (m, 2H, 

H2’ and H6’), 7.31-7.36 (m, 1H, H6), 7.73-7.80 (m, 2H, H3’ and H5’), 7.89 

(s, 1H, H4), 7.94 (dd, 1H, J= 7.6 et 1.5 Hz, H5), 8.50 (dd, 1H, J= 8.4 and 

1.5 Hz, H7), 11.41 (br s, 1H, NH). 13C NMR (CDCl3, 100 MHz) : 115.5 (d, 

J= 21.6 Hz, 2xCH), 121.5 (CH), 122.6 (C), 124,4 (C), 127.4 (CH), 130.6 

(d, J= 8.3 Hz, 2xCH), 132.7 (C), 133.1 (C), 133.5 (C), 135.5 (CH), 136.5 

(CH), 160.9 (C), 163.2 (d, J= 249.2 Hz, C). HRMS (DCI-CH4) calcd for 

C15H10FN2O3 [M+H]+ = 285.0675, found 285.0676. 

8-nitro-3-(4-trifluoromethylphenyl)quinolin-2(1H)-one 7 

(C16H9N2O3F3) was purified by chromatography on silica gel using 

dichloromethane/ethyl acetate (98/2) as eluent and isolated to yield a 

yellow solid (220 mg, 0.66 mmol, 60%); m.p. 168 °C, 1H NMR (CDCl3, 

400 MHz) : 7.34-7.38 (m, 1H, H6), 7.72-7.75 (m, 2H, H2’ and H6’), 7.88 

(m, 2H, H3’ and H5’), 7.95-7.98 (m, 2H, H4 and H5), 8.53 (dd, 1H, J= 8.4 

and 1.4 Hz, H7), 11.45 (br s, 1H, NH). 13C NMR (CDCl3, 150 MHz) : 

121.7 (CH), 122.4 (C), 124.0 (q, J= 272.3 Hz, C), 125.4 (q, J= 3.7 Hz, 

2xCH), 127.9 (CH), 129.1 (2xCH), 130.9 (q, J= 32.5 Hz, C), 132.8 (C), 

133.2 (C), 133.4 (C), 135.8 (CH), 137.6 (CH), 138.0 (C), 160.5 (C). 

HRMS (DCI-CH4) calcd for C16H10N2O3F3 [M+H]+ = 335.0644, found 

335.0629. 

8-nitro-3-(thiophen-3-yl)quinolin-2(1H)-one 8 (C13H8N2SO3) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate (98/2) as eluent and isolated to yield a yellow solid (275 mg, 1.01 

mmol, 92%); m.p. 199 °C, 1H NMR (CDCl3, 400 MHz) : 7.31-7.35 (m, 1H, 
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H6), 7.41-7.43 (m, 1H, H4’), 7.59 (dd, 1H, J= 5.1 Hz and 1.3 Hz, H5’), 

7.94 (dd, 1H, J= 7.7 Hz and 1.4 Hz, H5), 8.05 (s, 1H, H4), 8.39 (dd, 1H, 

J=3.0 and 1.3 Hz, H2’), 8.48 (dd, 1H, J=8.4 and 1.4 Hz, H7), 11.42 (br s, 

1H, NH). 13C NMR (CDCl3, 75 MHz) : 121.4 (CH), 122.6 (C), 123.6 (C), 

125.6 (CH), 126.2 (CH), 127.0 (CH), 127.1 (CH), 128.6 (C), 132.4 (C), 

134.1 (CH), 134.3 (C), 135.4 (CH), 160.6 (C). HRMS (DCI-CH4) calcd for 

C13H9N2SO3 [M+H]+ = 273.0334, found 273.0330. 

3-(2-furanyl)-8-nitroquinolin-2(1H)-one 9 (C13H8N2O4) was purified by 

chromatography on silica gel using dichloromethane as eluent and 

isolated to yield a dark red solid (183 mg, 0.71 mmol, 65%); m.p. 257 °C, 

1H NMR (CDCl3, 300 MHz) : 6.58 (dd, 1H, J= 3.3 Hz and 1.9 Hz, H4’), 

7.30-7.35 (m, 1H, H6), 7.55-7.56 (m, 2H, H3’ and H5’), 7.96 (dd, 1H, J= 

7.6 and 1.4 Hz, H5), 8.23 (s, 1H, H4), 8.46 (dd, 1H, J= 8.3 and 1.4 Hz, 

H7), 11.42 (br s, 1H, NH). 13C NMR (CDCl3, 100 MHz) : 112.6 (CH), 

114.2 (CH), 121.6 (CH), 122.5 (C), 123.6 (C), 126.9 (CH), 130.7 (CH), 

132.0 (C), 132.8 (C), 135.5 (CH), 143.3 (CH), 147.7 (C), 158.7 (C). 

HRMS (DCI-CH4) calcd for C13H9N2O4 [M+H]+ = 257.0562, found 

257.0558. 

8-nitro-3-(pyridine-3-yl)quinolin-2(1H)-one 10 (C14H9N3O3) was 

purified by chromatography on silica gel using dichloromethane/ethyl 

acetate as eluent and isolated to yield a yellow solid (182 mg, 0.68 mmol, 

62%); m.p. 237 °C, 1H NMR (CDCl3, 400 MHz) : 7.35-7.39 (m, 1H, H6), 

7.40-7.43 (m, 1H, H5’), 7.97-7.99 (m, 2H, H4 and H5), 8.20-8.23 (m, 1H, 

H6’), 8.53 (dd, 1H, J=8.4 and 1.4 Hz, H7), 8.66 (dd, 1H, J=4.9 and 1.7 Hz, 

H4’), 8.90 (dd, 1H, J=2.3 and 0.9 Hz, H2’), 11.45 (br s, 1H, NH). 13C 

NMR (CDCl3, 100 MHz) : 121.7 (CH), 122.3 (C), 123.1 (CH), 127.9 (CH), 

130.5 (C), 131.4 (C), 132.8 (C), 133.3 (C), 135.8 (CH), 136.4 (CH), 137.2 

(CH), 149.0 (CH), 150.0 (CH), 160.6 (C). HRMS (DCI-CH4) calcd for 

C14H10N3O3 [M+H]+ = 268.0722, found 268.0712. 

8-nitro-3-(pyridine-4-yl)quinolin-2(1H)-one 11 (C14H9N3O3) was 

purified by chromatography on silica gel using dichloromethane/acetone 

(80/20) as eluent and isolated to yield a yellow solid (209 mg, 0.78 mmol, 

71%); m.p. 297 °C, 1H NMR (CDCl3, 400 MHz) : 7.36-7.40 (m, 1H, H6), 

7.70-7.72 (m, 2H, H2’ and H6’), 7.98 (dd, 1H, J=7.9 and 1.4 Hz, H5), 8.03 

(s, 1H, H4), 8.55 (dd, 1H, J= 8.4 and 1.4 Hz, H7), 8.73-8.74 (m, 2H, H3’ 

and H5’), 11.46 (br s, 1H, NH).  13C NMR (TFA-d, 100 MHz) : 121.6 (C), 

123.7 (CH), 126.1 (C), 126.7 (2xCH), 130.7 (CH), 132.4 (C), 133.4 (C), 

137.5 (CH), 140.6 (2xCH), 144.1 (CH), 153.5 (C), 161.1 (C). HRMS (DCI-

CH4) calcd for C14H10N3O3 [M+H]+ = 268.0722, found 268.0713. 

3-(4-hydroxymethylphenyl)-8-nitroquinolin-2(1H)-one 12 

(C16H12N2O4) was purified by chromatography on silica gel using 

dichloromethane/acetone (75/25) as eluent and isolated to yield a yellow 

solid (251 mg, 0.85 mmol, 77%); m.p. 219 °C, 1H NMR (DMSO-d6, 400 

MHz) : 4.56 (d, 2H, J=5.6, CH2), 5.26 (t, 1H, J= 5.6, OH), 7.41-7.46 (m, 

3H, H6, H3’ and H5’), 7.76-7.79 (m, 2H, H2’ and H6’), 8.23 (dd, 1H, J=7.6 

and 1.4 Hz, H5), 8.36 (s, 1H, H4), 8.43 (dd, 1H, J= 8.3 and 1.4 Hz, H7), 

11.17 (br s, 1H, NH).  13C NMR (DMSO-d6, 100 MHz) : 63.1 (CH2), 

122.1 (CH), 122.6 (C), 126.6 (2xCH), 127.6 (CH), 128.8 (2xCH), 132.6 

(C), 132.7 (C), 133.6 (C), 134.0 (C), 136.4 (CH), 137.6 (CH), 143.6 (C), 

160.8 (C). HRMS (DCI-CH4) calcd for C16H13N2O4 [M+H]+ = 297.0875, 

found 297.0878. 

3-(3-hydroxymethylphenyl)-8-nitroquinolin-2(1H)-one 13 

(C16H12N2O4) was purified by chromatography on silica gel using 

dichloromethane/acetone (75/25) as eluent and isolated to yield a yellow 

solid (267 mg, 0.90 mmol, 82%); m.p. 155 °C, 1H NMR (DMSO-d6, 300 

MHz) : 4.58 (d, 2H, J=5.6 Hz, CH2), 5.27 (t, 1H, J= 5.6 Hz, OH), 7.37-

7.47 (m, 3H, H6, H4’ and H5’), 7.66-7.68 (m, 1H, H6’), 7.73-7.75 (m, 1H, 

H2’), 8.25 (dd, 1H, J=7.8 and 1.4 Hz, H5), 8.35 (s, 1H, H4), 8.44 (dd, 1H, 

J= 8.3 and 1.4 Hz, H7), 11.17 (br s, 1H, NH). 13C NMR (DMSO-d6, 75 

MHz) : 63.3 (CH2), 122.1 (CH), 122.6 (C), 127.1 (CH), 127.2 (CH), 

127.5 (CH), 127.7 (CH), 128.4 (CH), 132.7 (C), 133.0 (C), 133.7 (C), 

135.1 (C), 136.5 (CH), 138.0 (CH), 142.9 (C), 160.6 (C). HRMS (DCI-

CH4) calcd for C16H13N2O4 [M+H]+ = 297.0875, found 297.0861. 

3-(2-hydroxymethylphenyl)-8-nitroquinolin-2(1H)-one 14 

(C16H12N2O4) was purified by chromatography on silica gel using 

dichloromethane/ethyl acetate (50/50) as eluent and isolated to yield a 

yellow solid (235 mg, 0.79 mmol, 72%); m.p. 208 °C, 1H NMR (DMSO-d6, 

400 MHz) : 4.44 (d, J=5.5 Hz, 2H, CH2), 5.09 (sl, 1H, OH), 7.28 (dd, 1H, 

J= 7.5 and 1.4 Hz, H3’), 7.33-7.37 (m, 1H, H6), 7.42-7.46 (m, 2H , H4’ 

and H5’), 7.57 (dd, 1H, J=7.5 and 1.4 Hz, H6’), 8.12 (s, 1H, H4), 8.19 ( dd, 

1H, J= 7.6 Hz and 1.4 Hz, H5), 8.45 (dd, 1H, J= 8.3 and 1.4 Hz, H7), 

11.19 (br s, 1H, NH). 13C NMR (CDCl3, 100 MHz) : 63.7 (CH2), 121.9 

(CH), 122.5 (C), 127.8 (CH), 128.4 (CH), 129.8 (CH), 130.1 (CH), 130.6 

(CH), 132.7 (C), 133.1 (C), 133.9 (C), 135.7 (CH), 135.8 (C), 139. 2 (CH), 

139.9 (C), 162.2 (C). HRMS (DCI-CH4) calcd for C16H13N2O4 [M+H]+ = 

297.0875, found 297.0869. 

3-(4-formylphenyl)-8-nitroquinolin-2(1H)-one 15 (C16H10N2O4) was 

purified by chromatography on silica gel using 

dichloromethane/cyclohexane (80/20) as eluent, isolated and 
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recrystallized in acetonitrile to yield a yellow solid (165 mg, 0.56 mmol, 

51%); m.p. 243 °C, 1H NMR (CDCl3, 300 MHz) : 7.34-7.39 (m, 1H, H6), 

7.93-8.00 (m, 6H, H4, H5, H2’, H3’, H5’ and H6’), 8.53 (dd, 1H, J= 8.5 Hz 

and 1.4 Hz, H7), 10.08 (s, 1H, CHO), 11.45 (br s, 1H, NH). 13C NMR 

(CDCl3, 75 MHz) : 121.7 (CH), 122.3 (C), 128.0 (CH), 129.4 (2xCH), 

129.8 (2xCH), 132.8 (C), 133.2 (C), 133.4 (C), 135.9 (CH), 136.4 (C), 

137.9 (CH), 140.5 (C), 160.5 (C), 191.7 (CH). HRMS (DCI-CH4) calcd for 

C16H11N2O4 [M+H]+ = 295.0719, found 295.0710. 

3-(3-formylphenyl)-8-nitroquinolin-2(1H)-one 16 (C16H10N2O4) was 

purified by chromatography on silica gel using dichloromethane/acetone 

(75/25) as eluent and isolated to yield a yellow solid (104 mg, 0.35 mmol, 

32%); m.p. 209 °C, 1H NMR (CDCl3, 300 MHz) : 7.34-7.39 (m, 1H, H6), 

7.63-7.69 (m, 1H, H5’), 7.94-7.99 (m, 2H, H5 and H6’), 8.01 (s, 1H, H4), 

8.10-8.13 (m, 1H, H4’), 8.25-8.26 (m, 1H, H2’), 8.53 (dd, 1H, J= 8.4 and 

1.4 Hz, H7), 10.10 (s, 1H, CHO), 11.5 (br s, 1H, NH). 13C NMR (CDCl3, 

100 MHz) : 121.7 (CH), 122.4 (C), 127.8 (CH), 129.2 (CH), 129.7 (CH), 

130.2 (CH), 132.8 (C), 133.1 (C), 133.3 (C), 134.7 (CH), 135.6 (C), 135.8 

(CH), 136.6 (C), 137.5 (CH), 160.7 (C), 192.0 (CH). HRMS (DCI-CH4) 

calcd for C16H11N2O4 [M+H]+ = 295.0719, found 295.0713. 

3-(2-formylphenyl)-8-nitroquinolin-2(1H)-one 17 (C16H10N2O4) was 

purified by chromatography on silica gel using cyclohexane/acetone 

(60/40) as eluent and isolated to yield a yellow solid (210 mg, 0.71 mmol, 

65%); m.p. 230-231 °C, 1H NMR (CDCl3, 400 MHz) : 7.33-7.37 (m, 1H, 

H6), 7.44 (dd, 1H, J= 7.5 Hz and 1.3 Hz, H6’), 7.61-7.65 (m, 1H, H4’), 

7.68-7.72 (m, 1H, H5’), 7.82 (s, 1H, H4), 7.93 (dd, 1H, J= 7.6 Hz and 1.4 

Hz, H3’), 7.99 (dd, 1H, J= 7.8 Hz and 1.4 Hz, H5), 8.53 (dd, 1H, J= 8.4 

Hz and 1.4 Hz, H7), 10.03 (s, 1H, CHO), 11.42 (br s, 1H, NH). 13C NMR 

(CDCl3, 100 MHz) : 121.6 (CH), 122.3 (C), 127.8 (CH), 129.5 (CH), 

130.8 (CH), 131.0 (CH), 133.0 (C), 133.7 (C), 133.9 (CH), 134.5 (C), 

135.0 (C), 135.7 (CH), 136.1 (C), 138.0 (CH), 160.8 (C), 191.2 (CH). 

HRMS (DCI-CH4) calcd for C16H11N2O4 [M+H]+ = 295.0719, found 

295.0718. 

 

3-(4-methoxycarbonylphenyl)-8-nitroquinolin-2(1H)-one 18 

(C17H12N2O5) was purified by chromatography on silica gel using 

dichloromethane as eluent, isolated and recrystallized to yield a yellow 

solid (257 mg, 0.79 mmol, 72%); m.p. 245 °C, 1H NMR (CDCl3, 300 MHz) 

: 3.95 (s, 3H, CH3), 7.33-7.38 (m, 1H, H6), 7.84-7.87 (m, 2H, H2’ and 

H6’), 7.95-7.97 (m, 2H, H4 and H5), 8.12-8.15 (m, 2H, H3’ and H5’), 8.52 

(dd, 1H, J= 8.3 and 1.4 Hz, H7), 11.43 (br s, 1H, NH). 13C NMR (CDCl3, 

100 MHz) : 52.3 (CH3), 121.6 (CH), 122.4 (C), 127.8 (CH), 128.7 (2xCH), 

129.7 (2xCH), 130.4 (C), 132.8 (C), 133.3 (C), 133.5 (C), 135.8 (CH), 

137.6 (CH), 139.0 (C), 160.6 (C), 166.7 (C). HRMS (DCI-CH4) calcd for 

C17H13N2O5 [M+H]+ = 325.0824, found 325.0818. 

3-(3-methoxycarbonylphenyl)-8-nitroquinolin-2(1H)-one 19 

(C17H12N2O5) was purified by chromatography on silica gel using 

dichloromethane/cyclohexane (90/10) as eluent and isolated to yield a 

yellow solid (253 mg, 0.78 mmol, 71%); m.p. 212 °C, 1H NMR (CDCl3, 

400 MHz) : 3.95 (s, 3H, CH3) ; 7.33-7.37 (m, 1H, H6), 7.53-7.58 (m, 1H, 

H5’), 7.96 (dd, 1H, J= 7.7 Hz and 1.4 Hz, H5), 7.98 (s, 1H, H4), 8.05-8.11 

(m, 2H, H4’ and H6’), 8.36-8.37 (m, 1H, H2’), 8.51 (dd, 1H, J= 8.4 Hz and 

1.4 Hz, H7), 11.42 (br s, 1H, NH). 13C NMR (CDCl3, 100 MHz) : 52.3 

(CH3), 121.6 (CH), 122.5 (C), 127.7 (CH), 128.6 (CH), 129.6 (CH), 130.0 

(CH), 130.5 (C), 132.8 (C), 133.2 (C), 133.4 (CH), 133.5 (C), 134.8 (C), 

135.7 (CH), 137.3 (CH), 160.7 (C), 166.7 (C). HRMS (DCI-CH4) calcd for 

C17H13N2O5 [M+H]+ = 325.0824, found 325.0809. 

3-(2-methoxycarbonylphenyl)-8-nitroquinolin-2(1H)-one 20 

(C17H12N2O5) was purified by chromatography on silica gel using 

cyclohexane/acetone (70/30) as eluent and isolated to yield a yellow 

solid (257 mg, 0.79 mmol, 72%); m.p. 212 °C, 1H NMR (CDCl3, 400 MHz) 

: 3.82 (s, 3H, CH3), 7.29-7.33 (m, 1H, H6), 7.37-7.39 (m, 1H, H6’), 7.49-

7.53 (m, 1H, H4’), 7.60-7.64 (m, 1H, H5’), 7.77 (s, 1H, H4), 7.91 (d, 1H, 

J=7.65 Hz, H3’), 8.02 (d, 1H, J= 7.8 Hz, H5), 8.48 (d, 1H, J= 8.4 Hz, H7), 

11.34 (br s, 1H, NH). 13C NMR (CDCl3, 100 MHz) : 52.3 (CH3), 121.4 

(CH), 122.7 (C), 127.2 (CH), 129.0 (CH), 130.1 (CH), 130.6 (CH), 131.0 

(C), 132.4 (CH), 132.9 (C), 133.4 (C), 135.5 (CH), 135.6 (CH), 135.8 (C), 

137.0 (C), 160.9 (C), 167.5 (C). HRMS (DCI-CH4) calcd for C17H13N2O5 

[M+H]+ = 325.0824, found 325.0819. 

 

General procedure for the preparation of compounds 21-23 

A mixture of 40 mL of H2O/Ethanol (2/8) was added onto 1 equiv. (200 

mg) of the corresponding 3-(methoxycarbonylphenyl)-8-nitroquinolin-

2(1H)-one derivative (18-20). Then, 5 equiv. of NaOH were added and 

the reaction mixture was stirred at 80°C for 3 h. The reaction mixture was 

then poured into water, acidified to pH=1 with HCl 37%, extracted twice 

with dichloromethane (2x50 mL) and twice with ethyl acetate (2x50 mL). 

The combined organic layers were washed with water, dried over 

anhydrous MgSO4 and evaporated in vacuo. The crude residues were 

purified by chromatography on silica gel using adapted eluent and 

recrystallized if necessary to give compounds 21-23. 
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3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one 21 (C16H10N2O5) was  

washed with acid water and recrystallized in acetonitrile to yield a yellow 

solid (124 mg, 0.40 mmol, 65%); m.p. > 310 °C, 1H NMR (DMSO-d6, 400 

MHz) : 7.45-7.49 (m, 1H, H6), 7.93-7.96 (m, 2H, H2’ and H6’), 8.03-8.06 

(m, 2H, H3’ and H5’), 8.26 (dd, 1H, J=7.9 and 1.4 Hz, H5), 8.46 (dd, 1H, 

J=8.3 and 1.4 Hz, H7), 8.49 (s, 1H, H4), 11.23 (br s, 1H, NH), 13.07 (br s, 

1H, COOH). 13C NMR (DMSO-d6, 100 MHz) : 122.3 (CH), 122.35 (C), 

128.1 (CH), 129.2 (2xCH), 129.6 (2xCH), 131.0 (C), 131.7 (C), 132.8 (C), 

133.8 (C), 136.7 (CH), 139.1 (CH), 139.5 (C), 160.4 (C), 167.5 (C). 

HRMS (DCI-CH4) calcd for C16H11N2O5 [M+H]+ 311.0668, found 311.0669. 

3-(3-carboxyphenyl)-8-nitroquinolin-2(1H)-one 22 (C16H10N2O5) was 

washed with acid water and recrystallized in acetonitrile to yield a brown 

solid (88 mg, 0.28 mmol, 42%); Tdec. 305-306 °C, 1H NMR (CDCl3, 400 

MHz) : 7.44-7.48 (m, 1H, H6), 7.60-7.64 (m, 1H, H5’), 8.00-8.02 (m, 1H, 

H6’), 8.03-8.06 (m, 1H, H4’), 8.27 (dd, 1H, J=7.8 and 1.4 Hz, H5), 8.39-

8.40 (m, 1H, H2’), 8.46 (dd, 1H, J=8.3 and 1.4 Hz, H7), 8.47 (s, 1H, H4), 

11.22 (br s, 1H, NH), 13.05 (br s, 1H, COOH). 13C NMR (DMSO-d6, 100 

MHz) : 122.2 (CH), 122.5 (C), 127.9 (CH), 129.0 (CH), 129.8 (CH), 

129.9 (CH), 131.3 (C), 131.8 (C), 132.8 (C), 133.4 (CH), 133.7 (C), 135.6 

(C), 136.7 (CH), 138.6 (CH), 160.5 (C), 167.6 (C). HRMS (DCI-CH4) 

calcd for C16H11N2O4 [M+H]+ = 311.0668, found 311.0672. 

3-(2-carboxyphenyl)-8-nitroquinolin-2(1H)-one 23 (C16H10N2O5) was 

purified by chromatography on silica gel using dichloromethane/ ethyl 

acetate (50/50) as eluent and isolated to yield a yellow solid (109 mg, 

0.35 mmol, 57%); T dec. 282-285 °C, 1H NMR (DMSO-d6, 400 MHz) : 

7.43-7.48 (m, 2H, H6 et H6’), 7.54-7.58 (m, 1H, H4’), 7.66-7.70 (m, 1H, 

H5’), 7.91 (dd, 1H, J=7.7 and 1.4 Hz, H5), 8.13 (s, 1H, H4), 8.20 (dd, 1H, 

J= 7.8 and 1.4 Hz, H3’), 8.42 (dd, 1H, J=8.3 and 1.4 Hz, H7) ; 11.08 (br s, 

1H, NH), 12.72 (br s, 1H, COOH). 13C NMR (DMSO-d6, 100 MHz) : 

122.1 (CH), 122.6 (C), 127.4 (CH), 129.1 (CH), 129.8 (CH), 131.3 (CH), 

132.4 (CH), 132.5 (C), 132.7 (C), 133.9 (C), 136.1 (CH), 136.2 (C), 136.3 

(CH), 136.4 (C), 160.7 (C), 168.4 (C). HRMS (DCI-CH4) calcd for 

C16H11N2O5 [M+H]+ 311.0668, found 311.0673. 

 

Preparation of 3-(4-carboxyphenyl)-2-methoxy-8-nitroquinoline 24 

Under Ar atmosphere, 260 mg of 3-(4-methoxycarbonylphenyl)-8-

nitroquinolin-2(1H)-one (0.80 mmol, 1 equiv.) were solubilized in 5 mL of 

dry DMF. This solution was then added onto 64 mg of 60% sodium 

hydride (1.6 mmol, 2 equiv.), solubilized in DMF (5 mL). After 10 min of 

stirring at rt, 100 µL of methyl iodide (1.6 mmol, 2 equiv.) were added 

dropwise. The reaction mixture was stirred at rt overnight, before being 

poured into ice. A precipitate was formed, filtered off and washed with 

water. The precipitate was solubilized into dichloromethane. The solution 

was dried over anhydrous MgSO4 and evaporated in vacuo. The crude 

residue was purified by chromatography on silica gel using 

dichloromethane as eluent. Compound 24 was isolated to yield a pale 

white solid (76%, 0.61 mmol, 206 mg). Then, 2-methoxy-3-(4-

methoxycarbonylphenyl)-8-nitroquinoline (0.44 mmol, 150 mg) was 

solubilized into 40 mL of a mixture of H2O/Ethanol (2/8). 88 mg of NaOH 

(2.2 mmol, 5 equiv.) were then added and the reaction mixture was 

stirred at 80°C for 2 h. The reaction mixture was then poured into water, 

acidified to pH=1 with HCl 37%, extracted twice with dichloromethane 

(2x50 mL) and twice with ethyl acetate (2x50 mL). The combined organic 

layers were washed with water, dried over anhydrous MgSO4 and 

evaporated in vacuo. Compound 24 was washed with basic water to yield 

a white solid (87 mg, 0.27 mmol, 61%) 

Compound 24 (C17H12N2O5); Tdec. 270-274 °C, 1H NMR (DMSO-d6, 400 

MHz) : 4.00 (s, 3H, CH3), 7.61-7.65 (m, 1H, H6), 7.80-7.82 (m, 2H, H2’ 

and H6’), 8.05-8.07 (m, 2H, H3’ and H5’), 8.23 (dd, 1H, J=7.8 and 1.4 Hz, 

H5), 8.27 (dd, 1H, J=8.1 and 1.4 Hz, H7), 8.56 (s, 1H, H4), 13.07 (br s, 

1H, NH). 13C NMR (DMSO-d6, 100 MHz) : 54.5 (CH3), 124.1 (CH), 

124.7 (C), 126.6 (CH), 127.0 (C), 129.7 (2xCH), 130.0 (2xCH), 130.9 (C), 

132.7 (CH), 136.7 (C), 139.3 (CH), 140.0 (C), 146.2 (C), 160.8 (C), 167.5 

(C). HRMS (DCI-CH4) calcd for C17H13N2O5 [M+H]+ = 325.0824, found 

325.0822. 

 

Preparation of 8-nitro-3-phenylethynylquinolin-2(1H)-one 25 

100 mg of 3-bromo-8-nitroquinolin-2(1H)-one previously synthesized in 

our team (0.37 mmol, 1 equiv.), 7 mg of CuI (0.037 mmol, 0.1 equiv.) and 

43 mg of Pd(PPh3)4 (0.037 mmol, 0.1 equiv.) were added in a sealed 

flask of 10 mL. Under Argon atmosphere, 5 mL of dry dimethoxyethane 

155 µL of Et3N (1.11 mmol, 3 equiv.), 61 µL of phenylacetylene (0.56 

mmol, 1.5 equiv.) were successively added. The reaction mixture was 

cooled at 15°C during 1.5 hours. The reaction mixture was poured into 

water and extracted three times with dichloromethane. The organic layer 

was washed with water, dried over anhydrous MgSO4 and evaporated in 

vacuo. The crude residue was purified by chromatography on silica gel 

using dichloromethane as an eluent and isolated to yield a yellow solid 

(78 mg, 0.27 mmol, 72%). 
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Compound 25 (C17H10N2O3); Pf:186-187 °C, 1H NMR (CDCl3, 400 MHz) 

: 7.31-7.35 (m, 1H, H6), 7.37-7.38 (m, 2H, H3’, H4’ and H5’), 7.59-7.63 

(m, 2H, H2’ and H6’), 7.87 (dd, 1H, J= 7.6 and 1.5 Hz, H5), 8.06 (s, 1H, 

H4), 8.49 (dd, 1H, J= 8.4 and 1.4 Hz, H7), 11.40 (br s, 1H, NH). 13C NMR 

(CDCl3-d6, 100 MHz) : 83.4 (C), 97.3 (C), 119.6 (C), 121.8 (CH), 122.0 

(C), 122.1 (C), 128.0 (CH), 128.4 (2xCH), 129.2 (CH), 132.1 (2xCH), 

133.0 (C), 133.0 (C), 135.3 (CH), 141.6 (CH), 159.9 (C). HRMS (DCI-

CH4) calcd for C17H13N2O5 [M+H]+ 291.0770, found 291.0776. 

 

Preparation of 8-nitro-2-phenyl-furo[2,3-b]quinoline 26 

100 mg of 3-bromo-8-nitroquinolin-2(1H)-one previously synthesized in 

our team (0.37 mmol, 1 equiv.), 7 mg of CuI (0.037 mmol, 0.1 equiv.) and 

43 mg of Pd(PPh3)4 (0.037 mmol, 0.1 equiv.) were added in a sealed 

flask of 10 mL. Under Argon atmosphere, 5 mL of dry dimethoxyethane 

155 µL of Et3N (1.11 mmol, 3 equiv.), 61 µL of phenylacetylene (0.56 

mmol, 1.5 equiv.) were successively added. The reaction mixture was 

heated at 40°C during 30 min. The reaction mixture was poured into 

water and extracted three times with dichloromethane. The organic layer 

was washed with water, dried over anhydrous MgSO4 and evaporated in 

vacuo. The crude residue was purified by chromatography on silica gel 

using dichloromethane as an eluent and isolated to yield a grey solid (55 

mg, 0.19 mmol, 51%). 

Compound 26 (C17H10N2O3); Pf: 226 °C, 1H NMR (CDCl3, 400 MHz) : 

7.16 (s, 1H, H3), 7.45-7.55 (m, 3H, H3’, H4’ and H5’), 7.56-7.59 (m, 1H, 

H6), 7.99-8.02 (m, 2H, H2’ and H6’), 8.08 (dd, 1H, J= 7.5 and 1.4 Hz, H5), 

8.14 (dd, 1H, J= 8.3 and 1.4 Hz, H7), 8.41 (s, 1H, H4). 13C NMR (CDCl3, 

100 MHz) : 99.2 (CH), 123.3 (CH), 123.4 (CH), 124.0 (C), 125.9 (2xCH), 

127.7 (C), 128.2 (CH), 128.6 (C), 129.1 (2xCH), 130.5 (CH), 132.0 (CH), 

136.0 (C), 147.7 (C), 159.6 (C), 162.4 (C). HRMS (DCI-CH4) calcd for 

C17H11N2O3 [M+H]+ 291.0770, found 291.0768. 

 

Electrochemistry 

Voltammetric measurements were carried out with a potentiostat Autolab 

PGSTAT100 (ECO Chemie, The Netherlands) controlled by GPES 4.09 

software. Experiments were performed at room temperature in a 

homemade airtight three–electrode cell connected to a vacuum/argon 

line. The reference electrode consisted of a saturated calomel electrode 

(SCE) separated from the solution by a bridge compartment. The counter 

electrode was a platinum wire of approximately 1cm² apparent surface. 

The working electrode was GC microdisk (1.0 mm of diameter – Bio-logic 

SAS). The supporting electrolyte (nBu4N)[PF6] (Fluka, 99% puriss 

electrochemical grade) and the solvent DMSO (Sigma-Aldrich puriss p.a. 

dried<0.02% water) were used as received and simply degassed under 

argon. The solutions used during the electrochemical studies were 

typically 10-3 M in compound and 0.1 M in supporting electrolyte. Before 

each measurement, the solutions were degassed by bubbling Ar and the 

working electrode was polished with a polishing machine (Presi P230). 

Under these experimental conditions employed in this work, the half-

wave potential (E1/2) of the ferrocene Fc+/Fc couple in DMSO was E1/2 = 

0.45 V vs SCE. Experimental peak potentials have been measured 

versus SCE and converted to NHE by adding 0.241 V. 

 

Biology 

Antileishmanial activity on L. infantum axenic amastigotes.[31] 

L. infantum promastigotes (MHOM/MA/67/ITMAP-263, CNR Leishmania, 

Montpellier, France, expressing luciferase activity) in logarithmic phase 

cultivated in RPMI 1640 medium supplemented with 5% foetal calf serum 

(FCS), 2 mM L-glutamine and antibiotics (100 U/mL penicillin and 100 

µg/mL streptomycin), were centrifuged at 900 g for 10 min. The 

supernatant was removed carefully and was replaced by the same 

volume of RPMI 1640 complete medium at pH 5.4 and incubated for 24 h 

at 24 °C. The acidified promastigotes were incubated for 24 h at 37 °C in 

a ventilated flask. Promastigotes were then transformed into axenic 

amastigotes. The effects of the tested compounds on the growth of L. 

infantum axenic amastigotes were assessed as follows. L. infantum 

amastigotes were incubated at a density of 2.106 parasites/mL in sterile 

96-well plates with various concentrations of compounds dissolved in 

DMSO (final concentration less than 0.5% v/v), in duplicate. Appropriate 

controls DMSO, amphotericin B, miltefosine and fexinidazole (reference 

drugs purchased from Sigma Aldrich) were added to each set of 

experiments. After a 48 h incubation period at 37 °C, each plate-well was 

then microscope-examined for detecting any precipitate formation. To 

estimate the luciferase activity of axenic amastigotes, 80 µl of each well 

are transferred to white 96-well plates, Steady Glow® reagent (Promega) 

was added according to manufacturer's instructions, and plates were 

incubated for 2 min. The luminescence was measured in Microbeta 

Luminescence Counter (PerkinElmer). Inhibitory concentration 50% 

(IC50) was defined as the concentration of drug required to inhibit by 50% 

the metabolic activity of L. infantum amastigotes compared to control. 

IC50 values were calculated by non-linear regression analysis processed 
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on dose response curves, using TableCurve 2D V5 software. IC50 values 

represent the mean of three independent experiments. 

 

Antitrypanosomal activity on T. brucei brucei trypomastigotes. 

Assays were performed on Trypanosoma brucei brucei AnTat 1.9 strain 

(IMTA, Antwerpen, Belgium). It was cultured in MEM with Earle’s salts, 

supplemented according to the protocol of Baltz et al.[32] with the 

following modifications, 0.5 mM mercaptoethanol (Sigma Aldrich®, 

France), 1.5 mM L-cysteine (Sigma Aldrich®), 0.05 mM bathocuproïne 

sulfate (Sigma Aldrich®) and 20% heat-inactivated horse serum (Gibco®, 

France), at 37°C in an atmosphere of 5% CO2. The parasites were 

incubated at an average density of 2000 parasites/well in sterile 96-wells 

plates (Mc2®, France) with various concentrations of compounds 

dissolved in DMSO (Sigma Aldrich®), in duplicate. Reference drugs 

suramin, eflornithine, and fexinidazole (purchased from Sigma Aldrich, 

France and Fluorochem, UK) suspended in NaCl 0.9% or DMSO, were 

added to each set of experiments. The effects of the tested compounds 

were assessed by the viability marker Alamar Blue® (Fisher, France) 

assay described by Räz et al.[33] After a 69 h incubation period at 37 °C, 

10 µL of Alamar Blue® was then added to each well, and the plates were 

incubated for 5h.[34] The plates were read in a PerkinElmer ENSPIRE 

(Germany) microplate reader using an excitation wavelength of 530 nm 

and an emission wavelength of 590 nm.  IC50 were calculated by 

nonlinear regression analysis processed on dose-response curves, using 

GraphPad Prism software (USA). IC50 was defined as the concentration 

of drug necessary to inhibit by 50% the viability of T. brucei brucei 

compared to the control. IC50 values were calculated from three 

independent experiments in duplicate. 

 

Antitrypanosomal activity on T. brucei trypomastigotes overexpressing 

the nitroreductase (NTR1). 

Trypanosoma brucei bloodstream-form 'single marker' S427 (T7RPOL 

TETR NEO) and drug-resistant cell lines were cultured at 37°C in HMI9-T 

medium [35] supplemented with 2.5 μg ml−1 G418 to maintain expression 

of T7 RNA polymerase and the tetracycline repressor protein. 

Bloodstream trypanosomes overexpressing the T. brucei nitroreductase 

(NTR1).[36] were grown in medium supplemented with 2.5 μg ml−1 

phleomycin and expression of NTR was induced by the addition of 1 μg 

ml−1 tetracycline.  Cultures were initiated with 1 × 105 cells ml−1 and sub-

cultured when cell densities approached 1–2 (× 106) ml−1. In order to 

examine the effects of inhibitors on the growth of these parasites, 

triplicate cultures containing the inhibitor were seeded at 1 × 105 

trypanosomes ml-1. Cells overexpressing NTR were induced with 

tetracycline 48 h prior to EC50 analysis. Cell densities were determined 

after culture for 72 h, as previously described [37]. EC50 values were 

determined using the following two-parameter equation by non-linear 

regression using GraFit:   

m

EC

I
y















50

][
1

100

where the 

experimental data were corrected for background cell density and 

expressed as a percentage of the uninhibited control cell density. In this 

equation [I] represents inhibitor concentration and m is the slope factor. 

 

Cytotoxic evaluation on HepG2 cell line.  

The evaluation of the tested molecules cytotoxicity on the HepG2 

(hepatocarcinoma cell line from ECACC purchased from Sigma-Aldrich, 

ref 85011430-1VL certificated without mycoplasma) was done according 

to the method of Mosman with slight modifications.[38] Briefly, cells (1 x 

105 cells/mL) in 100 µL of complete medium, [Alpha MEM Eagle from 

PAN BIOTECH supplemented with 10% foetal bovine serum, 2 mM L-

glutamine and antibiotics (100 U/mL penicillin and 100 µg/mL 

streptomycin)] were seeded into each well of 96-well plates and 

incubated at 37 °C and 5% CO2. After a 24 h incubation, 100 µL of 

medium with various product concentrations and appropriate controls 

were added and the plates were incubated for 72 h at 37 °C and 5% CO2. 

Each plate-well was then microscope-examined for detecting possible 

precipitate formation before the medium was aspirated from the wells. 

100 µL of MTT solution (0.5 mg/mL in Alpha MEM Eagle) were then 

added to each well. Cells were incubated for 2 h at 37 °C and 5% CO2. 

After this time, the MTT solution was removed and DMSO (100 µL) was 

added to dissolve the resulting formazan crystals. Plates were shaken 

vigorously (300 rpm) for 5 min. The absorbance was measured at 570 

nm with a microplate spectrophotometer (Eon BioTek). DMSO was used 

as blank and doxorubicin (purchased from Sigma Aldrich) as positive 

control. CC50 were calculated by non-linear regression analysis 

processed on dose response curves, using TableCurve 2D V5 software. 

CC50 values represent the mean value calculated from three independent 

experiments. 
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An antikinetoplastid pharmacomodulation at position 3 of the scaffold was conducted using an optimized Suzuki-Miyaura cross-

coupling reaction. Among the 24 molecules synthesized, compound 21 was identified as a new selective antitrypanosomal hit with a 

lower reduction potential. Unlike the initial hit, compound 21 is not efficiently bioactivated by the type I trypanosomal nitroreductase 

which suggests an additional mechanism of action. 
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