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China
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Abstract

In this paper we provide an expanded mixed finite element method for a class of two-dimensional Sobolev
equations. The optimal error estimates for a semi-discrete scheme and a fully discrete scheme are
obtained. Also numerical examples are stated to verify our theoretical results.

Keywords: Sobolev Equation; Expanded Mixed Finite Element; Error Estimate; Numerical Experiment

1 Introduction

Let Ω ⊂ R2 be a bounded domain with piecewise smooth boundary ∂Ω. For fixed 0 < T < ∞,
we consider the following initial and boundary value problem:

ut − µ∆ut − γ∆u = f, (x, y, t) ∈ Ω× (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

u(x, y, 0) = ϕ0(x, y), (x, y) ∈ Ω,

(.)

where ut denotes the time derivative of the function u, µ and γ are two positive constants, the
source term f(x, y, t) and the initial value function ϕ0(x, y) are sufficiently smooth.

The above equation is characterized by the occurrence of mixed time and space derivatives
appearing in the highest-order term, which we call Sobolev equation. As a class of important
Sobolev equations, Eq.(.) possesses the important physical background. In 1960, Eq.(.)
appeared in the theory developed by Barenblett, Zheltov and Kochia for flow through fissured
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rock [1], where u represents the average pressure of the liquid in the fissures in the neighborhood
of the given point. Its one-dimensional counterpart ut = uxx +autxx was derived by Coleman and
Noll as governing the simple shearing motion of a fluid of a second grade[2]. Subsequently, when
Chen and Gurtin studied the heat conduction problems in different viscous media, they came
to the conclusion that Eq.(.) related to be the simplified energy equation, and u denotes the
conductive temperature[3]. Based on that concept, Ting performed further mathematical studies
of the theory by considering a simple cooling process and thereby derived physically significant
results[4]. The more and more extensive applications of this kind of equation in mathematics and
physics have attracted the attention of many scholars. So far, a few different schemes have been
proposed for the numerical solution of this type of equations([5, 6, 7, 8]).

The mixed finite element method, basically a finite element method [9] with constrained condi-
tions, plays an important role in studying the numerical solution of higher order partial differential
equations(PDEs) or PDEs including two (or more) unknown functions. Its general theory was
proposed by Babuska [10] and Brezzi [11] in the early 1970s, and later on improved and incorpo-
rated with adaptivity by Falk and Osborn[12]. The mixed finite element method has now been
widely used for solving fluid flow and transport equations[13, 14], for example, when the govern-
ing equations describing two-phase flow within a petroleum reservoir are expressed as a fractional
flow formulation (i.e., in terms of a global pressure and a saturation), mixed methods can be very
efficient and accurate in solving the pressure equation. However, mixed finite element methods
have not yet applied to groundwater hydrology, for underground reservoirs often need to specify
complex boundary conditions involving combinations of individual fluid fluxes and pressures, and
it is sometimes impractical to express them in terms of the total quantifies. Consequently, two-
pressure formulations are commonly used by hydrologists, since the complex individual boundary
conditions can easily be handled. However, the coefficient in the two-pressure formulation may
tend to zero because of low permeability, so that its reciprocal is not readily usable as in stan-
dard mixed finite element methods. Therefore, it is not feasible to apply mixed methods to a
two-pressure formulation.

The expanded mixed finite element(EMFE) method[15, 16, 17], a new formulation expand-
ing the standard mixed formulation, introduces three (or more) auxiliary variables for practical
problems. This method was developed and analyzed by Arbogast, Wheeler and Yotov ([18]).
Chen([19, 20]) detailed the EMFE method for linear and quasi-linear second-order elliptic prob-
lems. Woodward and Dawson([21]) proposed an analysis of EMFE method applied to Richards’
equation, which simulates the flow of the water into a variably saturated porous medium. EMFE
method can be applied to the above two-pressure formulation, so that individual boundary condi-
tions can be handled. In addition, this method works for small diffusion or low permeability fluid
problems. Using this method, we can get optimal order error estimates for certain nonlinear prob-
lems, while standard mixed formulation sometimes gives only suboptimal error estimates([22]).
While the papers mentioned above are the introduction of two variables, in this paper we will
introduce three parameter variables to get better approximation of more physical quantities.

The purpose of this paper is to present the expanded mixed finite element method for the
2D Sobolev equation. We show the existence and uniqueness of the solution of the mixed finite
element method, and obtain its optimal error estimates. The outline of this paper is as follows.
In Sect.2, we describe a semi-discrete formulation for Eq. (.) and provide the error estimates
for the solution of the formulation. The optimal error estimate is obtained. In Sect.3, we present
a fully discrete formulation from the semi-discrete formulation and analyze its error. In Sect.4,
we provide two numerical examples to verify that numerical results are consistent with theoretical

2



conclusions.

Throughout this paper we use C to denote a generic positive constant independent of the
discretization parameters h and t unless otherwise stated, which has different values in different
appearances. We also adopt the standard definitions and notations of Sobolev spaces and their
norms in [9] and [23].

2 Semi-discrete Scheme Based on EMFE Method

2.1 Semi-discrete Scheme and Existence and Uniqueness of Solution

By introducing three auxiliary variables

q = ∇u, w = ut, p = ∇w,

the problem (.) can be rewritten into the following equivalent first-order differential system
with regard to the solution {u,q, w,p}. It reads that, ∀(x, y, t) ∈ Ω× (0, T ]

ut = w, qt = p, w − µdiv(p) = f + γdiv(q), p−∇w = 0, (.)

with boundary value
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

and initial value

u(x, y, 0) = ϕ0(x, y), q(x, y, 0) = ∇ϕ0(x, y), (x, y) ∈ Ω.

Let
W = H(div,Ω) = {τ |τ ∈ (L2(Ω))2, divτ ∈ L2(Ω)}

normed by ‖τ‖W = ‖τ‖+ ‖divτ‖, and let V = L2(Ω).

Note that u(x, y, t)|∂Ω = 0 implies w(x, y, t)|∂Ω = ut(x, y, t)|∂Ω = 0 and integrating by parts, we
obtain the weak form of (.): find a map {u,q, w,p} : [0, T ]→ V ×W × V ×W such that

(ut, v) = (w, v), ∀v ∈ V, 0 < t ≤ T,

(qt, τ) = (p, τ), ∀τ ∈ W, 0 < t ≤ T,

(w, v)− µ(divp, v) = (f, v) + γ(divq, v), ∀v ∈ V, 0 < t ≤ T,

(p, τ) + (w, divτ) = 0, ∀τ ∈ W, 0 < t ≤ T.

(.)

where v, τ can take different values in different equations.

In order to clarify a proper finite element approximation procedure for {u,p, w,q}, we consider
the finite-dimensional subspace Vh ×Wh × Vh ×Wh of V ×W × V ×W associated with a quasi-
uniform partition τh of Ω into triangles, where the diameter of τh is not greater than h(0 < h < 1),
and every angle of each triangle is bounded below by a positive constant. The boundary elements
of τh are allowed to have one curvilinear edge. We choose Vh ×Wh × Vh ×Wh as the Raviart-
Thomas-Nedelec space [24, 25, 26] of index k ≥ 0 and introduce the L2−projection Rh : V → Vh,
and the Raviart-Thomas projection[26] πh : H1(Ω)2 → Wh, which have the following useful
commuting property:

div ◦ πh = Rh ◦ div : H1(Ω)2 → Vh.
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These projections have the following approximation properties([27, 28]):

‖v −Rhv‖−s ≤ Chl+s‖v‖l, 0 ≤ l, s ≤ k + 1, (.)

‖v −Rhv‖0,q ≤ Chl‖v‖l,q, 0 ≤ l ≤ k + 1, 1 ≤ q ≤ ∞, (.)

‖τ − πhτ‖0,q ≤ Chl‖τ‖l,q,
1

q
< l ≤ k + 1, 1 ≤ q ≤ ∞, (.)

‖div(τ − πhτ)‖ ≤ Chl‖divτ‖l, 0 ≤ l ≤ k + 1. (.)

Our semi-discrete scheme, that is, the continuous-in-time mixed finite element approximation
to (.) is defined by determining {uh,qh, wh,ph} : [0, T ]→ Vh ×Wh × Vh ×Wh such that

(uh,t, vh) = (wh, vh), ∀vh ∈ Vh, 0 < t ≤ T,

(qh,t, τh) = (ph, τh), ∀τh ∈ Wh, 0 < t ≤ T,

(wh, vh)− µ(divph, vh) = (f, vh) + γ(divqh, vh), ∀vh ∈ Vh, 0 < t ≤ T,

(ph, τh) + (wh, divτh) = 0, ∀τh ∈ Wh, 0 < t ≤ T.

(uh(0), vh) = (ϕ0, vh), ∀vh ∈ Vh,
(qh(0), τh) = (∇ϕ0, τh), ∀τh ∈ Wh.

(.)

Theorem 1 The problem (.) has the unique solution.

Proof. In fact, since (.) is linear, it suffices to show that the associated homogeneous system

(uh,t, vh) = (wh, vh), ∀vh ∈ Vh, 0 < t ≤ T, (.)

(qh,t, τh) = (ph, τh), ∀τh ∈ Wh, 0 < t ≤ T, (.)

(wh, vh)− µ(divph, vh) = γ(divqh, vh), ∀vh ∈ Vh, 0 < t ≤ T, (.)

(ph, τh) + (wh, divτh) = 0, ∀τh ∈ Wh, 0 < t ≤ T, (.)

(uh(0), vh) = 0, ∀vh ∈ Vh, (.)

(qh(0), τh) = 0, ∀τh ∈ Wh, (.)

has only the trivial solution.

Let vh = wh in (.), we can get that

‖wh‖2 − µ(divph, wh) = γ(divqh, wh). (.)

Choosing τh = ph and τh = qh in (.) respectively, then we have

‖ph‖2 + (wh, divph) = 0, (.)

(ph,qh) + (wh, divqh) = 0. (.)

From (.),(.) and (.), using the ε−inequality, we obtain

‖wh‖2 + µ‖ph‖2 = −γ(ph,qh) ≤ γ‖ph‖‖qh‖ ≤ ε‖ph‖2 + C‖qh‖2. (.)

From (.) and taking ε < µ, we get

‖wh‖2 + ‖ph‖2 ≤ C‖qh‖2. (.)
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From (.) we know that if we choose τh = qh,t and τh = ph respectively, then we have

‖qh,t‖ = ‖ph‖. (.)

Combining (.),(.) with (.) yields

‖qh‖ = ‖
∫ t

0

qh,tdt‖ ≤
∫ t

0

‖qh,t‖dt ≤ C

∫ t

0

‖qh‖dt. (.)

Using Gronwall’s lemma, we have ‖qh‖ = 0, and from (.), ‖wh‖ = ‖ph‖ = 0. Hence qh ≡ 0,
wh ≡ 0 and ph ≡ 0.By taking vh = uh,t and vh = wh in (.), we obtain ‖uh,t‖ = ‖wh‖, and then
uh,t = 0, considering (.), we get uh ≡ 0. 2

Therefore the solution {uh,qh, wh,ph} of (.) is well defined.

2.2 Error Estimate

In study of mixed methods for parabolic problems, we usually introduce a mixed elliptic projection
related to our equations. According to our Sobolev equations, we modify this idea and define a
map {u,q, w,p} : [0, T ]→ Vh ×Wh × Vh ×Wh such that

(u− u, vh) = 0, ∀vh ∈ Vh, 0 < t ≤ T, (.)

(q− q, τh) = 0, ∀τh ∈ Wh, 0 < t ≤ T, (.)

(w − w, vh)− µ(div(p− p), vh) = γ(div(q− q), vh), ∀vh ∈ Vh, 0 < t ≤ T, (.)

(p− p, τh) + (w − w, divτh) = 0, ∀τh ∈ Wh, 0 < t ≤ T, (.)

To begin with, let us demonstrate the existence and uniqueness of the solution of (.)-(.).
Similar to the proof of Theorem 1, since (.)-(.) is linear, we only need to prove that there
is only the trivial solution to the associated homogeneous system

(u, vh) = 0, ∀vh ∈ Vh, 0 < t ≤ T, (.)

(q, τh) = 0, ∀τh ∈ Wh, 0 < t ≤ T, (.)

(w, vh)− µ(divp, vh) = γ(divq, vh), ∀vh ∈ Vh, 0 < t ≤ T, (.)

(p, τh) + (w, divτh) = 0, ∀τh ∈ Wh, 0 < t ≤ T. (.)

Let vh = u in (.) and τh = q in (.), we can easily get u = 0,q = 0.

By taking vh = w in (.) and τh = p in (.), we obtain

‖w‖2 + µ‖p‖2 = γ(divq, w) = 0,

which implies that w = 0 and p = 0.

So, the existence and uniqueness of the solution of (.)-(.) have been demonstrated and
{u,q, w,p} in (.)-(.) is well defined. Next we give some error estimates of {u,q, w,p}.

Lemma 1 Let {u,q, w,p} and {u,q, w,p} satisfy the relation(.) and (.)-(.), respective-
ly. Assume that {u,q, w,p} are sufficiently smooth and that Ω is 2-regular (for the definition of
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2-regularity see [24]). Then for all 0 < t ≤ T , there exists a constant C > 0 independent of h and
t, such that

‖ u− u ‖≤ Chl ‖ u ‖l,
‖ q− q ‖≤ Chl ‖ q ‖l,
‖ w − w ‖≤ Chl(‖ w ‖l + ‖ q ‖l + ‖ p ‖l + ‖ divq ‖l + ‖ divp ‖l),
‖ p− p ‖ + ‖ div(p− p) ‖ + ‖ div(q− q) ‖≤ Chl(‖ q ‖l + ‖ p ‖l + ‖ divq ‖l + ‖ divp ‖l),

where 0 < l ≤ k + 1.

Proof. Let vh = Rhu− u in (.), we get

‖Rhu− u‖2 = −(u−Rhu,Rhu− u) ≤ ‖u−Rhu‖‖Rhu− u‖,

which implies that ‖Rhu− u‖ ≤ ‖u−Rhu‖ ≤ Chl‖u‖l. Noting (.), we obtain

‖u− u‖ ≤ ‖u−Rhu‖+ ‖Rhu− u‖ ≤ Chl‖u‖l.

Similarly, let τh = πhq− q in (.), we get ‖πhq− q‖ ≤ Chl‖q‖l, then ‖q− q‖ ≤ Chl‖q‖l.
Let vh = div(πhp− p) and vh = div(πhq− q) in (.)respectively, we have

(Rhw − w, div(πhp− p))− µ‖div(πhp− p)‖2 − γ(div(πhq− q), div(πhp− p))

= −(w −Rhw, div(πhp− p)) + µ(div(p− πhp), div(πhp− p))+

γ(div(q− πhq), div(πhp− p)), (.)

(Rhw − w, div(πhq− q))− µ(div(πhp− p), div(πhq− q))− γ‖div(πhq− q)‖2

= −(w −Rhw, div(πhq− q)) + µ(div(p− πhp), div(πhq− q))+

γ(div(q− πhq), div(πhq− q)). (.)

Taking τh = πhp− p and τh = πhp− p in (.)respectively,

‖πhp−p‖2 + (Rhw−w, div(πhp−p)) = −(p−πhp, πhp−p)− (w−Rhw, div(πhp−p)), (.)

(πhp−p, πhq−q)+(Rhw−w, div(πhq−q)) = −(p−πhp, πhq−q)−(w−Rhw, div(πhq−q)). (.)

Let τh = πhp− p in (.), we have

(πhq− q, πhp− p) = −(q− πhq, πhp− p). (.)

Combining (.)-(.), we obtain

µ‖πhp− p‖2 + γ2‖div(πhq− q)‖2 + µ2‖div(πhp− p)‖2

=− µ2(div(p− πhp), div(πhp− p))− γ2(div(q− πhq), div(πhq− q))−
µ(p− πhp, πhp− p)− γ(p− πhp, πhq− q) + γ(q− πhq, πhp− p)−
µγ(div(p− πhp), div(πhq− q))− µγ(div(q− πhq), div(πhp− p))

≤µ2‖div(p− πhp)‖‖div(πhp− p)‖+ γ2‖div(q− πhq)‖‖div(πhq− q)‖+
µ‖p− πhp‖‖πhp− p‖+ γ‖p− πhp‖‖πhq− q‖+ γ‖q− πhq‖‖πhp− p‖+
µγ‖div(p− πhp)‖‖div(πhq− q)‖+ µγ‖div(q− πhq)‖‖div(πhp− p)‖.
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Using ε−inequality, there is a sufficiently small ε such that

µ‖πhp− p‖2 + γ2‖div(πhq− q)‖2 + µ2‖div(πhp− p)‖2

≤C(‖q− πhq‖2 + ‖p− πhp‖2 + ‖div(q− πhq)‖2 + ‖div(p− πhp)‖2)+

ε(‖πhp− p‖2 + ‖div(πhq− q)‖2 + ‖div(πhp− p)‖2)

≤Ch2l(‖ q ‖2
l + ‖ p ‖2

l + ‖ divq ‖2
l + ‖ divp ‖2

l ) + ε(‖πhp− p‖2+

‖div(πhq− q)‖2 + ‖div(πhp− p)‖2),

with that,

‖πhp− p‖2 + ‖div(πhq− q)‖2 + ‖div(πhp− p)‖2 ≤ Ch2l(‖ q ‖2
l + ‖ p ‖2

l + ‖ divq ‖2
l + ‖ divp ‖2

l ),

then,

‖ p− p ‖ + ‖ div(q− q) ‖ + ‖ div(p− p) ‖
≤ ‖ p− πhp ‖ + ‖ πhp− p ‖ + ‖ div(q− πhq) ‖ + ‖ div(πhq− q) ‖ +

‖ div(p− πhp) ‖ + ‖ div(πhp− p) ‖
≤Chl(‖ q ‖l + ‖ p ‖l + ‖ divq ‖l + ‖ divp ‖l).

Let vh = Rhw − w in (.), we have

‖Rhw − w‖2 =− (w −Rhw,Rhw − w) + µ(div(p− p), Rhw − w) + γ(div(q− q), Rhw − w)

≤(‖w −Rhw‖+ µ‖div(p− p)‖+ γ‖div(q− q)‖)‖Rhw − w‖,

which yields

‖Rhw − w‖ ≤‖w −Rhw‖+ γ‖div(q− q)‖+ µ‖div(p− p)‖
≤Chl(‖ w ‖l + ‖ q ‖l + ‖ p ‖l + ‖ divq ‖l + ‖ divp ‖l),

thus, we conclude

‖w − w‖ ≤ ‖w −Rhw‖+ ‖Rhw − w‖
≤ Chl(‖ w ‖l + ‖ q ‖l + ‖ p ‖l + ‖ divq ‖l + ‖ divp ‖l). 2

Subtracting (.) from (.), we get the error equations
((u− uh)t, vh) = (w − wh, vh), ∀vh ∈ Vh, 0 < t ≤ T,

((q− qh)t, τh) = (p− ph, τh), ∀τh ∈ Wh, 0 < t ≤ T,

(w − wh, vh)− µ(div(p− ph), vh) = γ(div(q− qh), vh), ∀vh ∈ Vh, 0 < t ≤ T,

(p− ph, τh) + (w − wh, divτh) = 0, ∀τh ∈ Wh, 0 < t ≤ T.

(.)

Using (.)-(.), (.) can be written as

((u− uh)t, vh) = (w − wh, vh), ∀vh ∈ Vh, 0 < t ≤ T, (.)

((q− qh)t, τh) = (p− ph, τh), ∀τh ∈ Wh, 0 < t ≤ T, (.)

(w − wh, vh)− µ(div(p− ph), vh) = γ(div(q− qh), vh), ∀vh ∈ Vh, 0 < t ≤ T, (.)

(p− ph, τh) + (w − wh, divτh) = 0, ∀τh ∈ Wh, 0 < t ≤ T. (.)
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Theorem 2 Let {u,q, w,p} be the solution of (.) and {uh,qh, wh,ph} be that of (.). Assume
{u,q, w,p} are sufficiently smooth and that Ω is 2-regular. Then there exists a constant C > 0
independent of h and t, such that

‖(u− uh)(t)‖2 + ‖(q− qh)(t)‖2 ≤ Ch2l[‖u‖2
l + ‖q‖2

l +

∫ t

0

(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l

+ ‖divp‖2
l )dt],

‖(w − wh)(t)‖2 + ‖(p− ph)(t)‖2 ≤ Ch2l[‖u‖2
l + ‖w‖2

l + ‖q‖2
l + ‖p‖2

l + ‖divq‖2
l + ‖divp‖2

l

+

∫ t

0

(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l + ‖divp‖2
l )dt],

where 0 < t ≤ T, 0 < l ≤ k + 1.

Proof. Let vh = w − wh in (.), we get

‖w − wh‖2 − µ(div(p− ph), w − wh) = γ(div(q− qh), w − wh). (.)

Taking τh = p− ph and τh = q− qh in (.) respectively, we obtain

‖p− ph‖2 + (w − wh, div(p− ph)) = 0, (.)

(p− ph,q− qh) + (w − wh, div(q− qh)) = 0. (.)

From (.), (.) and (.), using ε− inequality, for a sufficiently small ε that satisfy

‖w − wh‖2 + µ‖p− ph‖2 =− γ(p− ph,q− qh) ≤ ε‖p− ph‖2 + C‖q− qh‖2,

obviously,

‖w − wh‖2 + ‖p− ph‖2 ≤ C‖q− qh‖2. (.)

Let vh = u− uh in (.), and τh = q− qh in (.), we get

d

dt
‖u− uh‖2 =2(w − wh, u− uh)

≤2(‖w − w‖2 + ‖w − wh‖2 + ‖u− uh‖2)

≤C[h2l(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l + ‖divp‖2
l ) + ‖q− qh‖2 + ‖u− uh‖2],

d

dt
‖q− qh‖2 =2(p− ph,q− qh)

≤2(‖p− p‖2 + ‖p− ph‖2 + ‖q− qh‖2)

≤C[h2l(‖q‖2
l + ‖p‖2

l + ‖divq‖2
l + ‖divp‖2

l ) + ‖q− qh‖2],

obviously,

d

dt
(‖u− uh‖2 + ‖q− qh‖2) ≤C[h2l(‖w‖2

l + ‖q‖2
l + ‖p‖2

l + ‖divq‖2
l + ‖divp‖2

l )+

‖u− uh‖2 + ‖q− qh‖2],
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with that, for 0 < t ≤ T , we have

‖(u− uh)(t)‖2 + ‖(q− qh)(t)‖2 ≤C[h2l

∫ t

0

(‖w‖2
l + ‖p‖2

l + ‖q‖2
l + ‖divp‖2

l + ‖divq‖2
l )dt

+

∫ t

0

(‖u− uh‖2 + ‖q− qh‖2)dt].

Using Gronwall’s lemma, we have

‖(u− uh)(t)‖2 + ‖(q− qh)(t)‖2 ≤Ch2l

∫ t

0

(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l + ‖divp‖2
l )dt,

noticing (.),

‖(w − wh)(t)‖2 + ‖(p− ph)(t)‖2 ≤Ch2l

∫ t

0

(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l + ‖divp‖2
l )dt.

Finally, we get

‖(u− uh)(t)‖2 + ‖(q− qh)(t)‖2 ≤ Ch2l[‖u‖2
l + ‖q‖2

l +

∫ t

0

(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l

+ ‖divp‖2
l )dt],

‖(w − wh)(t)‖2 + ‖(p− ph)(t)‖2 ≤ Ch2l[‖u‖2
l + ‖w‖2

l + ‖q‖2
l + ‖p‖2

l + ‖divq‖2
l + ‖divp‖2

l

+

∫ t

0

(‖w‖2
l + ‖q‖2

l + ‖p‖2
l + ‖divq‖2

l + ‖divp‖2
l )dt]. 2

3 Fully Discrete Scheme Based on EMFE Method

Let 0 = t0 < t1 < ... < tN = T be a partition of the domain [0, T ], ∆tn = tn−tn−1(n = 1, 2, ..., N),
(unh,q

n
h, w

n
h ,p

n
h) is the approximation of (u,q, w,p) at tn. In order to make the scheme more

stable, the Euler backward difference scheme with first order accuracy is adopted to discretize
the time variables t. If the two order accuracy is to be reached, the Crank-Nicolson format can
be considered.

Introduce the mark: ∂tu
n = un−un−1

∆t
, ∂tq

n = qn−qn−1

∆t
. Then, we get the fully discrete scheme:

find (unh,q
n
h, w

n
h ,p

n
h) such that

(∂tu
n
h, vh) = (wn

h , vh), ∀vh ∈ Vh,
(∂tq

n
h, τh) = (pn

h, τh), ∀τh ∈ Wh,

(wn
h , vh)− µ(divpn

h, vh) = (fn, vh) + γ(divqn
h, vh), ∀vh ∈ Vh,

(pn
h, τh) + (wn

h , divτh) = 0, ∀τh ∈ Wh,

u0
h = ϕ0(x, y), q0

h = ∇ϕ0(x, y).

(.)

Theorem 3 The solution of (.) exists uniquely.

9



Proof. Since (.) is linear, it suffices to show that the associated homogeneous system has only
the trivial solution, that is, let un−1

h = 0,qn−1
h = 0, fn = 0, we get the associated homogeneous

system:

(unh, vh) = ∆t(wn
h , vh), ∀vh ∈ Vh, (.)

(qn
h, τh) = ∆t(pn

h, τh), ∀τh ∈ Wh, (.)

(wn
h , vh)− µ(div(pn

h), vh) = γ(div(qn
h), vh), ∀vh ∈ Vh, (.)

(pn
h, τh) + (wn

h , divτh) = 0, ∀τh ∈ Wh. (.)

Taking vh = wn
h in (.) and τh = pn

h, τh = qn
h in (.) respectively, we have

‖wn
h‖2 − µ(divpn

h, w
n
h) = γ(divqn

h, wh), (.)

‖pn
h‖2 + (wn

h , divpn
h) = 0, (.)

(pn
h,q

n
h) + (wn

h , divqn
h) = 0. (.)

Combine (.), (.) with (.), using ε−inequality, we obtain

‖wn
h‖2 + µ‖pn

h‖2 = γ(divqn
h, wh) = −γ(pn

h,q
n
h) ≤ ε‖pn

h‖2 + C‖qn
h‖2,

with that

‖wn
h‖2 + ‖pn

h‖2 ≤ C‖qn
h‖2. (.)

Let vh = unh and vh = wn
h in (.) respectively, we have

‖unh‖2 = ∆t(wn
h , u

n
h) = (∆t)2‖wn

h‖2. (.)

Similarly, take τh = qn
h and τh = pn

h in (.) respectively, we have

‖qn
h‖2 = (∆t)2‖pn

h‖2. (.)

It thus follows that

‖unh‖2 + ‖qn
h‖2 ≤ (∆t)2(‖wn

h‖2 + ‖pn
h‖2) ≤ C(∆t)2‖qn

h‖2. (.)

If ∆t is sufficiently small such that C(∆t)2 < 1, we then get ‖unh‖ = 0, ‖qn
h‖ = 0, noting (.)

and (.) yields ‖wn
h‖ = 0, ‖pn

h‖ = 0. Hence we can obtain

unh = 0,qn
h = 0, wn

h = 0,pn
h = 0. 2

Next, we analyze the error estimate of the format (.). Subtracting (.) from (.), we get
the error equations

(unt − ∂tunh, vh) = (wn − wn
h , vh), ∀vh ∈ Vh,

(qn
t − ∂tqn

h, τh) = (pn − pn
h, τh), ∀τh ∈ Wh,

(wn − wn
h , vh)− µ(div(pn − pn

h), vh) = γ(div(qn − qn
h), vh), ∀vh ∈ Vh,

(pn − pn
h, τh) + (wn − wn

h , divτh) = 0, ∀τh ∈ Wh.

(.)

10



Firstly, we introduce the marks:

un − unh = un − un + un − unh = ρnu + θnu ,

qn − qn
h = qn − qn + qn − qn

h = ρnq + θnq,

wn − wn
h = wn − wn + wn − wn

h = ρnw + θnw,

pn − pn
h = pn − pn + pn − pn

h = ρnp + θnp.

using (.)-(.), the error equations can be rewritten as

(θnu − θn−1
u , vh) = ∆t(ρnw, vh) + ∆t(θnw, vh)−∆t(unt − ∂tun, vh), ∀vh ∈ Vh, (.)

(θnq − θn−1
q , τh) = ∆t(ρnp, τh) + ∆t(θnp, τh)−∆t(qn

t − ∂tqn, τh), ∀τh ∈ Wh, (.)

(θnw, vh)− µ(divθnp, vh) = γ(divθnq, vh), ∀vh ∈ Vh, (.)

(θnp, τh) + (θnw, divτh) = 0, ∀τh ∈ Wh., (.)

θ0
u = 0, θ0

q = 0. (.)

By taking vh = θnw in (.) and τh = θnp, τh = θnq in (.) respectively, we have

‖θnw‖2 − µ(divθnp, θ
n
w) = γ(divθnq, θ

n
w),

‖θnp‖2 + (θnw, divθnp) = 0,

(θnp, θ
n
q) + (θnw, divθnq) = 0.

Applying ε−inequality, it thus follows that

‖θnw‖2 + µ‖θnp‖2 = γ(divθnq, θ
n
w) = −γ(θnp, θ

n
q) ≤ ε‖θnp‖2 + C‖θnq‖2,

and then
‖θnw‖2 + ‖θnp‖2 ≤ C‖θnq‖2. (.)

Considering the following inequality:

‖unt − ∂tun‖ ≤ C

∫ tn

tn−1

‖utt‖dt,

‖qn
t − ∂tqn‖ ≤ C

∫ tn

tn−1

‖qtt‖dt,

taking vh = θnu in (.) yields

‖θnu‖ ≤ ‖θn−1
u ‖+ ∆t(‖ρnw‖+ ‖θnw‖) + ∆t‖unt − ∂tun‖

≤ ‖θn−1
u ‖+ ∆t · hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) +

C∆t‖θnq‖+ C∆t

∫ tn

tn−1

‖utt‖dt.

then, take τh = θnq in (.), we get

‖θnq‖ ≤ ‖θn−1
q ‖+ ∆t(‖ρnp‖+ ‖θnp‖) + ∆t‖qn

t − ∂tqn‖

≤ ‖θn−1
q ‖+ ∆t · hl(‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) + C∆t‖θnq‖+ C∆t

∫ tn

tn−1

‖qtt‖dt.

11



Using the two inequality above, we get

‖θnu‖+ ‖θnq‖ ≤ ‖θn−1
u ‖+ ‖θn−1

q ‖+ 2∆t · hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l)

+C∆t‖θnq‖+ C∆t(

∫ tn

tn−1

‖utt‖dt+

∫ tn

tn−1

‖qtt‖dt).

If ∆t is sufficiently small such that C∆t < 1, we obtain

‖θnu‖+ ‖θnq‖ ≤ C[‖θn−1
u ‖+ ‖θn−1

q ‖+ ∆t · hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) +

∆t(

∫ tn

tn−1

‖utt‖dt+

∫ tn

tn−1

‖qtt‖dt)]

≤ C[‖θ0
u‖+ ‖θ0

q‖+ n∆t · hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) +

∆t(

∫ tn

t0

‖utt‖dt+

∫ tn

t0

‖qtt‖dt)]

≤ C[hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) + ∆t(

∫ tn

t0

‖utt‖dt+

∫ tn

t0

‖qtt‖dt)],

using Theorem 2,

‖un − unh‖+ ‖qn − qn
h‖

≤ ‖ρnu‖+ ‖θnu‖+ ‖ρnq‖+ ‖θnq‖

≤ C[hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) + ∆t(

∫ tn

t0

‖utt‖dt+

∫ tn

t0

‖qtt‖dt)].

Due to (.), we obtain

‖θnw‖+ ‖θnp‖ ≤ C[hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) +

∆t(

∫ tn

t0

‖utt‖dt+

∫ tn

t0

‖qtt‖dt)],

and

‖wn − wn
h‖+ ‖pn − pn

h‖ ≤ C[hl(‖w‖l + ‖p‖l + ‖q‖l + ‖divp‖l + ‖divq‖l) +

∆t(

∫ tn

t0

‖utt‖dt+

∫ tn

t0

‖qtt‖dt)].

We summarize the results of the analysis into the following theorem.

Theorem 4 Under the assumptions of Theorem 2, and ∆t ≤ δ (δ sufficiently small and inde-
pendent of h) the fully discrete scheme has prior error estimate as following

max
1≤n≤N

‖un − unh‖+ max
1≤n≤N

‖qn − qn
h‖+ max

1≤n≤N
‖wn − wn

h‖+ max
1≤n≤N

‖pn − pn
h‖

≤ C[hl(‖w‖L∞(0,T ;Hl(Ω)) + ‖q‖L∞(0,T ;Hl(Ω)) + ‖p‖L∞(0,T ;Hl(Ω)) + ‖divq‖L∞(0,T ;Hl(Ω)) +

‖divp‖L∞(0,T ;Hl(Ω))) + ∆t(‖utt‖L1(0,T ;H0(Ω)) + ‖qtt‖L1(0,T ;H0(Ω)))],

where 0 < t ≤ T, 0 < l ≤ k + 1, C is a positive constant independent of h and ∆t.
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4 Numerical Experiment

In this section, two numerical examples are solved by the EMFE method in two cases (k = 0 and
k = 1). All computations are performed under the Pk (piecewise polynomial of degree k) finite
element space for u and w, and RTk (Raviart-Thomas-Nedelec of index k) finite element space
for q and p. FreeFem++ platform and Matlab are used to calculate and show the results.

Example 1. We choose the computational domain as Ω = [0, 1] × [0, 1], a = 1, b = 1, c =
1, the initial value function u0(x, y) = sin(πx) sin(πy), and the source term f(x, y, t) = (1 +
4π2)et sin(πx) sin(πy). It is easy to verify that the exact solution is u = et sin(πx) sin(πy) , we
calculate the equation till the final time T = 1.

• Let k = 0, that is to say, Vh = P0, Wh = RT0. Table 1 lists the L2 norms of errors between
uh, qh, wh, ph and u, q, w p with different subsections at t = 0.2, 0.4, 0.6, 0.8, 1, and Table 2
lists the corresponding convergence orders, from which we can see that the errors are quite
small and the convergence orders are all about 1, the approximation effect is very good.

• When k = 1, i.e. Vh = P1, Wh = RT1. We plot the images of the analytical solution u and
the numerical solution uh at t = 1 as shown in Fig.1, and we can intuitively realize that the
error between uh, qh, wh, ph and u, q, w, p are quite small, and the thinner the split, the
smaller the error, until an almost complete coincidence. Similarly, we list L2 error norms
between uh, qh, wh, ph and u, q, w, p in Table 3, it can be seen that the approximation
speed in this case is faster than that of k = 0. Table 4 lists the corresponding convergence
orders, and the results show that the accuracy is in accordance with the theoretical analysis.

Example 2. We compute the same example given in [29]. The computational domain is Ω =
[0, 1] × [0, 1], a = 1, b = 1, c = 1, the initial value function u0(x, y) = xy(1 − x)(1 − y), and the
source term f(x, y, t) = et[xy(1 − x)(1 − y) + 4x(1 − x) + 4y(1 − y)]. The analytical solution is
u = etxy(1− x)(1− y).

In this example, we also show the long time stability of the method, thus we choose T = 10. To
further show the good stability, we use a large time step. We notice that the analytical solution u
contains the factor et, its value increases rapidly with time, we thus calculate the relative errors.
It needs to be noted that the conclusions obtained in our theoretical analysis are also true for the
relative errors.

• For k = 0, Table 5 lists the L2 norms of relative errors between uh, qh, wh, ph and u, q, w
p at t = 2, 4, 6, 8, 10. The errors show similar rule with time and subdivision as in Example
1. The corresponding convergence orders are listed in Table 6, which is in accordance with
the theoretical analysis.

• For k = 1, we also list the L2 norms of relative errors of four unknown variables and cor-
responding convergence orders in Table 7 and Table 8, respectively, both of them illustrate
the effectiveness of the method. Compared with [29], in which different mixed finite element
methods are used to solve this problem, we get not only more variables, but also smaller
errors under the same partition.
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Table 1: L2 norms of errors for u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1 = 1

8
, ∆t1 = 1

5
9.63793e-3 1.97476e-2 3.06969e-2 4.28932e-2 5.67993e-2

h2 = 1
16

, ∆t2 = 1
10

4.94052e-3 1.01264e-2 1.57514e-2 2.20292e-2 2.92016e-2

h3 = 1
32

, ∆t3 = 1
20

2.50091e-3 5.12698e-3 7.97771e-3 1.11626e-2 1.48055e-2

h4 = 1
64

, ∆t4 = 1
40

1.25809e-3 2.57936e-3 4.01427e-3 5.61828e-3 7.45391e-3

‖q− qh‖
h1 = 1

8
, ∆t1 = 1

5
4.57217e-2 9.42955e-2 1.47518e-1 2.07395e-1 2.76223e-1

h2 = 1
16

, ∆t2 = 1
10

2.26422e-2 4.65397e-2 7.25957e-2 1.01809e-2 1.35313e-1

h3 = 1
32

, ∆t3 = 1
20

1.12733e-2 2.31304e-2 3.60253e-2 5.04574e-2 6.69906e-2

h4 = 1
64

, ∆t4 = 1
40

5.62575e-3 1.15323e-2 1.79473e-2 2.51207e-2 3.33338e-2

‖w − wh‖
h1 = 1

8
, ∆t1 = 1

5
9.63163e-3 1.98354e-2 3.11424e-2 4.38879e-2 5.85412e-2

h2 = 1
16

, ∆t2 = 1
10

4.73150e-3 9.80166e-3 1.53485e-3 2.15724e-2 2.87115e-2

h4 = 1
32

, ∆t3 = 1
20

2.36306e-3 4.88055e-3 7.62302e-3 1.06946e-2 1.42146e-2

h3 = 1
64

, ∆t4 = 1
40

1.18348e-3 2.43667e-3 3.62159e-3 5.12362e-3 7.07249e-3

‖p− ph‖
h1 = 1

8
, ∆t1 = 1

5
2.78376e-2 6.48858e-2 1.08826e-1 1.57067e-1 2.12917e-1

h2 = 1
16

, ∆t2 = 1
10

1.64798e-2 3.75976e-2 6.07238e-2 8.65551e-2 1.16061e-1

h3 = 1
32

, ∆t3 = 1
20

9.37106e-3 2.03038e-2 3.21754e-2 4.54276e-2 6.05747e-2

h4 = 1
64

, ∆t4 = 1
40

5.00782e-3 1.05482e-2 1.65567e-2 2.32655e-2 3.09375e-2

Table 2: Convergence orders of u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1/h2 0.964060 0.963556 0.962613 0.961332 0.959826

h2/h3 0.982210 0.981940 0.981433 0.980744 0.979914

h3/h4 0.991218 0.991096 0.990837 0.990480 0.990064

‖q− qh‖
h1/h2 1.013865 1.018727 1.022935 1.026516 1.029533

h2/h3 1.006104 1.008672 1.010874 1.012727 1.014270

h3/h4 1.002793 1.004110 1.005244 1.006189 1.006973

‖w − wh‖
h1/h2 1.025482 1.016979 1.020782 1.024637 1.027824

h2/h3 1.001641 1.005982 1.009663 1.012304 1.014255

h3/h4 0.997621 1.002133 1.073739 1.061647 1.007083

‖p− ph‖
h1/h2 0.756336 0.787262 0.841689 0.859689 0.875408

h2/h3 0.814415 0.888891 0.916304 0.930050 0.938096

h3/h4 0.904030 0.944753 0.958543 0.965377 0.969359
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(a) u, uh at h = 1
8 and ∆t = 1

5 (b) u, uh at h = 1
16 and ∆t = 1

20

(c) u, uh at h = 1
32 and ∆t = 1

80 (d) u, uh at h = 1
64 and ∆t = 1

320

Fig. 1: Comparison of numerical solution uh with exact solution u at t = 1
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Table 3: L2 norms of errors for u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1 = 1

8
, ∆t1 = 1

5
9.67088e-3 1.99375e-2 3.11787e-2 4.38175e-2 5.83378e-2

h2 = 1
16

, ∆t2 = 1
20

2.50417e-3 5.13787e-3 8.00183e-3 1.12069e-2 1.48783e-2

h3 = 1
32

, ∆t3 = 1
80

6.31323e-4 1.29356e-3 2.01232e-3 2.81565e-3 3.73515e-3

h4 = 1
64

, ∆t4 = 1
320

1.58101e-4 3.23839e-4 5.03615e-4 7.04489e-4 9.34362e-4

‖q− qh‖
h1 = 1

8
, ∆t1 = 1

5
4.25240e-2 8.76765e-2 1.37125e-1 1.92731e-1 2.56625e-1

h2 = 1
16

, ∆t2 = 1
20

1.10826e-2 2.27408e-2 3.54210e-2 4.96141e-2 6.58747e-2

h3 = 1
32

, ∆t3 = 1
80

2.80302e-3 5.74391e-3 8.93647e-3 1.25053e-2 1.63174e-2

h4 = 1
64

, ∆t4 = 1
320

7.03103e-4 1.44028e-3 2.24014e-3 3.13397e-3 4.15698e-3

‖w − wh‖
h1 = 1

8
, ∆t1 = 1

5
9.12603e-3 1.86851e-2 2.92441e-2 4.11360e-2 5.48032e-2

h2 = 1
16

, ∆t2 = 1
20

2.38605e-3 4.85550e-3 7.55967e-3 1.05903e-2 1.40633e-2

h3 = 1
32

, ∆t3 = 1
80

6.05522e-4 1.22851e-3 1.90900e-3 2.67063e-3 3.54280e-3

h4 = 1
64

, ∆t4 = 1
320

1.52210e-4 3.08387e-4 4.78838e-4 6.69553e-4 8.87910e-4

‖p− ph‖
h1 = 1

8
, ∆t1 = 1

5
4.53065e-2 8.62345e-2 1.32585e-1 1.85173e-1 2.45813e-1

h2 = 1
16

, ∆t2 = 1
20

1.15993e-2 2.22267e-2 3.41311e-2 4.75588e-2 6.29896e-2

h3 = 1
32

, ∆t3 = 1
80

2.91513e-3 5.60208e-3 8.60146e-3 1.19788e-2 1.58561e-2

h4 = 1
64

, ∆t4 = 1
320

7.29291e-4 1.40352e-3 2.15526e-3 3.00126e-3 3.97223e-3

Table 4: Convergence orders of u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1/h2 1.949315 1.956242 1.962159 1.967120 1.971221

h2/h3 1.987882 1.989823 1.991470 1.992847 1.993972

h3/h4 1.997532 1.998038 1.998467 1.998819 1.999113

‖q− qh‖
h1/h2 1.939981 1.946907 1.952815 1.957767 1.961865

h2/h3 1.983242 1.990210 1.986828 1.988211 2.013313

h3/h4 1.995174 1.995684 1.996116 1.996476 1.972803

‖w − wh‖
h1/h2 1.935363 1.944197 1.951750 1.957658 1.962325

h2/h3 1.978373 1.982710 1.985506 1.987491 1.988973

h3/h4 1.992116 1.994096 1.995208 1.995910 1.996405

‖p− ph‖
h1/h2 1.965680 1.955971 1.957759 1.961090 1.964376

h2/h3 1.992406 1.988259 1.988433 1.989229 1.990076

h3/h4 1.998994 1.996913 1.996720 1.996843 1.997017
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Table 5: L2 norms of relative errors for u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1 = 1

8
, ∆t1 = 1

2
1.18648e-1 1.21844e-1 1.21902e-1 1.21899e-1 1.21898e-1

h2 = 1
16

, ∆t2 = 1
4

6.13049e-2 6.27734e-2 6.28006e-2 6.27999e-2 6.27997e-2

h3 = 1
32

, ∆t3 = 1
8

3.11322e-2 3.18297e-2 3.18431e-2 3.18431e-2 3.18431e-2

h4 = 1
64

, ∆t4 = 1
16

1.56832e-2 1.60221e-2 1.60289e-2 1.60289e-2 1.60289e-2

‖q− qh‖
h1 = 1

8
, ∆t1 = 1

2
1.18571e-1 1.21997e-1 1.22100e-1 1.22104e-1 1.22104e-1

h2 = 1
16

, ∆t2 = 1
4

6.09759e-2 6.24793e-2 6.25171e-2 6.25181e-2 6.25181e-2

h3 = 1
32

, ∆t3 = 1
8

3.09221e-2 3.16161e-2 3.16318e-2 3.16322e-2 3.16322e-2

h4 = 1
64

, ∆t4 = 1
16

1.55709e-2 1.59028e-2 1.59099e-2 1.59101e-2 1.59101e-2

‖w − wh‖
h1 = 1

8
, ∆t1 = 1

2
1.14025e-1 1.17325e-1 1.17421e-1 1.17424e-1 1.17424e-1

h2 = 1
16

, ∆t2 = 1
4

5.81838e-2 5.96423e-2 5.96790e-2 5.96799e-2 5.96800e-2

h4 = 1
32

, ∆t3 = 1
8

2.93591e-2 3.00335e-2 3.00490e-2 3.00494e-2 3.00494e-2

h3 = 1
64

, ∆t4 = 1
16

1.47430e-2 1.50656e-2 1.50727e-2 1.50729e-2 1.50729e-2

‖p− ph‖
h1 = 1

8
, ∆t1 = 1

2
1.08438e-1 1.11635e-1 1.11726e-1 1.11729e-1 1.11729e-1

h2 = 1
16

, ∆t2 = 1
4

5.69473e-2 5.83682e-2 5.84031e-2 5.84040e-2 5.84040e-2

h3 = 1
32

, ∆t3 = 1
8

2.91739e-2 2.98324e-2 2.98471e-2 2.98475e-2 2.98475e-2

h4 = 1
64

, ∆t4 = 1
16

1.47639e-2 1.50791e-2 1.50859e-2 1.50860e-2 1.50860e-2

Table 6: Convergence orders of u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1/h2 0.952613 0.956810 0.956872 0.956852 0.956845

h2/h3 0.977595 0.979780 0.979798 0.979781 0.979777

h3/h4 0.989188 0.990310 0.990305 0.990305 0.990305

‖q− qh‖
h1/h2 0.959440 0.965395 0.965740 0.965765 0.965765

h2/h3 0.979601 0.982719 0.982875 0.982880 0.982880

h3/h4 0.989786 0.991379 0.991451 0.991451 0.991451

‖w − wh‖
h1/h2 0.970661 0.976103 0.976395 0.976410 0.976408

h2/h3 0.986810 0.989763 0.989906 0.989909 0.989911

h3/h4 0.993778 0.995314 0.995379 0.995379 0.995379

‖p− ph‖
h1/h2 0.929171 0.935535 0.935848 0.935865 0.935865

h2/h3 0.994949 0.968303 0.968454 0.968457 0.968457

h3/h4 0.982604 0.984330 0.984390 0.984400 0.984400
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Table 7: L2 norms of relative errors for u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1 = 1

8
, ∆t1 = 1

2
1.19091e-1 1.22462e-1 1.22553e-1 1.22555e-1 1.22555e-1

h2 = 1
16

, ∆t2 = 1
4

3.09925e-2 3.16823e-2 3.16971e-2 3.16973e-2 3.16973e-2

h3 = 1
32

, ∆t3 = 1
8

7.82004e-3 7.98155e-3 7.98479e-3 7.98485e-3 7.98485e-3

h4 = 1
64

, ∆t4 = 1
16

1.95945e-3 1.99916e-3 1.99962e-3 1.99963e-3 1.99963e-3

‖q− qh‖
h1 = 1

8
, ∆t1 = 1

2
1.18045e-1 1.21453e-1 1.21556e-1 1.21559e-1 1.21560e-1

h2 = 1
16

, ∆t2 = 1
4

3.08857e-2 3.15891e-2 3.16065e-2 3.16071e-2 3.16072e-2

h3 = 1
32

, ∆t3 = 1
8

7.81346e-3 7.97852e-3 7.98240e-3 7.98254e-3 7.98255e-3

h4 = 1
64

, ∆t4 = 1
16

1.96033e-3 2.00093e-3 2.00167e-3 2.00169e-3 2.00169e-3

‖w − wh‖
h1 = 1

8
, ∆t1 = 1

2
1.12330e-1 1.15519e-1 1.15610e-1 1.15612e-1 1.15612e-1

h2 = 1
16

, ∆t2 = 1
4

2.95040e-2 3.01662e-2 3.01811e-2 3.01814e-2 3.01814e-2

h4 = 1
32

, ∆t3 = 1
8

7.44492e-3 7.59944e-3 7.60264e-3 7.60271e-3 7.60271e-3

h3 = 1
64

, ∆t4 = 1
16

1.86538e-3 1.90328e-3 1.90394e-3 1.90395e-3 1.90395e-3

‖p− ph‖
h1 = 1

8
, ∆t1 = 1

2
1.13293e-1 1.16536e-1 1.16629e-1 1.16631e-1 1.16631e-1

h2 = 1
16

, ∆t2 = 1
4

2.94193e-2 3.00745e-2 3.00892e-2 3.00895e-2 3.00895e-2

h3 = 1
32

, ∆t3 = 1
8

7.44548e-3 7.59886e-3 7.60204e-3 7.60210e-3 7.60210e-3

h4 = 1
64

, ∆t4 = 1
16

1.86834e-3 1.90603e-3 1.90671e-3 1.90672e-3 1.90672e-3

Table 8: Convergence orders of u, q, w, and p

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

‖u− uh‖
h1/h2 1.942073 1.950585 1.950983 1.950997 1.950997

h2/h3 1.986670 1.988936 1.989024 1.989023 1.989023

h3/h4 1.996727 1.997275 1.997529 1.997532 1.997532

‖q− qh‖
h1/h2 1.934326 1.942899 1.943328 1.943336 1.943343

h2/h3 1.982906 1.985234 1.985327 1.985329 1.985332

h3/h4 1.994865 1.995450 1.995618 1.995629 1.995631

‖w − wh‖
h1/h2 1.928761 1.937125 1.937549 1.937560 1.937560

h2/h3 1.986582 1.988968 1.989073 1.989074 1.989074

h3/h4 1.996787 1.997405 1.997512 1.997518 1.997518

‖p− ph‖
h1/h2 1.945224 1.954163 1.954609 1.954619 1.954619

h2/h3 1.982326 1.984686 1.984787 1.984790 1.984790

h3/h4 1.994608 1.995212 1.995301 1.995305 1.995305
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5 Conclusion and Perspective

In this article, we propose a EMFE method to solve a class of 2D Sobolev equation(.) by
introducing three auxiliary variables. Optimal error estimates are obtained for both the semi-
discrete and fully discrete schemes. Finally, two numerical examples are given to verify the
optimal order of the proposed scheme. In future work, we will discuss how to extend this method
to the analysis of high-dimensional nonlinear Sobolev equations.
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