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	3	
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Christian	Cole1	and	Geoffrey	J.	Barton1,2	5	

	6	

Human	genome	sequencing	has	generated	population	variant	datasets	containing	7	

millions	of	variants	from	hundreds	of	thousands	of	individuals1-3.	The	datasets	show	the	8	

genomic	distribution	of	genetic	variation	to	be	influenced	on	genic	and	sub-genic	scales	9	

by	gene	essentiality,1,4,5	protein	domain	architecture6	and	the	presence	of	genomic	10	

features	such	as	splice	donor/acceptor	sites.2	However,	the	variant	data	are	still	too	11	

sparse	to	provide	a	comparative	picture	of	genetic	variation	between	individual	protein	12	

residues	in	the	proteome.1,6	Here,	we	overcome	this	sparsity	for	~25,000	human	13	

protein	domains	in	1,291	domain	families	by	aggregating	variants	over	equivalent	14	

positions	(columns)	in	multiple	sequence	alignments	of	sequence-similar	(paralagous)	15	

domains7,8.	We	then	compare	the	resulting	variation	profiles	from	the	human	16	

population	to	residue	conservation	across	all	species9	and	find	that	the	same	tertiary	17	

structural	and	functional	pressures	that	affect	amino	acid	conservation	during	domain	18	

evolution	constrain	missense	variant	distributions.	Thus,	depletion	of	missense	variants	19	

at	a	position	implies	that	it	is	structurally	or	functionally	important.	We	find	such	20	

positions	are	enriched	in	known	disease-associated	variants	(OR	=	2.83,	p	≈	0)	while	21	

positions	that	are	both	missense	depleted	and	evolutionary	conserved	are	further	22	

enriched	in	disease-associated	variants	(OR	=	1.85,	p	=	3.3×10-17)	compared	to	those	23	
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that	are	only	evolutionary	conserved	(OR	=	1.29,	p	=	4.5×10-19).	Unexpectedly,	a	subset	24	

of	evolutionary	Unconserved	positions	are	Missense	Depleted	in	human	(UMD	25	

positions)	and	these	are	also	enriched	in	pathogenic	variants	(OR	=	1.74,	p	=	0.02).	UMD	26	

positions	are	further	differentiated	from	other	unconserved	residues	in	that	they	are	27	

enriched	in	ligand,	DNA	and	protein	binding	interactions	(OR	=	1.59,	p	=	0.003),	which	28	

suggests	this	stratification	can	identify	functionally	important	positions.	A	different	29	

class	of	positions	that	are	Conserved	and	Missense	Enriched	(CME)	show	an	enrichment	30	

of	ClinVar	risk	factor	variants	(OR	=	2.27,	p	=	0.004).	We	illustrate	these	principles	with	31	

the	G-Protein	Coupled	Receptor	(GPCR)	family,	Nuclear	Receptor	Ligand	Binding	32	

Domain	family	and	In	Between	Ring-Finger	(IBR)	domains	and	list	a	total	of	343	UMD	33	

positions	in	211	domain	families.	This	study	will	have	broad	applications	to:	(a)	34	

providing	focus	for	functional	studies	of	specific	proteins	by	mutagenesis;	(b)	refining	35	

pathogenicity	prediction	models;	(c)	highlighting	which	residue	interactions	to	target	36	

when	refining	the	specificity	of	small-molecule	drugs.	37	

	38	

	39	

Variant	densities	and	the	sparsity	problem	40	

Human	sequencing	projects	are	beginning	to	shed	light	on	the	patterns	of	genetic	41	

variation	that	are	present	in	human	populations.1,2	One	way	in	which	these	studies	42	

enhance	the	understanding	of	inter-individual	variation	is	by	characterising	different	43	

densities	of	single-nucleotide	variants	(SNVs)	and	short	insertion	and	deletions	(indels)	44	

at	different	genomic	loci.	Analysis	of	large	cohort	variation	datasets	has	revealed	that	45	

genes	differ	in	their	tolerance	of	non-synonymous	and	loss-of-function	variation.1,4	46	

Within	protein-coding	genes,	regions	that	encode	protein	domains	are	less	tolerant	of	47	

non-synonymous	variants	than	inter-domain	coding	regions	and	are	more	prone	to	48	
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disease	variants.6	The	60,706	sample	Exome	Aggregation	Consortium1	study	yielded	49	

~125	variants	per	kilobase,	rendering	a	per	nucleotide	comparison	impossible	since	50	

most	single	nucleotides	have	zero	variants.	Variant	sparsity	can	also	be	addressed	by	51	

aggregating	over	pseudo-paralogous	positions.	For	example,	aligning	nucleotide	52	

sequences	on	start	codons	reveals	that	start	codons	have	fewer	variants	than	adjacent	53	

sites,	while	the	5’-UTR	is	more	variable	than	the	CDS	and	every	third	base	in	a	codon	54	

variable.2	These	differences	are	observed	because	the	pressures	imposed	by	those	55	

genomic	features	are	common	to	each	individual	aligned	sequence.		56	

	57	

Residue	resolution	through	protein	family	aggregation	58	

Multiple	sequence	alignments	(MSA)	are	a	well	established	way	to	identify	position-59	

specific	features	in	a	family	of	homologous	sequences.	Figure	1A	illustrates	60	

schematically	how	an	MSA	containing	multiple	human	paralogs	can	be	used	to	61	

aggregate	SNVs	from	multiple	loci	in	a	position	specific	manner.	This	process	condenses	62	

the	sparse	variant	counts	from	single	sequences	into	dense	variant	counts	for	the	63	

domain	family.	Similar	approaches	have	been	adopted	to	identify	low	frequency	cancer	64	

driver	mutations,10-12	and	find	sites	in	domains	where	pathogenic	mutations	cluster.13	65	

To	perform	a	comprehensive	analysis	of	protein	domains,	germline	variation	data	66	

retrieved	from	Ensembl14,15	was	aggregated	with	respect	to	the	domain	families	in	67	

Pfam.8	Pfam	contains	16,035	domain	families	and	of	these	families	6,088	contain	at	least	68	

one	human	sequence	and	1,376	have	at	least	five	after	adjusting	for	duplicate	sequences	69	

(see	Methods).	Figures	1B-C	show	that	even	though	most	human	sequence	residues	in	70	

Pfam	domains	have	zero	variants,	after	aggregation	most	Pfam	domain	family	positions	71	

have	at	least	two	variants.	72	

	73	
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	74	

Figure	1:	Variant	aggregation	over	protein	family	alignments.	A.	Schematic	illustration	of	a	protein	family	75	

alignment.	Each	line	represents	a	human	or	non-human	sequence	and	human	sequences	can	have	zero	or	76	

more	variants	(blue	circles).	Few	variants	are	observed	at	each	alignment	position	per	sequence	but	the	77	

column	totals	are	larger.	B.	Distribution	of	variants	per	human	residue	in	all	Pfam	sequences	(2,927,499	78	

missense	variants,	8,264,091	residues;	no	filters	applied).	C.	Distribution	of	variants	per	alignment	column	in	79	

Pfam	alignments	(955,636	missense	variants,	159,296	columns;	includes	only	columns	with	at	least	five	80	

human	residues).	81	

	82	

SNV	density	is	correlated	with	evolutionary	conservation	83	

Accurate	predictions	of	structure	and	function	can	be	made	from	MSAs16-18	because	84	

these	features	impose	constraints	on	accepted	mutations	in	domain	families.	These	85	

constraints	can	be	inferred	from	patterns	in	residue	conservation	scores,9	which	86	

quantify	the	extent	of	residue	or	physicochemical	property	conservation	at	each	87	

position	in	the	alignment.	In	protein	domain	family	MSAs,	which	can	contain	orthologs	88	
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and	paralogs	in	varying	proportions,	these	scores	are	interpreted	as	the	degree	of	89	

evolutionary	conservation	in	each	site	of	the	domain	family	and	are	different	to	90	

conservation	scores	for	alignments	that	contain	only	closely	related	orthologs	because	91	

of	greater	functional	divergence.	Throughout	this	text,	the	term	evolutionary	92	

conservation	refers	to	the	conservation	of	residues	during	domain	family	evolution	and	93	

accounts	for	orthologous	and	paralogous	evolutionary	process	as	captured	in	the	Pfam	94	

alignments.	95	

	96	

Figure	2A	shows	the	correlation	between	the	domain	family	column	variant	counts	and	97	

the	Shenkin	divergence	score	(VShenkin)19	in	the	SH2	domain	family	(PF00017).	The	98	

number	of	missense	variants	increases	with	increasing	residue	divergence	(i.e.,	99	

decreasing	conservation)	whilst	the	frequency	of	synonymous	variation	remains	100	

constant	with	respect	to	column	conservation.	Extended	Data	Figs.	1	and	2	illustrate	101	

this	behaviour	on	the	SH2	alignment	and	crystal	structure	and	show	that	in	this	102	

example,	the	protein’s	secondary	and	tertiary	structures	and	domain-domain	103	

interactions	are	common	factors	constraining	both	conservation	and	population	104	

constraint.	This	demonstrates	that	the	missense	variant	distribution	is	subject	to	the	105	

same	structural	and	functional	constraints	over	generational	timescales	that	affect	106	

amino	acid	substitution	frequencies	over	evolutionary	timescales.	In	contrast,	the	107	

distribution	of	synonymous	variation	is	not	affected	because	these	variants	are	silent	at	108	

the	protein	structure	level.	Figure	2B	shows	that	this	result	extends	to	other	protein	109	

families	by	illustrating	that	the	VShenkin	regression	coefficients	for	each	family	are	110	

distributed	around	zero	for	synonymous	variant	totals	and	are	typically	positive	for	111	

missense	variants.	112	

	113	
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	114	

Figure	2:	Relationship	between	column	variant	totals	and	VShenkin.	A.	Variant	counts	vs.	VShenkin	for	missense	115	

(left	panel)	and	synonymous	variants	(right	panel)	for	the	SH2	domain	(PF00017).	The	regression	lines	show	116	

least-squares	fits	and	the	shaded	regions	indicate	standard	errors	of	prediction.	B.	Histograms	showing	the	117	

distributions	of	VShenkin	regression	coefficients	for	linear	models	fitting	column	variant	totals	to	VShenkin	and	118	

column	human	residue	occupancies	for	protein	families	with	>	50	included	alignment	columns	(n	=	934).	119	

	120	

Properties	of	sites	relatively	depleted	or	enriched	for	missense	variation	121	

Domain	family	alignment	columns	were	classified	as	missense	depleted	or	missense	122	

enriched	by	testing	whether	a	column	possessed	significantly	more	or	less	missense	123	

variation	than	observed	elsewhere	in	the	alignment	(see	Methods).	Figure	3A	shows	124	

that	with	respect	to	ClinVar20	variant	annotations	missense	depleted	columns	have	125	

higher	rates	of	‘pathogenic’	(Fisher	OR	=	2.83,	p	≈	0)	and	‘likely	pathogenic’	variants	(OR	126	

=	2.17,	p	=	1.9×10-12)	compared	to	other	sites,	indicating	that	diversity	is	suppressed	in	127	

positions	that	are	critical	for	function.	Variant	enriched	columns	possess	proportionally	128	

more	‘risk	factor’	variants	(Fisher	OR	=	1.66,	p	=	0.017).	This	may	suggest	that	there	is	129	

generally	an	increased	chance	of	co-segregating	phenotypic	differences	at	sites	with	130	

relatively	high	population	diversity.	131	

	132	
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For	comparison,	Figure	3B	shows	the	equivalent	ClinVar	association	tests	for	columns	133	

classified	by	their	evolutionary	conservation	as	measured	by	Valdar’s	score	(CValdar).9	134	

For	pathogenic	variants,	conserved	vs.	unconserved	columns	display	the	same	135	

behaviour	as	missense	depleted	vs.	enriched	columns,	which	is	concordant	with	136	

previous	work	and	expected	since	most	missense	depleted	columns	are	also	conserved.	137	

However,	the	column	classification	schemes	yield	almost	opposite	trends	with	respect	138	

to	the	distribution	of	ClinVar	risk	factor	variants.	There	is	a	slight	tendency	for	risk	139	

factor	variants	to	occur	more	frequently	in	evolutionary	conserved	columns	(OR	=	1.47,	140	

p	=	0.194),	which	contrasts	with	their	higher	frequencies	in	columns	that	are	relatively	141	

enriched	for	missense	variation.	142	

	143	

	144	

Figure	3:	Properties	of	missense	depleted	and	enriched	domain	family	alignment	columns.	Odds	ratios	and	145	

95%	C.I.	for	enrichment	of	variants	with	specific	ClinVar	terms	that	affect	residues	found	in	A.	missense	146	

depleted	(p	<	0.1;	see	methods)	or	enriched	(p	<	0.1)	domain	family	alignment	columns	and	B.	conserved	147	

(CValdar	in	1st	decile)	or	unconserved	columns	(CValdar	in	10th	decile).	148	

	149	

The	Conservation	Plane:	Combining	column	variant	class	and	conservation	150	

Although	the	distribution	of	missense	variants	within	domains	is	typically	concordant	151	

with	the	evolutionary	conservation	profile	(Figure	2B),	the	two	metrics	are	not	152	
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redundant	and	cross-classification	of	alignment	columns	by	both	yields	residue	153	

categories	with	interesting	properties.	Figure	4A	shows	the	distribution	of	ClinVar	154	

annotated	pathogenic	variants	between	columns	classified	as	unconserved-missense	155	

depleted	(UMD),	unconserved-missense	enriched	(UME),	conserved-missense	depleted	156	

(CMD)	and	conserved-missense	enriched	(CME).	Conserved	and	unconserved	columns	157	

that	are	neither	missense	depleted	or	enriched,	i.e.	have	an	average	number	of	missense	158	

variants	for	the	family,	are	also	shown.	It	shows	that:	1)	all	conserved	sites	are	enriched	159	

for	pathogenic	variants	but	CMD	sites	are	more	so	(CME:	OR	=	1.24,	p	=	1.6×10-5;	CMD:	160	

OR	=	1.85,	p	=	3.3×10-17)	and	2)	the	UMD	subset	of	unconserved	residues	are	enriched	161	

for	pathogenic	variants	to	an	extent	comparable	to	conserved	residues	(OR	=	1.74,	p	=	162	

0.02).	The	UMD	classification	identifies	sites	where	residues	have	varied	throughout	the	163	

evolution	of	the	domain	family	but	the	specific	residue	adopted	by	each	domain	is	now	164	

under	negative	selection	in	human.	This	implies	that	residues	in	this	column	class	could	165	

be	enriched	for	specificity	determinants.	A	structural	analysis	of	270	UMD	sites	found	in	166	

160	families	provides	some	support	for	this	hypothesis.	We	compared	these	sites	to	167	

UME	columns	from	the	same	families	and	found	that	UMD	columns	were	enriched	for	168	

ligand,	domain-domain	and	nucleotide	interactions	(OR	=	1.59,	p	=	0.003)	and	tended	to	169	

be	less	accessible	to	solvent	(OR	=	1.73,	p	=	2.0	×	10-04;	Extended	Data	Table	1).	Figure	170	

4C	illustrates	an	example	of	a	protein	family	where	UMD	residues	indicate	known	171	

ligand-binding	sites.	The	Rhodopsin-like	receptor	family	(PF00001)	contains	11	UMD	172	

sites,	five	of	which	occur	in	sequence	in	the	centre	of	Helix	3	and	form	interactions	with	173	

ligands	in	many	structures	(e.g.	residues	in	column	780	interact	with	ligands	in	23	174	

distinct	proteins;	Extended	Data	Table	2)	and	includes	a	Na2+	binding	residue.	Extended	175	

Data	Fig.	3	shows	another	example	of	ligand	binding	site	identification	in	the	nuclear	176	

receptor	ligand	binding	domain	family	(NR-LBD;	PF00104).	Additionally,	Extended	Data	177	
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Fig.	4	shows	UMD	sites	in	the	NR-LBD	family	that	are	not	directly	involved	in	ligand	178	

binding	but	instead	mediate	strong	intra-domain	cross-helical	interactions	that	vary	179	

dramatically	between	domains.	Structures	of	intact	DNA-bound	nuclear	receptors	180	

suggest	that	in	some	proteins	these	residues	interact	with	the	LBD-DNA	binding	domain	181	

linker	and	thus	may	mediate	the	ligand	induced	DNA	binding	response	(Not	shown.	For	182	

an	example	see	Glu	295	and	Ser	332	in	PDB	ID:	3e00	chain	D.).21	These	important	183	

interactions	may	not	be	detected	by	residue	co-variation	analysis18	because	the	UMD	184	

site	interacts	with	residues	aligned	in	different	columns	in	each	domain.	One	UMD	site	185	

is	seen	in	the	IBR	domain	(PF01485).	In	the	E3	ubiquitin-protein	ligase	parkin,	this	is	186	

Glu370	that	recent	structural	studies	suggest	is	at	the	interface	with	Ubiquitin22	and	so	187	

likely	to	be	important	in	mediating	this	interaction.	All	other	UMD	classified	sites	can	be	188	

found	in	Supplementary	Data	Table	1.	Together,	these	findings	show	that	human	189	

missense	variation	can	stratify	unconserved	alignment	columns	to	identify	a	small	190	

number	of	residues	likely	to	be	important	for	function	and	specificity.	191	

	192	
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	193	

Figure	4:	Classification	of	domain	residues	by	evolutionary	conservation	and	relative	population	variation.	A.	194	

Odds	ratios	for	ClinVar	pathogenic	variants	in	missense	depleted	(p	<	0.1;	see	methods),	enriched	(p	<	0.1)	or	195	

normal	(p	≥	0.1)	alignment	columns	that	were	either	conserved	(CValdar	<	median)	or	unconserved	(CValdar	>	196	

median).	B.	Odds	ratios	for	ClinVar	risk	factor	variants	in	different	column	classes.	UMD	columns	are	not	197	

shown	as	there	are	zero	risk	factor	variants	in	this	column	class;	the	ClinVar	risk	factor	OR	and	95	%	C.I.	for	198	

UMD	columns	is	0	[0,	14].	C.	Illustration	of	UMD	residues	(blue)	in	the	Rhodopsin-like	receptors	(PF00001)	199	

mapped	to	a	structure	of	the	Delta-type	opioid	receptor	(PDB	ID:	4n6h).23	Amongst	the	11	UMD	residues	are	200	

several	involved	in	ligand	binding	and	one	that	coordinates	the	bound	sodium	ion;	residues	249-287	are	201	

hidden	for	clarity.	202	

	203	

Another	striking	feature	of	residues	in	columns	with	discordant	levels	of	evolutionary	204	

conservation	and	population	diversity	was	found.	Figure	4B	shows	the	odds	ratios	of	205	

observing	ClinVar	risk	factor	variants	in	columns	classed	according	to	evolutionary	206	

conservation	and	whether	they	are	relatively	enriched	in	missense	variants	or	not	and	207	

highlights	that	CME	sites	are	significantly	enriched	in	risk	factor	variants	(OR	=	2.27,	p	=	208	
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0.004).	This	is	consistent	with	the	previous	observation	that	missense	enriched	209	

columns	were	enriched	for	risk	factor	variants	and	that	conserved	columns	showed	a	210	

tendency	toward	risk	factor	enrichment	(Figure	3)	but	the	combined	effect	is	much	211	

stronger.	To	our	knowledge	this	is	the	first	time	that	a	feature	marking	residues	pre-212	

disposed	to	carrying	risk	factor	variants	has	been	identified.	213	

	214	

With	further	development,	the	conservation	plane	may	yield	insight	into	the	215	

evolutionary	forces	acting	on	individual	sites	in	protein	domain	families.	Although	this	216	

will	require	consideration	of	each	family’s	phylogeny	coupled	with	more	detailed	217	

variation	metrics	(e.g.,	considering	allele	frequencies,	heterozygosity,	218	

missense/synonymous	ratios	(dN/dS),	McDonald–Kreitman	test24	and	derivatives)	our	219	

results	offer	clues	as	to	which	evolutionary	signatures	are	being	detected.	Given	the	220	

recognised	effects	of	different	types	of	selection	upon	intra-	and	interspecific	221	

variability,25	we	can	loosely	associate:	CMD	sites	with	negative	selection	and	sites	222	

affected	by	selective	sweeps;	UMD	sites	with	positive	selection	(here,	domain	223	

specialisation)	and	CME	sites	with	balancing	selection.	Whilst	these	associations	are	224	

speculative,	the	structural	features	and	disease	associations	of	those	classes	are	225	

congruent	with	these	evolutionary	processes.25-27	A	few	immediate	practical	226	

applications	follow	from	the	missense-depletion	and	conservation	plane	class	227	

associations.	For	variant	pathogenicity	prediction,	the	results	extend	the	work	of	228	

Gussow	and	coworkers4,6	and	open	the	door	to	hierarchical	classification	where	the	229	

impact	of	a	variant	can	be	can	be	judged	in	genic,	sub-genic	architecture,	and	now,	230	

residue	level	contexts	on	the	basis	of	population	variation.	In	protein	feature	prediction,	231	

the	ability	to	identify	functionally	important	residues	that	are	classically	unconserved	232	

could	help	to	identify	allosteric	and	surface	interaction	sites,	whilst	a	metric	that	is	233	
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sensitive	to	specificity	determining	residues	should	prove	useful	in	understanding	234	

enzyme	active	sites	and	other	functional	sites	in	more	detail.	235	

	236	

	237	

Methods	238	

Datasets,	Mapping	and	Filtering	239	

Protein	family	alignments	were	downloaded	from	Pfam	(v29)7,8	and	parsed	using	240	

Biopython	(v1.66,	with	patches	#768	#769)28	and	conservation	scores	were	calculated	241	

by	AACons	via	JABAWS	(v2.1).29	The	human	sequences	in	the	alignment	were	mapped	242	

to	the	corresponding	full	UniProt	sequences	to	create	keys	between	UniProt	sequence	243	

residue	numbers	and	Pfam	alignment	column	numbers.	For	each	human	sequence,	244	

germline	population	variants	were	retrieved	from	Ensembl	8414,15	via	the	Ensembl	API	245	

using	ProteoFAV.30	Ensembl	variants	are	provided	with	indexes	to	UniProt	sequence	246	

residue	numbers	and	were	thus	mapped	to	Pfam	alignment	columns.	247	

	248	

Ensembl	variation	agglomerates	variants	and	annotation	data	from	a	variety	of	sources	249	

including	dbSNP	(v146),	1KG,	ESP	and	ExAC1.	A	full	description	of	the	variant	sources	250	

present	in	Ensembl	84	is	available	at	251	

http://mar2016.archive.Ensembl.org/info/genome/variation/sources_documentation.252	

html.	Ensembl	provides	numerous	annotations	including	the	predicted	protein	253	

consequences	(i.e.	missense,	synonymous,	stop	gained,	etc.),	minor	allele	frequency	254	

(MAF)	and	ClinVar20	disease	status.	These	annotations	were	used	to	filter	the	Pfam-255	

mapped	variants	for	the	collection	of	variant	sub-class	alignment	column	statistics.	For	256	

example,	this	is	how	the	number	of	ClinVar	‘pathogenic’	missense	variants	in	each	257	

alignment	column	was	calculated.	258	
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	259	

Pfam	(v29)	contains	16,035	domain	family	alignments.	Variants	were	gathered	and	260	

mapped	to	the	alignments	for	the	6,088	families	that	contain	at	least	one	human	261	

sequence.	For	inclusion	in	this	analysis,	a	minimum	threshold	of	five	human	sequences	262	

was	adopted	corresponding	to	2,939	protein	families.	However,	some	of	these	families	263	

do	not	meet	this	criterion	after	sequence	duplication	correction	(see	below)	leaving	264	

1,376	families.	Finally,	alignment	column	conservation	scores	could	not	be	obtained	for	265	

85	of	the	families,	resulting	in	a	final	dataset	of	1,291	protein	families.	These	families	266	

contain	an	estimated	25,158	human	protein	domains.	Only	columns	with	≥	5	human	267	

residues	(i.e.,	non-gap)	were	considered,	corresponding	to	159,296	alignment	columns.	268	

This	filter	was	applied	in	all	analyses	reported	in	this	work.	269	

	270	

Variant	Duplication	271	

Some	alignments	contained	variants	that	mapped	to	multiple	sequences	due	to	272	

sequence	duplication.	For	example,	in	PF00001	all	variants	that	mapped	to	the	human	273	

sequence	P2Y11/45-321	(P2Y	purinoceptor	11)	from	the	P2RY11	gene	are	duplicated	274	

in	A0A0B4J1V8/465-741	because	this	sequence	contains	the	same	7	transmembrane	275	

receptor	domain	as	P2Y11	as	a	result	of	A0A0B4J1V8	being	the	product	of	a	read-276	

through	transcript	that	includes	the	P2RY11	gene.	This	means	there	are	two	copies	of	277	

the	P2RY11	7	transmembrane	receptor	domain	in	the	alignment	and	its	variant	profile	278	

is	doubly	weighted.	Another	example	in	this	family	comes	from	human	sequences	279	

MSHR/55-298	(Melanocortin	receptor	1),	G3V4F0/55-298	and	A0A0B4J269,	which	all	280	

are	mapped	to	the	same	genomic	loci.	Accordingly,	sequence	duplication	was	accounted	281	

for	by	de-duplicating	variants	and	sequences	before	summing	over	columns.	282	

	283	
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Statistical	Analyses	284	

The	statistical	analyses	were	all	performed	using	R	version	3.2.2.	Regressions	were	285	

calculated	by	the	lm	function	from	the	stats	library.	Odds	ratios	and	Fishers	exact	p	286	

values	were	calculated	with	the	fisher.test	function	from	the	stats	library.	Plots	were	287	

produced	with	ggplot2.	288	

	289	

Alignment	Column	Classification	290	

Columns	were	classified	as	depleted,	enriched	or	neutral	with	respect	to	the	column	291	

variant	totals	relative	to	the	average	for	the	other	columns	in	the	alignment.	For	each	292	

alignment	column	x,	a	2×2	table	was	constructed	of	the	form	a,	b,	c,	d	with	elements:	a.	293	

the	number	of	variants	mapped	to	residues	in	column	x,	b.	the	total	number	of	variants	294	

mapped	to	all	other	alignment	columns,	c.	the	number	of	human	residues	in	column	x	295	

and	d.	the	total	number	of	human	residues	in	the	rest	of	the	alignment.	Application	of	296	

the	R	stats	function	fisher.test	to	each	table	yielded	an	odds	ratio	>	1	if	the	column	297	

contained	more	than	the	alignment	average	number	of	variants	per	human	residue	or	298	

OR	<	1	if	there	were	fewer	than	the	average	number	of	variants	per	human	residue.	The	299	

function	also	provided	the	p	value	afforded	by	Fisher’s	exact	test.	This	meant	that	for	a	300	

given	pthreshold	columns	with	p	≥	pthreshold	were	considered	normal	and	columns	with	p	<	301	

pthreshold	were	considered	depleted	if	OR	<	1	or	enriched	if	OR	>	1.	Notably,	in	addition	to	302	

the	effect	size,	p	is	sensitive	to	data	availability	(i.e.,	variant	counts)	and	alignment	303	

column	occupancy.	In	this	work,	pthreshold	=	0.1	unless	otherwise	specified.	304	

	305	

Structural	Analysis	of	Evolutionary	Unconserved	and	Missense	Depleted	Residues	306	

Columns	were	classified	as	unconserved-missense	depleted	(UMD)	or	unconserved-307	

missense	enriched	(UME)	if	they	displayed	significant	residue	diversity	(VShenkin	in	4th	308	
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quartile)	and	were	missense	depleted	or	enriched,	respectively.	The	343	columns	in	211	309	

families	that	met	these	criteria	were	subjected	to	an	automated	analysis	where	the	310	

flagged	residues	were	mapped	to	PDB	structures	via	SIFTS;31	270	columns	from	160	311	

families	were	mapped	to	at	least	one	PDB	structure.	Biological	units	were	obtained	from	312	

the	PDBe	in	mmCIF	format.	When	multiple	biological	units	were	available	for	a	313	

particular	asymmetric	unit,	the	preferred	biological	unit	ID	was	obtained	by	querying	314	

the	PDBe	API.32	Atoms	were	considered	to	interact	if	they	were	within	5	Å.	A	residue	315	

was	considered	to	participate	in	a	domain	interaction	if	it	interacted	with	a	Pfam	316	

domain	on	a	different	PDB	chain.	Residue	relative	solvent	accessibilities	(RSAs)	were	317	

calculated	from	the	DSSP	accessible	surface33	as	described	in	Tien	et	al.34	and	were	318	

classified	as	surface	(RSA	>	25%),	partially	exposed	(5%	<	RSA	≤	25%)	or	core	(RSA	≤	319	

5%).	320	

	321	

The	results	of	the	automated	analysis	were	supplemented	by	a	manual	structural	322	

analysis	using	a	workflow	enabled	by	the	Jalview	multiple	sequence	alignment	323	

workbench35	and	the	UCSF	Chimera	molecular	graphics	program.36	Jalview	feature	files	324	

identifying	the	UMD	columns	were	generated.	When	the	feature	files	were	loaded	onto	325	

the	appropriate	alignment	in	Jalview,	the	residues	in	the	UMD	columns	were	highlighted	326	

for	the	user.	Jalview	was	then	used	to	find	PDB	structures	for	the	sequences	in	the	327	

alignment	that	were	then	visualised	in	UCSF	Chimera.	Jalview	automatically	mapped	the	328	

UMD	residue	annotations	to	the	PDB	structure	so	that	the	residues	could	be	assessed	in	329	

their	structural	context.	UCSF	Chimera	was	used	to	identify	other	residues	in	the	330	

structure	that	were	hydrogen	bonded	to,	or	had	a	Van	der	Waals	distance	<	1	Å	with,	a	331	

side-chain	atom	of	any	UMD	residues	present.	The	residues	were	then	classified	332	

according	to	any	contacts	made	as	either:	ligand	binding,	ion	binding,	inter-domain	333	
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interaction,	intra-domain	interaction	or	surface	residue.	This	analysis	found	that	of	334	

those	families	with	UMD	residues,	19%	had	at	least	one	UMD	site	involved	in	ligand-335	

binding	whilst	42%	had	a	site	directly	involved	in	domain-domain	interactions.	336	

	337	

Code	availability	338	

The	code	used	in	this	study	will	be	available	from	the	Barton	Group	GitHub	repository	339	

at	https://github.com/bartongroup/	on	journal	publication.			The	software	was	not	340	

designed	for	portability	and	may	not	function	as	intended	in	all	environments,	but	the	341	

source	code	illustrates	our	methodology.	We	are	currently	developing	a	production	342	

version	that	will	enable	users	to	apply	our	methods	to	their	own	alignments	to	be	343	

released	in	the	same	repository.	344	

	345	

Data	availability	346	

The	multiple	sequence	alignments	and	human	variation	data	that	underlie	and	support	347	

the	findings	of	this	study	are	available	from	Pfam,	http://pfam.xfam.org/	and	Ensembl	348	

84,	http://www.Ensembl.org/,	respectively.	The	calculated	data,	including	alignment	349	

column	variation	statistics	and	residue	conservation	scores	are	presently	available	from	350	

the	corresponding	author	upon	request	whilst	a	web	resource	is	under	development.	351	

The	UMD	columns	are	also	identified	in	the	supplementary	material.	352	

	353	
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Extended	Data	Captions	503	

	504	

	505	

	506	

Extended	Data	Figure	1:	An	extract	of	the	SH2	alignment	(PF00017.21)	showing	the	507	

influence	of	secondary	structure	constraints	upon	evolutionary	conservation	and	508	

missense	depletion.	a.	Alignment	with	Clustal	X37	colouring	where	blue	indicates	509	

hydrophobic	residue	conservation.	b.	Consensus	secondary	structure	from	Pfam	510	

(v31);7,8	labelled	elements	indicate	the	archetypal	SH2	partially	buried	helices	(I.a	and	511	

I.b)	and	β-strands	(II.a-c).	c.	Missense	depleted	columns	with	P	≤	0.2.	d.	Columns	with	512	

VShenkin	≤	20.	The	pattern	of	conserved	hydrophobic	residues	in	a	are	indicative	of	the	513	

structural	constraints	imposed	by	the	secondary	structure	elements	in	b.	These	514	

structural	constraints	are	known	to	produce	patterns	in	conservation	metrics	like	515	
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VShenkin	in	d.	These	constraints	also	influence	the	distribution	of	missense	depleted	516	

columns	in	c.	Figure	created	with	Jalview.35	517	

	518	
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	519	

Extended	Data	Figure	2:	Inter-domain	interactions	of	the	SH2	domain	in	inactivated	Src	520	

(PDB	ID:	2src).38	The	surface	of	the	SH2	domain	(PF00017)	is	coloured	red	to	yellow	521	

corresponding	to	a.	missense	depletion	P	over	range	[0,	0.2)	and	b.	VShenkin	over	range	522	

[0,	20);	white	surface	regions	are	outside	these	ranges.	The	sub-panels	show	523	

interactions	with	the	Src	SH3	domain	(yellow),	kinase-SH2	linker	(tan)	and	the	tail	524	
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region	including	phosphorylated-Tyr	(tan).	Residues	that	interact	with	the	SH2	domain	525	

are	displayed	as	sticks.	Figure	created	with	Jalview35	and	UCSF	Chimera.36	526	

	527	
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	528	

	529	

Extended	Data	Figure	3:	Examples	of	UMD	residues	(blue)	involved	in	ligand-binding	in	530	

the	nuclear	receptor	ligand	binding	domains	protein	family	(PF00104).	a.	VDR	in	531	

complex	with	a	calcitriol	analog	(3ogt).39	b.	THa	in	complex	with	triiodothyronine	532	

(4lnx).40	c.	PPARg	(5hzc)	and	d.	PPARa	(5hyk)	in	complex	with	the	PPAR	pan-agonist	533	

AL29-26.41	The	ligand	is	in	VdW	contact	with	the	unconserved-depleted	L330	in	PPARg	534	

and	with	Y314	in	PPARa.	Note	that	the	substitution	at	the	unconserved-depleted	site	535	

H323	in	PPARg	to	Y314	in	PPARa	is	related	to	the	activity	specificity	of	these	two	536	

receptors	with	respect	to	AL29-26.41	Figure	created	with	UCSF	Chimera36	and	Jalview.35	537	

	538	
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	539	

	540	

Extended	Data	Figure	4:	Local	environments	of	the	UMD	residue	of	H5	distal	to	the	541	

ligand	binding	pocket	(blue).	π-π	interactions	between	residues	a.	Tyr	A312	and	Phe	542	

A368	in	SF-1	(4qk4),42	b.	Trp	A765	and	Phe	A818	of	PR	(2w8y)43	and	c.	Gln	A371	and	543	

Tyr	A422	of	ERRa	(1xb7).44	Equivalent	residues	also	form	salt-bridge	interactions	with	544	

H8	illustrated	by	e)	Lys	A185	and	Asp	A233	of	HNF-4g	(1lv2).45	In	other	proteins	these	545	

strong,	specific	interactions	are	replaced	with	general	hydrophobic	contacts	such	as	in	546	

d.	Thr	B275,	which	is	in	contact	with	both	Phe	B199	and	Thr	B326	of	RARa	(3kmz)46	547	

and	the	same	interactions	are	observed	in	RARg	(e.g.	see	1fcx,	not	shown).	f.	Lastly,	the	548	

negatively	charged	Glu	A277	found	in	this	position	of	VDR	(3ogt)39	forms	a	potential	549	

salt-bridge	with	His	A139	and	pi-pi	interactions	with	Tyr	A143.	This	results	in	a	550	

radically	different	interaction	topology	where	the	site	binds	to	a	different	helix.	Figure	551	

created	with	UCSF	Chimera36	and	Jalview.35	552	

	553	

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/127050doi: bioRxiv preprint first posted online Apr. 12, 2017; 

http://dx.doi.org/10.1101/127050
http://creativecommons.org/licenses/by/4.0/


	 27	

Extended	Data	Table	1:	Differences	in	the	structural	properties	of	unconserved	residues	554	

differentiated	by	their	human	missense	variation	classification.	555	

	556	
	 Observed	in	

one	or	more	mapped	PDB	
Not	observed		

in	any	mapped	PDB	 ORc	 pc	
Residue	Countsa,	e	 UMDd	 UMEd	 UMD	 UME	

Ligand	 765	 1,448	 5,579	 14,454	 1.37	 6.4	×	10-11	
Domain	 649	 1,312	 5,695	 14,590	 1.27	 3.5	×	10-06	
Ligand,	domain	or	nucleotides	 1,338	 2,549	 5,006	 13,353	 1.40	 0	
	 	 	 	 	 	 	Core	 1,635	 1,995	 4,709	 13,907	 2.42	 0	
Part-exposed	 2,584	 4,526	 3,760	 11,376	 1.73	 0	
Surface	 3,213	 11,742	 3,131	 4,160	 0.36	 0	

	 	 	 	 	 	 	Column	Countsb,	e	 	 	 	 	 	 	
Ligand	 156	 407	 114	 357	 1.20	 0.23	
Domain	(inter-chain)	 131	 328	 139	 436	 1.25	 0.18	
Ligand,	domain	or	nucleotides	 201	 494	 69	 279	 1.59	 0.0033	
	 	 	 	 	 	 	Core	 179	 406	 91	 358	 1.73	 2.0	×	10-04	
Part-exposed	 231	 607	 39	 157	 1.53	 0.03	
Surface	 253	 735	 17	 29	 0.59	 0.12	
a.	Protein	residues	are	counted	in	possession	of	the	row	feature	if	it	is	observed	in	any	mapped	PDB	557	

residue	and	are	counted	as	lacking	the	feature	if	it	is	not	observed	in	any	of	its	mapped	PDB	residues.	558	

Residues	that	did	not	map	to	at	least	one	PDB	structure	are	not	counted.	For	example,	765	UMD	residues	559	

map	to	at	least	one	PDB	structure	and	bind	a	ligand	in	at	least	one	of	these	structures	whilst	5,579	UMD	560	

residues	also	map	to	at	least	one	PDB	structure	but	do	not	bind	a	ligand	in	any	of	them.	b.	Pfam	columns	561	

are	counted	in	possession	of	the	row	feature	if	it	is	observed	in	any	mapped	PDB	residue	that	is	aligned	in	562	

the	column	and	are	counted	as	lacking	the	feature	if	it	is	not	observed	in	any	of	its	mapped	PDB	residues	563	

present	in	the	column.	Columns	that	did	not	contain	at	least	one	residue	that	mapped	to	a	PDB	structure	564	

were	not	counted.	For	example,	156	UMD	columns	contain	at	least	one	residue	that	maps	to	a	PDB	565	

structure	that	shows	the	residue	is	in	contact	with	a	ligand	whilst	114	UMD	columns	contain	at	least	one	566	

residue	that	maps	to	a	PDB	structure	but	a	ligand	interaction	is	not	observed	in	any	mapped	structure.	567	

Note	that	the	column	statistics	are	not	sensitive	to	family	size	variability.	c.	Fisher’s	test	of	association	568	

between	column	classification	(UMD	or	UME)	and	structural	property;	OR	>	1	indicates	enrichment	of	the	569	

row	feature	in	the	UMD	class.	For	example,	the	enrichment	of	ligand	binding	residues	in	UMD	columns	570	

compared	to	UME	columns	(OR	=	1.20;	p	=	0.23)	is	calculated	from	the	contingency	table	[(156,	407),	571	

(114,	357)].	d.	Unconserved-missense	depleted	(UMD)	residues	were	defined	as	mapping	to	Pfam	572	

columns	with	VShenkin	in	4th	quartile	for	the	protein	family	that	are	also	missense	depleted	(see	Methods)	573	
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whilst	unconserved-missense	enriched	(UME)	residues	are	equally	divergent	but	missense	enriched.	e.	574	

See	Methods	for	feature	definitions.	575	

	576	

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/127050doi: bioRxiv preprint first posted online Apr. 12, 2017; 

http://dx.doi.org/10.1101/127050
http://creativecommons.org/licenses/by/4.0/


	 29	

Extended	Data	Table	2:	Example	proteins	with	protein,	ligand	or	nucleotide	binding	577	

interactions	involving	residues	in	unconserved-missense	depleted	(UMD)	columns	from	578	

selected	families	(see	Supplementary	Data	Table	1	for	all	families	with	discovered	UMD	579	

columns).	580	

	581	

Family	 Col.a	 Res.b	 Proteinc	 Ligandc	 Nucleotidec	

PF00001	 525	 89	 	 AA2AR_HUMAN	(5iu8)	[6]	 	

	 575	 98	 	 ACM3_RAT	(4u14)	[6]	 	
	 584	 99	 	 	 	

	 780	 129	 	 5HT1B_HUMAN*	(4iar)	[23]	 	
	 792	 130	 	 5HT1B_HUMAN*	(4iaq)	[23]	 	

	 808	 131	 	 5HT2B_HUMAN	(4nc3)	[4]	 	
	 818	 132	 	 5HT2B_HUMAN	(4nc3)	[7]	 	

	 832	 134	 	 ACM2_HUMAN	(4mqs)	[7]	 	
	 1075	 176	 	 5HT2B_HUMAN	(4ib4)	[8]	 	

	 1141	 187	 	 AA2AR_HUMAN	(2ydo)	[4]	 	
	 1328	 211	 ACM3_RAT	(4u15)	[2]	 AA2AR_HUMAN	(4eiy)	[6]	 	
PF00076	 291	 148	 B3GWA1_CAEEL*	(5ca5)	

[13]	 B3GWA1_CAEEL*	(5ca5)	[10]	 CELF1_HUMAN	(3nmr)	
[29]	

PF00104	 190	 715	 ESR1_HUMAN	(2jf9)	[4]	 A0A0B4J1T2_HUMAN*	(2amb)	
[17]	 	

	 312	 743	 NR4A1_HUMAN	(3v3e)	[3]	 ANDR_HUMAN	(1e3g)	[35]	 	
	 330	 750	 NR4A1_HUMAN	(3v3e)	[2]	 ANDR_HUMAN	(1t5z)	[39]	 	

	 332	 752	 NR1I3_MOUSE	(1xnx)	[3]	 A0A0B4J1T2_HUMAN*	(1t5z)	[12]	 	
a.	Pfam	alignment	column	number,	b.	UniProt	residue	number	for	aligned	residue	of	asterisked	sequence	582	

in	columns	4-6.	For	example,	in	the	PF00001	(Rhodopsin-like	receptor	family)	the	numbering	583	

corresponds	to	5HT1B_HUMAN	and	in	PF00076	it	corresponds	to	B3GWA1_CAEEL.	This	additional	584	

numbering	allows	the	distance	between	UMD	residues	to	be	assessed	in	sequence	space,	which	is	585	

obscured	by	gaps	in	Pfam	alignment	column	indexes.	c.	Example	protein	and	PDB	structure	where	this	586	

interaction	is	observed.	Number	in	parenthesis	indicates	how	many	domains	in	total	have	at	least	one	587	

PDB	structure	that	provides	evidence	for	the	interaction.	For	example,	the	first	row	indicates	that	the	588	

AA2AR_HUMAN	residue	aligned	in	column	525	of	PF00001	is	in	contact	with	a	ligand	in	PDB	5iu8	and	589	

there	are	a	total	of	6	domains	that	display	this	interaction	type	in	at	least	one	PDB	structure.	Additionally,	590	

residue	89	of	5HT1B_HUMAN	maps	to	column	525	of	PF00001.	591	

	592	
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Supplementary	Data	593	

Supplementary	Data	Table	1:	Example	proteins	with	protein,	ligand	or	nucleotide	594	

binding	interactions	involving	residues	in	unconserved-missense	depleted	(UMD)	595	

columns.	See	table	end	for	footnotes.	596	

	597	

Family	 Col.a	 Res.b	 Proteinc	 Ligandc	 Nucleotidec	

PF00001	 525	 89	 	 AA2AR_HUMAN	(5iu8)	[6]	 	

	 575	 98	 	 ACM3_RAT	(4u14)	[6]	 	
	 584	 99	 	 	 	

	 780	 129	 	 5HT1B_HUMAN*	(4iar)	[23]	 	
	 792	 130	 	 5HT1B_HUMAN*	(4iaq)	[23]	 	

	 808	 131	 	 5HT2B_HUMAN	(4nc3)	[4]	 	
	 818	 132	 	 5HT2B_HUMAN	(4nc3)	[7]	 	

	 832	 134	 	 ACM2_HUMAN	(4mqs)	[7]	 	
	 1075	 176	 	 5HT2B_HUMAN	(4ib4)	[8]	 	

	 1141	 187	 	 AA2AR_HUMAN	(2ydo)	[4]	 	
	 1328	 211	 ACM3_RAT	(4u15)	[2]	 AA2AR_HUMAN	(4eiy)	[6]	 	
PF00004	 557	 172	 A4YHC5_METS5*	(4d80)	[12]	 	 DPA44_BPT4	(3u60)	[1]	

	 690	 197	 CLPC_BACSU	(3pxg)	[4]	 FTSH_THET8	(1ixz)	[1]	 	
PF00011	 104	 58	 HS16B_WHEAT*	(1gme)	[7]	 	 	
PF00018	 142	 94	 DLG4_RAT	(2xkx)	[6]	 ABL1_HUMAN*	(1bbz)	[9]	 	

	 176	 104	 DLG4_RAT	(2xkx)	[6]	 ABL1_HUMAN*	(4j9d)	[8]	 	
PF00022	 1610	 190	 ACTS_RABIT*	(1o18)	[4]	 ACTS_RABIT*	(2a3z)	[2]	 	

	 2486	 281	 ACTS_RABIT*	(1o18)	[1]	 ACTS_RABIT*	(2asm)	[1]	 	
	 2690	 316	 ACTS_RABIT*	(1o18)	[2]	 ACTS_RABIT*	(1s22)	[2]	 	
PF00023	 62	 537	 TRPA1_HUMAN	(3j9p)	[3]	 ANK1_HUMAN*	(1n11)	[7]	 	
PF00024	 56	 304	 FA11_HUMAN*	(2j8j)	[1]	 	 	
PF00029	 179	 61	 CXB2_HUMAN*	(2zw3)	[1]	 	 	
PF00031	 266	 102	 CYTC_HUMAN*	(1tij)	[1]	 CYTC_HUMAN*	(3qrd)	[1]	 	
PF00042	 196	 90	 CYGB_HUMAN*	(2dc3)	[6]	 GLOB6_CAEEL	(3mvc)	[7]	 	
PF00043	 397	 183	 	 GSTM1_RAT	(3fyg)	[3]	 	

	 426	 192	 MCA3_HUMAN	(5bmu)	[1]	 D2WL63_POPTR*	(5f05)	[3]	 	
PF00045	 102	 229	 MMP9_HUMAN	(1itv)	[1]	 HEMO_RABIT*	(1qhu)	[4]	 	
PF00047	 148	 54	 CD4_HUMAN*	(3j70)	[3]	 CD4_HUMAN*	(2nxy)	[2]	 	
PF00049	 105	 73	 INS_BOVIN	(2a3g)	[4]	 IGF1_HUMAN*	(1imx)	[3]	 	
PF00059	 75	 222	 C209B_MOUSE*	(3zhg)	[7]	 CLC1B_HUMAN	(3wsr)	[10]	 	
	 171	 245	 CD209_HUMAN	(1k9i)	[8]	 C209B_MOUSE*	(4c9f)	[4]	 	
PF00063	 1233	 226	 	 F1RQI7_PIG*	(4pjm)	[5]	 	
PF00074	 116	 83	 	 ECP_HUMAN*	(4a2o)	[2]	 	
PF00076	 291	 148	 B3GWA1_CAEEL*	(5ca5)	[13]	 B3GWA1_CAEEL*	(5ca5)	[10]	 CELF1_HUMAN	(3nmr)	

[29]	
PF00079	 263	 101	 	 A1AT_HUMAN*	(1hp7)	[2]	 	
	 490	 134	 ILEU_HORSE	(1hle)	[5]	 ANT3_HUMAN	(1sr5)	[5]	 	
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PF00100	 764	 591	 TGBR3_RAT*	(3qw9)	[2]	 TGBR3_RAT*	(3qw9)	[1]	 	
PF00102	 1290	 255	 PTN1_HUMAN*	(2cm3)	[2]	 PTN11_HUMAN	(4gwf)	[2]	 	
PF00104	 190	 715	 ESR1_HUMAN	(2jf9)	[4]	 A0A0B4J1T2_HUMAN*	(2amb)	

[17]	 	

	 312	 743	 NR4A1_HUMAN	(3v3e)	[3]	 ANDR_HUMAN	(1e3g)	[35]	 	
	 330	 750	 NR4A1_HUMAN	(3v3e)	[2]	 ANDR_HUMAN	(1t5z)	[39]	 	

	 332	 752	 NR1I3_MOUSE	(1xnx)	[3]	 A0A0B4J1T2_HUMAN*	(1t5z)	[12]	 	
PF00118	 198	 76	 A8JE91_CHLRE*	(5cdi)	[6]	 	 	

	 435	 138	 A8JE91_CHLRE*	(5cdi)	[10]	 CH60_ECOLI	(1xck)	[1]	 	
	 781	 207	 A8JE91_CHLRE*	(5cdi)	[6]	 CH602_MYCTU	(3rtk)	[1]	 	
PF00125	 468	 102	 CENPA_HUMAN*	(3an2)	[17]	 	 	
PF00134	 226	 229	 CCND3_HUMAN	(3g33)	[2]	 CCNC_HUMAN	(3rgf)	[2]	 	

	 578	 296	 CCNA2_HUMAN*	(1jsu)	[6]	 	 	
PF00135	 496	 103	 EST1_HUMAN	(1mx1)	[1]	 ACES_HUMAN*	(4ey7)	[3]	 	

	 522	 110	 	 ACES_MOUSE	(4b84)	[4]	 	
	 1571	 265	 	 ACES_MOUSE	(2ha0)	[2]	 	
PF00149	 925	 125	 J3K8M7_COCIM	(5b8i)	[9]	 ASM3A_MOUSE	(5fc1)	[10]	 MRE11_METJA	(4tug)	[1]	

	 926	 126	 G0RYR3_CHATD	(4yke)	[6]	 ASM_MOUSE	(5hqn)	[4]	 MRE11_METJA	(4tug)	[1]	

	 932	 128	 MRE11_METJA	(4tug)	[3]	 A6THC4_KLEP7*	(3jyf)	[11]	 	
PF00151	 289	 74	 	 	 	

	 345	 96	 	 LIPP_HUMAN*	(1lpb)	[2]	 	
	 795	 202	 	 	 	
PF00155	 290	 87	 1A12_SOLLC*	(1iax)	[51]	 AAT_ECOLI	(3qn6)	[8]	 	
	 341	 95	 	 AADAT_HUMAN	(2r2n)	[7]	 	

	 698	 151	 	 AAT_ECOLI	(3zzk)	[4]	 	
	 804	 162	 1A12_SOLLC*	(1iax)	[28]	 AAT_ECOLI	(3qpg)	[4]	 	
PF00157	 118	 184	 	 	 PO5F1_MOUSE*	(3l1p)	[1]	
PF00160	 122	 72	 	 Q7RRM6_PLAYO	(2b71)	[1]	 	

	 978	 217	 C6XII3_HIRBI*	(5ex1)	[1]	 PPIA_HUMAN	(4ipz)	[2]	 	
PF00168	 247	 26	 	 CAR1_ARATH*	(5a52)	[27]	 	

	 312	 39	 UN13A_RAT	(2cjt)	[1]	 DYSF_HUMAN	(4ihb)	[9]	 	
	 579	 77	 SYT1_HUMAN	(2k8m)	[1]	 CAR1_ARATH*	(5a52)	[12]	 	
PF00170	 234	 148	 HY5_ARATH*	(2oqq)	[1]	 	 	
PF00171	 886	 139	 A1U6U7_MARHV*	(3rh9)	

[43]	 	 	

	 1260	 209	 	 B1XMM6_SYNP2	(4it9)	[1]	 	
PF00173	 198	 64	 CYB5B_HUMAN*	(3ner)	[1]	 	 	
PF00194	 389	 138	 CAH12_HUMAN*	(1jcz)	[2]	 CAH2_HUMAN	(2q38)	[3]	 	
PF00209	 1454	 271	 O67854_AQUAE*	(3tt1)	[2]	 	 	
	 1877	 333	 	 Q9KDT3_BACHD	(4us3)	[1]	 	
PF00211	 228	 902	 ADCY2_RAT*	(1u0h)	[4]	 ADCYA_HUMAN	(4clu)	[1]	 	
PF00258	 155	 563	 NOS2_HUMAN*	(3hr4)	[1]	 	 	
PF00270	 1238	 199	 DBP5_YEAST*	(3rrm)	[4]	 DDX3X_HUMAN	(4pxa)	[1]	 DD19B_HUMAN	(3fht)	[2]	

	 1405	 220	 DBP5_YEAST*	(3rrm)	[2]	 DBP5_YEAST*	(3pew)	[3]	 DD19B_HUMAN	(3fht)	[2]	

	 1591	 253	 DBP5_YEAST*	(3rrm)	[4]	 DBP5_YEAST*	(3pew)	[5]	 DBP5_YEAST*	(3pew)	[5]	
PF00293	 556	 143	 AP4A_HUMAN	(4ijx)	[5]	 8ODP_HUMAN*	(3q93)	[8]	 	
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PF00300	 485	 321	 F262_HUMAN*	(5htk)	[4]	 F262_HUMAN*	(5htk)	[2]	 	
	 913	 367	 PGAM1_HUMAN	(4gpi)	[4]	 F262_HUMAN*	(5htk)	[2]	 	
PF00307	 437	 229	 ACTN3_HUMAN	(3lue)	[4]	 ACTN2_HUMAN*	(4d1e)	[4]	 	
PF00350	 868	 152	 DRP1A_ARATH*	(3t34)	[2]	 	 	
PF00365	 119	 630	 PFKA1_YEAST*	(3o8o)	[3]	 	 	
PF00378	 543	 71	 B1MEE0_MYCA9	(3qxz)	[12]	 A0R747_MYCS2	(3moy)	[3]	 	

	 861	 92	 B1MIA8_MYCA9	(3rsi)	[4]	 A0QS88_MYCS2*	(4qfe)	[6]	 	
PF00386	 272	 193	 ADIPO_MOUSE	(1c28)	[10]	 ADIPO_HUMAN*	(4dou)	[6]	 	

	 370	 228	 ADIPO_MOUSE	(1c28)	[3]	 C1QT5_HUMAN	(4nn0)	[3]	 	
PF00406	 502	 74	 KAD_FRATT*	(4pzl)	[2]	 KAD1_HUMAN	(1z83)	[2]	 	

	 853	 118	 	 	 	
PF00412	 129	 49	 	 LHX4_MOUSE*	(3mmk)	[2]	 	
PF00413	 898	 210	 MMP13_HUMAN	(2ozr)	[2]	 MMP1_HUMAN*	(1hfc)	[7]	 	
PF00431	 304	 221	 C1S_HUMAN	(1nzi)	[3]	 	 	

	 444	 243	 A2VCV7_RAT*	(5ckn)	[1]	 A2VCV7_RAT*	(5ckn)	[8]	 	
PF00454	 1001	 359	 PK3CA_HUMAN	(4jps)	[1]	 P4K2A_HUMAN*	(4pla)	[1]	 	
PF00481	 335	 265	 	 	 	
	 341	 266	 	 	 	

	 511	 323	 P2C16_ARATH*	(3rt0)	[3]	 	 	
	 823	 376	 	 Q7PP01_ANOGA	(2i0o)	[1]	 	
PF00501	 1787	 113	 	 Q6ND88_RHOPA	(4fut)	[1]	 	
	 1924	 137	 	 C6W5A4_DYAFD*	(4gs5)	[1]	 	
PF00566	 375	 331	 	 RBG1L_HUMAN	(3hzj)	[1]	 	
	 843	 431	 	 	 	

	 934	 448	 GYP1_YEAST*	(2g77)	[1]	 	 	
PF00629	 497	 758	 	 NRP1_HUMAN*	(5l73)	[1]	 	
PF00630	 716	 2308	 FLNA_HUMAN*	(2brq)	[2]	 FLNA_HUMAN*	(2w0p)	[1]	 	
PF00641	 27	 77	 	 	 ZRAB2_HUMAN*	(3g9y)	[1]	

PF00643	 80	 150	 PML_HUMAN*	(2mvw)	[3]	 PML_HUMAN*	(2mvw)	[11]	 	
PF00644	 100	 1624	 	 PAR14_HUMAN*	(3se2)	[1]	 	

	 224	 1657	 TNKS2_HUMAN	(4hkk)	[1]	 PAR14_HUMAN*	(3se2)	[4]	 	
PF00685	 218	 62	 	 ST4A1_HUMAN*	(1zd1)	[1]	 	

	 745	 125	 	 	 	
PF00688	 580	 140	 	 	 	

	 784	 195	 	 GDF2_MOUSE*	(4ycg)	[1]	 	
PF00690	 244	 58	 	 AT2A1_RABIT*	(1su4)	[1]	 	
PF00704	 939	 203	 CHID1_HUMAN	(3bxw)	[1]	 A8GFD6_SERP5*	(4ptm)	[4]	 	
PF00754	 384	 377	 	 NRP2_HUMAN*	(5dq0)	[2]	 	
PF00777	 338	 225	 SIA8C_HUMAN*	(5bo6)	[1]	 	 	
PF00786	 43	 95	 PAK1_HUMAN*	(1f3m)	[1]	 	 	
PF00787	 104	 39	 	 NCF4_HUMAN*	(1h6h)	[3]	 	
PF00822	 353	 65	 CLD4_HUMAN*	(5b2g)	[1]	 	 	
PF00850	 480	 71	 	 B2JF16_BURP8*	(5ji5)	[2]	 	
	 493	 79	 	 B2JF16_BURP8*	(5ji5)	[4]	 	
PF00855	 102	 1104	 HDGF_HUMAN	(2nlu)	[1]	 BRPF1_HUMAN*	(5c6s)	[4]	 	
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PF00856	 834	 1153	 	 EHMT2_HUMAN	(3rjw)	[3]	 	
	 926	 1158	 	 EZH2_HUMAN	(4mi0)	[4]	 	

	 935	 1161	 O41094_PBCV1	(1n3j)	[2]	 O41094_PBCV1	(3kma)	[4]	 	
	 2057	 1212	 	 EHMT2_HUMAN	(3rjw)	[3]	 	

	 2140	 1219	 EZH2_HUMAN	(5hyn)	[1]	 EHMT1_HUMAN*	(4i51)	[3]	 	
PF00858	 1887	 262	 ASIC1_CHICK*	(2qts)	[1]	 	 	
PF00878	 380	 1555	 	 MPRI_HUMAN*	(1gqb)	[1]	 	
PF00884	 1080	 164	 BETC_RHIME*	(4ug4)	[1]	 	 	

	 1595	 300	 	 	 	
PF00899	 787	 524	 	 	 	

	 956	 551	 UBA1_YEAST	(4nnj)	[1]	 UBA1_SCHPO*	(4ii2)	[2]	 	
PF00928	 234	 205	 	 AP2M1_RAT*	(3h85)	[1]	 	

	 835	 316	 	 	 	
	 837	 318	 	 AP4M1_HUMAN	(3l81)	[1]	 	

	 1354	 407	 	 	 	
PF00969	 24	 47	 HB2A_MOUSE	(3c6l)	[1]	 2B11_HUMAN*	(3pgc)	[3]	 	
PF01055	 373	 189	 	 GANAB_MOUSE	(5f0e)	[2]	 	
	 1074	 303	 	 	 	

	 1092	 309	 	 	 	
	 1979	 492	 AGLU_SULSO*	(2g3m)	[1]	 	 	

	 2016	 497	 	 	 	
PF01094	 318	 92	 ANPRC_HUMAN	(1jdp)	[3]	 ANPRC_HUMAN	(1jdn)	[1]	 	

	 1009	 197	 CASR_HUMAN	(5fbh)	[11]	 GRID1_MOUSE	(5kc9)	[3]	 	
	 1609	 298	 CASR_HUMAN	(5fbh)	[2]	 GRM7_HUMAN	(5c5c)	[2]	 	

	 2223	 391	 CASR_HUMAN	(5fbh)	[2]	 ANPRA_RAT*	(1t34)	[8]	 	
PF01150	 834	 229	 ENTP1_RAT*	(3zx0)	[1]	 	 	
PF01237	 727	 185	 	 	 	
	 972	 202	 	 KES1_YEAST*	(1zhy)	[1]	 	
PF01344	 30	 130	 ESP_ARATH*	(5gq0)	[6]	 KEAP1_HUMAN	(3vnh)	[17]	 	
	 109	 157	 ESP_ARATH*	(5gq0)	[8]	 KEAP1_HUMAN	(3zgd)	[18]	 	
PF01365	 139	 2159	 RYR1_RABIT*	(5t15)	[2]	 RYR2_MOUSE	(4l4i)	[1]	 	
PF01399	 312	 385	 RPN3_YEAST*	(3jck)	[2]	 	 	
PF01433	 384	 71	 	 AMPN_ECOLI*	(3b2p)	[1]	 	
	 1059	 172	 	 AMPN_ECOLI*	(3puu)	[2]	 	
PF01436	 43	 800	 	 BRAT_DROME*	(4zlr)	[2]	 BRAT_DROME*	(4zlr)	[4]	
PF01485	 332	 377	 	 ARI1_HUMAN*	(2m9y)	[8]	 	
PF01590	 389	 322	 	 PDE6C_CHICK	(3dba)	[2]	 	
	 581	 360	 	 PDE10_HUMAN*	(2zmf)	[6]	 	
PF01602	 104	 25	 AP1B1_HUMAN*	(4hmy)	[1]	 	 	
	 343	 80	 	 	 	
PF01663	 322	 218	 	 	 	
	 424	 237	 	 ENPP1_MOUSE*	(4b56)	[7]	 ENPP2_MOUSE	(5hrt)	[1]	

PF01740	 595	 524	 	 Q9KN88_VIBCH*	(3mgl)	[3]	 	
PF01759	 244	 1624	 CO5_HUMAN*	(5hcc)	[1]	 	 	
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PF01833	 385	 328	 	 Q8A1I2_BACTN	(3hrp)	[2]	 	
	 386	 329	 	 COE1_HUMAN*	(3mqi)	[3]	 	
PF01979	 2169	 325	 ADEC2_AGRFC*	(3nqb)	[2]	 Q9X247_THEMA	(3ooq)	[1]	 	
PF02023	 101	 94	 MZF1_HUMAN*	(2fi2)	[2]	 PEG3_HUMAN	(4bhx)	[2]	 	
PF02210	 479	 428	 	 NRX1A_BOVIN*	(2h0b)	[3]	 	
PF02263	 510	 189	 ATLA1_HUMAN*	(4idn)	[2]	 	 	

	 826	 252	 GBP1_HUMAN	(2b92)	[1]	 	 	
PF02412	 109	 330	 	 COMP_HUMAN*	(3fby)	[7]	 	
PF02770	 387	 259	 ACOX1_ARATH	(1w07)	[7]	 ACDSB_HUMAN*	(2jif)	[1]	 	
PF02798	 208	 38	 	 GSTA4_HUMAN*	(3ik7)	[3]	 	
PF02815	 316	 268	 RYR1_RABIT*	(5t15)	[1]	 RYR1_RABIT*	(4i0y)	[1]	 	
PF02932	 262	 262	 GBRB3_HUMAN	(4cof)	[4]	 	 	

	 360	 279	 5HT3A_MOUSE*	(4pir)	[8]	 	 	
	 421	 293	 5HT3A_MOUSE*	(4pir)	[7]	 	 	

	 485	 305	 GLRA3_HUMAN	(5tio)	[2]	 	 	
	 617	 330	 5HT3A_MOUSE*	(4pir)	[8]	 	 	
PF03098	 1517	 495	 	 PERL_BOVIN*	(2pt3)	[4]	 	
PF03114	 398	 84	 BIN2_HUMAN	(4i1q)	[4]	 	 	

	 541	 107	 	 AMPH_HUMAN*	(3sog)	[1]	 	
PF03281	 606	 333	 	 MID51_HUMAN*	(4nxt)	[1]	 	
PF03372	 477	 97	 TYDP2_DANRE	(4f1h)	[1]	 APEX1_HUMAN	(5dff)	[3]	 TYDP2_MOUSE	(4gz2)	[1]	

	 667	 113	 TYDP2_DANRE	(4f1h)	[1]	 APEX1_HUMAN	(5dff)	[5]	 	

	 867	 132	 APEX1_DANRE*	(2o3c)	[2]	 APEX1_HUMAN	(4qh9)	[4]	 	
	 868	 133	 APEX1_DANRE*	(2o3c)	[2]	 APEX1_HUMAN	(4qh9)	[4]	 	

	 889	 140	 TYDP2_DANRE	(4f1h)	[1]	 O26314_METTH	(3g0a)	[4]	 	
	 1086	 155	 TYDP2_DANRE	(4f1h)	[1]	 APEX1_HUMAN	(4qh9)	[5]	 	

	 1281	 192	 TYDP2_DANRE	(4f1h)	[1]	 EXOA_BACSU	(5cfe)	[3]	 	
	 1409	 206	 TYDP2_DANRE	(4f1h)	[1]	 APEX1_HUMAN	(4qhe)	[6]	 CNO6L_HUMAN	(3ngo)	[1]	

	 1654	 247	 TYDP2_DANRE	(4f1h)	[1]	 C5C3L1_BEUC1	(4ruw)	[4]	 	
PF03727	 719	 444	 	 HXK_KLULA*	(3o08)	[1]	 	
PF03810	 73	 49	 	 XPO1_YEAST*	(5dhf)	[1]	 	
PF04408	 73	 502	 	 G0RY84_CHATD*	(5d0u)	[1]	 	
PF04547	 1815	 546	 	 	 	
	 2144	 600	 C7Z7K1_NECH7*	(4wis)	[1]	 	 	
PF04969	 111	 32	 Q8SSJ3_ENCCU*	(2o30)	[1]	 	 	
PF05485	 203	 48	 	 	

THAP1_HUMAN*	(2ko0)	
[1]	

	 208	 50	 	 	
THAP1_HUMAN*	(2ko0)	

[1]	
PF07707	 213	 251	 	 KLH11_HUMAN*	(3i3n)	[1]	 	
PF08240	 270	 85	 YHFP_BACSU	(1tt7)	[1]	 ADH1E_HORSE*	(7adh)	[2]	 	
PF08441	 1216	 970	 ITAX_HUMAN*	(3k6s)	[1]	 	 	
PF13424	 87	 124	 GPSM2_MOUSE*	(4jhr)	[5]	 GPSM2_MOUSE*	(4g2v)	[3]	 	
PF13499	 331	 59	 CALM_HUMAN	(2be6)	[10]	 C4M0U8_ENTHI*	(2lc5)	[25]	 	
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PF13561	 1250	 130	 A9NFJ2_ACHLI	(4nbt)	[7]	 FABG_VIBCH	(4i08)	[4]	 	
	 1429	 147	 A0QQJ6_MYCS2*	(3pk0)	[77]	 A0QQJ6_MYCS2*	(3pk0)	[21]	 	

	 2287	 217	 A9CL57_AGRFC	(4imr)	[27]	 A9CJ43_AGRFC	(4ibo)	[6]	 	
PF13640	 201	 338	 EGLN1_HUMAN*	(5las)	[1]	 Q81LZ8_BACAN	(5hv0)	[1]	 	
PF13848	 587	 277	 PDIA1_HUMAN*	(4ju5)	[1]	 	 	
PF14497	 297	 173	 	 C5ATQ9_METEA*	(4pxo)	[3]	 	
PF14670	 26	 288	 	 LRP6_HUMAN*	(3sov)	[1]	 	
PF16746	 179	 56	 ACAP1_HUMAN*	(4ckg)	[3]	 	 	
a.	Pfam	alignment	column	number,	b.	UniProt	residue	number	for	aligned	residue	of	asterisked	sequence	598	

in	columns	4-6.	For	example,	in	PF00001	(Rhodopsin-like	receptor	family)	the	numbering	corresponds	to	599	

5HT1B_HUMAN	and	in	PF00004	it	corresponds	to	A4YHC5_METS5.	This	additional	numbering	allows	the	600	

distance	between	UMD	residues	to	be	assessed	in	sequence	space,	which	is	obscured	by	gaps	in	Pfam	601	

alignment	column	indexes.	c.	Example	protein	and	PDB	structure	where	this	interaction	is	observed.	602	

Number	in	parenthesis	indicates	how	many	domains	in	total	have	at	least	one	PDB	structure	that	603	

provides	evidence	for	the	interaction.	For	example,	the	first	row	indicates	that	the	AA2AR_HUMAN	604	

residue	aligned	in	column	525	of	PF00001	is	in	contact	with	a	ligand	in	PDB	5iu8	and	there	are	a	total	of	6	605	

domains	that	display	this	interaction	type	in	at	least	one	PDB	structure.	Additionally,	residue	89	of	606	

5HT1B_HUMAN	maps	to	column	525	of	PF00001.	607	

	608	
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