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One sentence summary: The novel rhizobial microsymbionts that have co-evolved with the basal 

legume Chamaecrista pumila in multiple niches in India are either Bradyrhizobium or Ensifer 

depending on the soil pH and other edaphic/climatic factors. 

ABSTRACT 

Nodules of Chamaecrista pumila growing in several locations in India were sampled for 

anatomical studies and for characterization of their rhizobial microsymbionts. Regardless of their 

region of origin, the nodules were indeterminate with their bacteroids contained within 

symbiosomes which were surrounded by pectin. More than 150 strains were isolated from 

alkaline soils from the Thar Desert (Rajasthan), wet-acidic soils of Shillong (Meghalaya), and 

from trap experiments using soils from four other states with different agro-ecological regions. 

Molecular phylogenetic analysis based on five housekeeping (rrs, recA, glnII, dnaK, atpD) and 

two symbiotic (nodA, nifH) genes was done for selected strains. Chamaecrista pumila was 

shown to be nodulated by niche-specific diverse strains of either Ensifer or Bradyrhizobium in 
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alkaline (Thar Desert) to neutral (Tamil Nadu) soils and only Bradyrhizobium strains in acidic 

(Shillong) soils. Concatenated core gene phylogenies showed four novel Ensifer-MLSA types 

and nine Bradyrhizobium-MLSA types. Genetically diverse Ensifer strains harbored similar sym 

genes which were novel. In contrast, significant symbiotic diversity was observed in the 

Bradyrhizobium strains. The C. pumila strains cross-nodulated Vigna radiata and some wild 

papilionoid and mimosoid legumes. It is suggested that soil pH and moisture level played 

important roles in structuring the C. pumila microsymbiont community.  

 

Key words: Ensifer, Bradyrhizobium, MLSA, Symbiotic genes, fixation threads, JIM5 

INTRODUCTION 

The Leguminosae (Fabaceae) is the third largest angiosperm family and is of immense ecological 

and economic importance. It has traditionally been divided taxonomically into three sub-families 

(Lewis et al., 2005), but has recently been reclassified into six subfamilies consisting of the 

Papilionoideae (largely unchanged) and five new subfamilies created from the old paraphyletic 

Caesalpinioideae: the Caesalpinioideae (sensu stricto), Duparquetioideae, Cercidoideae, 

Detarioideae and Dialioideae (LPWG 2017). The ex-Mimosoideae subfamily has been 

downgraded and is now referred to as the mimosoid clade of the Caesalpinioideae (s.s.). Many 

legumes are unique in forming symbioses with soil bacteria termed rhizobia which are housed in 

root- (sometimes stem-) borne structures called nodules, and which fix atmospheric nitrogen into 

ammonia and then into usable, non-toxic forms for the benefit of the host plant (Sprent et al., 

2017). The vast majority of papilionoid legumes nodulate, but most of the genera within the 

newly-circumscribed subfamilies in the Caesalpinioideae sensu lato, which are regarded as basal 

in the evolution of legumes, are non-nodulated. Those few genera that do nodulate are confined 

to the Caesalpinioideae sensu stricto (as well as to the largely nodulated mimosoid clade which is 

nested within it). The basal position of the nodulated members of the Caesalpinioideae, and the 

fact that they are scattered amongst the largely non-nodulated former tribes, Cassiae and 

Caesalpiniae, means that they are pivotal to studies into the origins of the legume-rhizobium 

symbiosis (Doyle 2011; Sprent et al., 2013, 2017). Indeed, nodules on most caesalpinioid 

legumes studied to date apparently possess “primitive” features, such as the retention of the 

rhizobium symbiotic form, the bacteroids, within cell wall-bound “fixation threads” (de Faria et 

al., 1987; Naisbitt et al., 1992; Fonseca et al., 2012). 
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The nodulated caesalpinioids described to date consist of eight genera, seven of which are 

in the former tribe Caesalpiniae, and only one genus, Chamaecrista, in the former tribe Cassiae, 

wherein it sits with its non-nodulated sister genera Cassia and Senna (Irwin and Barneby 1982; 

Lewis et al., 2005; Sprent et al., 2013, 2017). Chamaecrista is by far the largest genus of 

nodulating caesalpinioids, comprising more than 330 species distributed mostly in the New 

World, wherein 256 species are found only in Brazil, the centre of radiation for the genus 

(Barneby 1994), including several endemic species, as well as some that are considered as 

invasive (dos Santos et al., 2017). Most Chamaecrista species are shrubs or small herbs, but 

some are trees. Some species are pantropical, and one of these, C. rotundifolia, is widely used as 

a forage legume in Australia, where it is known as “Wynn Cassia” (Lafay and Burdon 2007). 

All Chamaecrista species so far studied are nodulated, and nodulation appears to be a 

generic trait (Naisbitt et al., 1992; Sprent 2009; Parker and Rousteau 2014; Beukes et al., 2016; 

dos Santos et al., 2017). There are relatively few reports on the rhizobial microsymbionts 

associated with caesalpinioid legumes, including Chamaecrista, and most reports are from the 

New World. Rhizobia are now considered to be a polyphyletic group of bacteria scattered 

amongst non-nodulating genera in the Alpha- and Betaproteobacteria (Gyaneshwar et al., 2011; 

Peix et al., 2015; Andrews and Andrews 2017), but the most numerous and widely dispersed 

rhizobial genus in both host range and geographical terms is Bradyrhizobium, which is also 

considered to be the most likely candidate for being the ancestral rhizobial symbionts (Menna et 

al., 2009; Parker 2015; Sprent et al., 2017). Almost all rhizobia so far isolated from 

caesalpinioids have been described as belonging to Bradyrhizobium (Parker 2000, 2015; Moulin 

et al., 2004; Fonseca et al., 2012; Yao et al., 2014, 2015), and this is also the case for 

Chamaecrista (Moreira et al., 1998; Parker and Kennedy 2006; Parker 2012; Beukes et al., 

2016), except for one report of Mesorhizobium associated with C. ensiformis a tree native to 

Brazil, although the nodulation ability of this strain has not yet been confirmed (Moreira et al., 

1998). The preference of Chamaecrista for Bradyrhizobium in the neotropics was recently 

confirmed by dos Santos et al. (2017) in a detailed study of symbionts of herbaceous 

Chamaecrista species in the north east Brazilian state of Bahia, which has several endemic 

species (Lewis 1987).  

There are few reports on nodulation of Chamaecrista and its associated microsymbionts 

from the Old World even though there are several native species. India, for example, contains 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiy180/5089966 by Library - D

uncan of Jordanstone user on 13 Septem
ber 2018



 

 

two endemic species (C. kolabensis and C. nilgirica), a few native ones as well as several 

pantropical, introduced species (Lewis 2005), but no nodule isolates have been characterized 

from any of them so far. Gehlot et al. (2012) in their study of legumes native to the Thar Desert 

and other arid regions of Western Rajasthan (RJ), reported nodulation of Chamaecrista pumila, a 

widespread native species in the Indian subcontinent and South East Asia (Lewis 2005). In the 

present investigation the rhizobia associated with C. pumila naturally growing in two contrasting 

eco-climatic regions within India, the semi-arid Thar Desert of Rajasthan (RJ) and the wet and 

humid sub-Himalayan region of Shillong in Meghalaya (ME) were isolated. Trapping 

experiments using soil from various sites across India, including Shillong (ME), the Thar Desert 

(RJ) and the states of Gujarat (GJ), Tamil Nadu (TN), Jharkhand (JH) and Uttarakhand (UT) 

were also performed. The aims of the study were to (1) catalogue nodulation of C. pumila in 

contrasting eco-climatic regions in India and to describe the structure and ultrastructure of the 

nodules using light and electron microscopy; (2) to identify and characterize the diversity of the 

native rhizobial microsymbionts and to compare them with those isolated from Chamaecrista 

species in the New World, especially Brazil, the centre of radiation; and (3) determine if the 

environment (soil, climate) affects the selection of symbionts by this widespread and 

ecologically important legume. 

 

MATERIALS AND METHODS 

Nodule sampling, rhizobial trapping and isolation  

Chamaecrista pumila plants were sampled in the field in RJ (Fig. S1A–B) and ME (Fig. S1C– 

D), germplasm was collected for trap experiments (Fig. S1E), and nodules (Fig. S1F–G) were 

sampled when present. For rhizobial trapping experiments soil was collected from the 

rhizosphere of C. pumila from alkaline sites in the Thar Desert in RJ and from acidic sites from 

Shillong in ME. Soil for trapping was also collected from other Indian states, such as GJ, TN, JH 

and UT (Fig. 1, S2). The rhizospheric soils collected from the various sampling sites were 

analyzed for various parameters using standard methods (Gehlot et al., 2012). For some of the 

sampling sites soil data were available online (Table S1 and S2). To trap rhizobia, surface-

sterilized germinated seeds were transferred into plastic pots containing soil of a specific site as 

described in Sankhla et al. (2017). Plants were harvested after 6-8 weeks to check their 

nodulation status. Pink and healthy nodules of different developmental stages were collected for 
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external morphological and anatomical studies as well as for isolation of rhizobia. Root nodules 

were thoroughly surface-sterilized, and after puncturing the nodules, the exudate was streaked 

onto Congo Red-Yeast Extract Mannitol Agar (CR-YEMA) medium (Somasegaran and Hoben 

1994) for isolation and culturing of rhizobia using the method described in Gehlot et al. (2012, 

2013). Streaked plates were incubated for 2–8 days at 28±2
o
C in an incubator and checked 

regularly for growth of rhizobial colonies which are white, raised, concave and opaque with 

entire margins.  

Nodule anatomy 

Some healthy nodules from the field and from the trap experiments were also fixed in 1% 

glutaraldehyde for anatomy studies; these were embedded in resin and sectioned for light and 

transmission electron microscopy (TEM) as described by Elliott et al. (2007). Some sections 

were immunogold labelled using the monoclonal antibody, JIM5, which recognises a pectin 

epitope in plant cell walls (Fonseca et al., 2012), and with a polyclonal antibody which 

recognises the NifH protein of nitrogenase (dos Reis Junior et al., 2010; Gehlot et al., 2013).  

 

Preparation of genomic DNA and amplification of 16S rRNA, housekeeping, and symbiosis-

essential genes 

Genomic DNA of the rhizobial strains was extracted using the phenol-chloroform method 

described by Cheng and Jiang (2006). The purified DNA at a concentration of 100–1000 ng µl
-1

 

was used as a template for amplification of small subunit ribosomal RNA (16S rRNA), four 

protein-coding housekeeping genes (dnaK, atpD, recA and glnII) and two symbiotic genes (nifH 

and nodA). The list of primers and the thermal cycling conditions used for amplification and 

sequencing of various genes is given in Table S3. 

  PCR amplification of the nearly full-length 16S rRNA gene was performed using two 

universal primer sets: (i) 18F and 1492R (ii) fD1 and rD1 (Weisburg et al., 1991). The reaction 

mixture was prepared as reported in Sankhla et al. (2017) and subjected to the thermal cycling 

conditions in Table S3. The amplified PCR product (size approx. 1500 bp) along with 500 bp 

DNA ladder (Genei Bangalore) were electrophoresed in a 0.8% agarose gel prepared in TAE 

buffer and visualized by ethidium bromide staining on a BIO-RAD Gel Doc system.  

For multi locus sequence analysis (MLSA) of selected rhizobial strains, four protein-

coding housekeeping genes (dnaK, atpD, recA and glnII) were amplified and sequenced. 
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Amplification of the dnaK (Stepkowski et al., 2003), atpD (Martens et al., 2008), recA (Gaunt et 

al., 2001) and glnII (Turner and Young 2000) genes in Ensifer strains was achieved using the 

primer pairs and cycling conditions given in Table S3. For Bradyrhizobium strains, the primers 

described by Stepkowski et al. (2003) were used for amplification of dnaK, Stepkowski et al. 

(2005) for recA and glnII, and Gaunt et al. (2001) for atpD. The PCR reaction mix was the same 

as used for amplification of the 16S rRNA gene except that the volume of MgCl2 (25 mM) was 

2.5 μl for atpD and 3.75 μl for dnaK. The thermal cycling conditions used for amplification of 

the respective genes in Bradyrhizobium strains are given in Table S3. 

Two symbiosis-essential genes (nifH and nodA) were amplified and sequenced for 

selected strains. For amplification of a 650 bp fragment of the nodA gene in Ensifer strains the 

primers nodA1 and nodA2 (Haukka et al., 1998) were used and for PCR amplification of a 550 

bp nodA gene fragment in Bradyrhizobium strains the primers nodAf.brad and nodAr.brad were 

used (Chaintreuil et al., 2001). Amplification of a 750 bp nifH fragment in both Ensifer and 

Bradyrhizobium strains was performed using the primers described by Laguerre et al. (2001). 

The PCR mix for amplification of various sym genes was prepared as reported in Sankhla et al. 

(2017) and the thermal cycling conditions are given in Table S3.  

 

DNA sequencing and phylogenetic analysis  

The amplified PCR products of various genes (60 μl containing approx.100 ng μl
-1

 DNA) were 

sent to SciGenom Labs Private Ltd. Cochin, India for exo-sap purification and Sanger 

sequencing using the Applied Biosystems (ABI) platform. All the raw sequences were analyzed, 

edited and assembled to nearly full length using the Gene Tool Lite software 

(www.biotools.com). Basic Local Alignment Search Tool (BLAST) was used for sequence 

similarity searches in the National Centre for Biotechnology Information (NCBI) nucleotide 

sequence database (http://blast.ncbi.nlm.nih.gov) (Altschul et al., 1990). The complete analyzed 

sequences of the genes were submitted to the NCBI GenBank database using the Sequin 

software, and accession numbers were obtained.  

 Phylogenetic analyses were carried out using the sequences of type/reference strains and 

close relatives retrieved from the NCBI GenBank database with the help of MEGA version 7.0 

(Kumar et al., 2016). Multiple sequence alignments were generated using the ClustalW option in 

MEGA 7. Phylogenetic trees were constructed with the maximum likelihood (ML) method 
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(Felsenstein 1981) based on a GTR+G+I model. Evolutionary divergence between sequences 

and percent similarity was estimated using the Maximum Composite Likelihood model. The 

aligned 16S rRNA, protein-coding housekeeping and symbiotic gene sequence fragments were 

manually trimmed to remove overhangs, and analyzed individually as well as in a concatenated 

fashion. The consistency of the tree topology was anticipated by conducting a bootstrap test with 

1000 pseudo-replicates. 

 

Nodulation tests and host range studies 

Some sequenced rhizobial strains were assessed for their capacity to nodulate C. pumila under 

glass house conditions as described earlier (Gehlot et al., 2012, 2013; Sankhla et al., 2017). 

Rhizobial strains were re-isolated from nodules and compared with the parental strains. For host 

range studies, selected strains from C. pumila were cross-inoculated onto the crop legumes Vigna 

radiata, Cyamopsis tetragonoloba, Glycine max and also onto some wild legumes such as 

species of Vachellia, Senegalia, Leucaena, Mimosa, Prosopis and Tephrosia. 

 

Environmental differentiation of the geographical regions of occurrence of rhizobial strains 

The ENVIREM (Environmental Rasters for Ecological Modeling, http://envirem.github.io/) and 

the ISRIC (International Soil Reference and Information Centre, SoilGrids v0.5.8) datasets were 

used to analyse the influence of climate and soil on the prevalence of the C. pumila rhizobial 

strains. Generic grids of the ENVIREM dataset comprising of 13 variables with a spatial 

resolution of 30 arc seconds (~1 km) were downloaded from the archives of Deep Blue Data at 

the University of Michigan (https://deepblue.lib.umich.edu/data). The ISRIC dataset comprising 

of two variables viz., soil organic carbon stock and soil pH with a spatial resolution of ~1 km 

were downloaded from https://soilgrids.org. These datasets comprising of a set of 15 

environmental variables (Table S4A) are relevant to species ecological and physiological 

processes (Title and Bemmels 2017).  

Environmental differentiation of the geographical regions wherein the different C. pumila 

rhizobial strains in India were isolated was also performed using principal component analysis 

(PCA) based on elevation and 19 bioclimatic variables (Table S4B) (O‟Donnell and Ignizio 

2012). These bioclimatic variables are derivatives of monthly temperature and precipitation 

values, and comprise annual mean temperature and precipitation, mean diurnal temperature 
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range, annual temperature range, temperature and precipitation seasonality, isothermality, 

maximum temperature of warmest month, minimum temperature of coldest month, precipitation 

of driest and wettest month, and mean temperature and precipitation of wettest, driest, warmest 

and coldest quarter. They are relevant to the persistence of the selected strains/species. The 

temperature-related variables describe the thermal tolerance of the strain/species while the 

precipitation-related variables describe the water availability. These variables have a global 

coverage and are available at a spatial resolution of 30 arc seconds (~1 km), and can be 

downloaded from the worldclim database (www.worlclim.org). Digital elevation data of 90 m 

spatial resolution were downloaded from CGIAR-CSI (http://srtm.csi.cgiar.org, Jarvis et al., 

2008). Those environmental variables pertaining to India were downloaded and resampled to a 

spatial resolution of one km using ArcGIS software.  

 

Analysis of environmental data 

Environmental data pertaining to the soil and climate of the sampling locations were extracted in 

„.txt‟ format from the ENVIREM and ISRIC datasets using ArcGIS software. For delineating 

spatial extents to extract environmental data polygons were constructed comprising a 10 km 

buffer area around each sampling location. These polygons delineated the spatial extent of the 

sampling region, and were later used to clip the raster data on elevation and bioclimatic variables 

using ArcGIS software. The clipped individual raster layers were combined using ArcGIS, and 

exported as a text file that contained the data of all the individual layers. This procedure was 

done for the climatic zones in each of the states. 

Comparing environmental backgrounds of the sampled regions  

A PCA was performed to compare the environmental backgrounds of the sampled regions using 

PAST software (ver. 3.17) (Hammer et al., 2001). To obtain an optimal solution 1000 bootstrap 

runs were madez 

RESULTS  

Nodulation status and nodule structure 

Nodules of C. pumila excavated from various sampling sites (Fig. 1, S2 and Tables S1–S2) were 

all of the indeterminate type (Fig. S1F–G), and the multi-branched nodules were similar to those 

shown in Gehlot et al. (2012). There were fewer nodules per plant on the roots examined from 

soil in the alkaline and arid regions (e.g. RJ) in comparison to the acidic regions (e.g. ME). 
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Nodules were mainly present on secondary, tertiary and lateral roots in all the plants and were 

not seen on primary roots or at the collar region. The length of the nodules ranged from 2 to 20 

mm. The general profile of the internal structure of the nodules from plants growing in both RJ 

(nodulated by Ensifer) (Fig. 2A) and ME (nodulated by Bradyrhizobium) (Fig. 2B) was similar 

in spite of the different rhizobial endophytes, and they resembled that recently reported for 

Brazilian Chamaecrista species nodulated by Bradyrhizobium (dos Santos et al., 2017). More 

detailed light microscopy (Fig. 2C) and TEM (Fig. 2D) showed that the numerous infected cells 

in the central zone were packed with bacteroids expressing the NifH protein of nitrogenase (Fig. 

2D). Using the JIM5 probe it could be seen that the nodule cell walls contained pectin, as 

expected (Fig. 2E), but this was also the case with the symbiosome membranes surrounding the 

bacteroids, although the signal was much less than was observed on the thick cell walls of the 

invasive infection threads (Fig. 2F). 

Origin of Chamaecrista pumila rhizobial isolates 

More than 150 bacterial isolates were obtained and purified from the root nodules of C. pumila 

grown in soils with different pH (acidic-neutral-alkaline) values collected from six states (RJ, 

GJ, UT, TN, JH and ME) of India. From each site a minimum of 4–6 rhizobial isolates were 

obtained from nodules of 2–3 plants. More than 100 purified isolates were stored at 4
o
C. The soil 

from ME (Shillong) was strongly acidic with pH 4.5–5.5; soils of TN (Pudukkottai), JH (Bokaro) 

and UT (Bhimtal) were near neutral (pH 6.6–7.0), whereas the soils of RJ (Western) and GJ 

(Valsad) were strongly to moderately alkaline (pH 8.0–9.0). All the rhizobial strains isolated 

from acidic soil were slow-growing taking about 4–6 days to grow at 28
o
C, whereas the strains 

isolated from the alkaline soils of Western RJ were both slow- and fast- growing in equal 

proportions (Fig. S3). Other than in the Thar Desert (RJ) and Shillong (ME), the number of 

sampling sites and the area covered was limited in the present study. Therefore, from states other 

than RJ and ME, the types of rhizobia associated with C. pumila were only ascertained through 

trap experiments. In the limited sampling area from the alkaline soils of GJ only fast-growing 

strains were isolated. In the neutral soils of TN both slow- (60%) and fast- (40%) growing strains 

were found whereas in the limited sampling from JH and UT only slow-growing strains were 

isolated (Fig. S3). 
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Phylogenetic analysis of rhizobial strains nodulating Chamaecrista pumila using housekeeping 

genes 

In the 16S rRNA gene phylogeny of seven (CP7, CP8, CP11, CP40, CP42, CPG48 and 

CPTN45) Ensifer strains isolated from different states (RJ, TN and GJ), four distinct genotypes 

were observed (Fig. S4), of which four representative strains (CP7, CP11, CPTN45 and CPG48) 

were selected for MLSA using four (glnII, atpD, recA and dnaK) protein-coding housekeeping 

genes. The four Ensifer strains isolated from different agro-climatic regions of India formed four 

distinct MLSA types in the four (glnII-atpD-recA-dnaK) (Fig. S5) and five genes (rrs-glnII-

atpD-recA-dnaK) (Fig. 3) concatenated phylogenies. Three of the strains (CP7, CPG48 and 

CPTN45) formed distinct lineages within Ensifer, whereas strain CP11 clustered with Tephrosia-

Ensifer strains previously isolated from the Thar Desert by Tak et al. (2016). The GenBank 

accession numbers for housekeeping and symbiotic genes of C. pumila Bradyrhizobium and 

Ensifer strains are given in Table S5.  

 Of the slow-growing Bradyrhizobium strains isolated from root nodules of C. pumila 26 

were analysed for their 16S rRNA gene phylogeny (Fig. S6). It was observed that the 16S rRNA 

phylogeny had poor resolution, as the strains clustered with type strains, and the tree topology 

was not supported by strong bootstrap values. However, the phylogeny based on the 

housekeeping gene recA gave better resolution in terms of the phylogenetic positions of the 28 

strains studied (i.e. the 26 strains used in the 16S rRNA gene phylogeny plus strains CP18 and 

CP28). Based on various novel clusters/groups and lineages formed in the recA phylogeny (Fig. 

S7) 19 Bradyrhizobium  strains (Fig. S8) were selected for MLSA using three additional protein-

coding housekeeping genes (glnII, atpD and dnaK). In the rrs-glnII-recA-dnaK-atpD 

concatenated phylogeny (Fig. 4) the 19 strains formed nine distinct MLSA types. The word 

“type” is used here as a general term for both the clusters and the lineages formed in the 

phylogenetic trees and does not infer that the strains within these lineages have identical 

nucleotide sequences. Eight MLSA types (I-VIII) constituting a total of 16 strains formed five 

novel clades/clusters, and three novel lineages within the Bradyrhizobium Mega clade-I, while 

the remaining three strains were in Bradyrhizobium Mega clade-II. MLSA types-I, II and III 

were close to B. yuanmingense; these included strains CP19, CP24 from RJ and strain CPTN33 

from TN in a distinct clade (MLSA type-I), and the single strain lineages of CPUT49 (Bhimtal, 

UT) (MLSA type-II), and CPJH29 (Bokaro, JH) (MLSA type-III). The C. pumila strains isolated 
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from Shillong (ME) were genetically diverse consisting of six MLSA types (IV to IX). MLSA 

types-IV and V were related to each other and comprised strains CPS1 and CPS3 (MLSA type- 

IV), and strains CPS10, CPS30 and CPS48 (MLSA type-V). MLSA type-VI was a single lineage 

of strain CPS39 clustering close to B. manausense, MLSA type-VII was a novel clade containing 

strains CPS35, CPS38 and CPS42, and MLSA type-VIII was close to B. japonicum and 

consisted of strains CPS6 and CPS40. MLSA type-IX, constituting strains CPS12, CPS19 and 

CPS41 from ME, was the only genotype of C. pumila symbionts in Mega clade-II.  

Phylogenetic analysis of Chamaecrista pumila symbiont strains based on their symbiotic genes 

The symbiosis-essential genes (nodA and nifH) of four representative Ensifer strains (CP7, CP11, 

CPG48 and CPTN45) were amplified and sequenced. Incongruence was observed between core 

(housekeeping) and symbiotic (accessory) gene phylogenies of the Ensifer strains nodulating C. 

pumila. The four Ensifer strains formed three distinct symbiotic types in phylogenies based on 

nodA (Fig. S9), nifH (Fig. S10) and concatenated nodA-nifH (Fig. 5) gene sequences. Ensifer 

strains CP7 (isolated from Nagaur, RJ) and CPTN45 (isolated from Pudukkottai, TN) clustered 

together (sym type-I). The strain CPG48 (sym type-III) isolated from GJ formed a distinct 

symbiotic lineage close to E. fredii. All these Ensifer strains shared close similarity with E. 

terangae on the basis of core gene phylogenies and harbour novel sym genes closely related to 

sym genes of the broad host range strain E. fredii NGR234. The strain CP11 (sym type-II) was 

identical to the E. aridi (TW10) group of strains on the basis of core and accessory gene 

phylogenies. It should be noted that the C. pumila strains were quite distant from the Indian 

mimosoid-nodulating Ensifer strains, and clustered closer to those from papilionoid legumes, 

particularly Tephrosia species (Fig. 5). 

In the symbiotic gene phylogenies, the 19 Bradyrhizobium strains from C. pumila 

clustered into 10 sym (nodA and nifH) types (Fig. 6 and Fig. 7) which were more or less similar 

to the MLSA types in the concatenated housekeeping gene phylogenies (Fig. 4 and Fig. S8). In 

the nodA phylogeny four Bradyrhizobium strains (CP19, CP24, CPTN33 and CPUT49) (nodA 

type-I) showed maximum similarity (97.9–99%) with B. yuanmingense and formed separate 

lineages close to it, as observed in the housekeeping gene phylogeny (Fig. 4). The nodA of strain 

CPJH29 (nodA type-II) was divergent from the above mentioned four C. pumila Bradyrhizobium 

strains, forming a novel lineage and sharing similarity (91.7%) to three strains (B. daqingense, B. 

huanghuaihaiense and B. japonicum) clustering together. Strain CPS39 (nodA type-III) was 
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divergent from all these strains and shared only 82.3% similarity with B. yuanmingense and 

strains in the B. japonicum clade. The other 10 (CPS1, CPS3, CPS6, CPS10, CPS30, CPS35, 

CPS38, CPS40, CPS42 and CPS48) C. pumila Bradyrhizobium strains from Shillong clustered 

into five different nodA types (nodA type-IV to VIII). Of which six strains (CPS1, CPS3, CPS35, 

CPS38, CPS40 and CPS42) shared maximum similarity (ranging from 95.2–100%) with B. 

arachidis whereas three strains of nodA type-VIII (CPS10, CPS30 and CPS48) formed a novel 

clade close to B. forestalis with 89.2% similarity. The single strain CPS6 shared similarity 

(95.7%) with both B. arachidis and B. forestalis. The remaining three (CPS12, CPS19 and 

CPS41) strains (nodA type-IX and X) from Shillong shared highest percentage similarities with 

B. elkanii (ranging from 94.1–99.5%), which is in accordance with their housekeeping gene 

phylogeny (Fig. 4). 

The topology of the nifH phylogeny of the Bradyrhizobium strains from C. pumila was 

generally similar to the nodA phylogeny. Four strains (CP19, CP24, CPTN33 and CPUT49) 

(nifH type-I) showed maximum similarity (96.4–98.8%) with B. yuanmingense, but strain 

CPJH29 (nifH type-II) was divergent and shared only 92.7% similarity with B. yuanmingense 

and strains of the B. japonicum clade. The position and percentage similarity of strain CPS30 

varied in the nodA and nifH phylogenies; although its nodA was closest to B. forestalis its nifH 

sequence showed more similarity (96.5%) with B. yuanmingense. Strain CPS39, forming the 

nifH type-III, showed close similarity (94%) with B. centrosemae. Strains of nifH type-IV (CPS1 

and CPS3) shared maximum similarity (95.9%) with B. subterraneum and B. vignae. Strains of 

nifH type-V (CPS35, CPS38 and CPS42) and nifH type-VI (CPS40) were identical to B. 

arachidis, whereas strain CPS6 (nifH type-VII) shared similarity (98.3%) with both B. arachidis 

and B. forestalis, and strains CPS10 and CPS48 (nifH type-VIII) shared 94.6% similarity to B. 

forestalis and B. pachyrhizi. The same three strains in Bradyrhizobium Mega clade-II for the 

housekeeping genes and nodA phylogenies constituted nifH type-IX (CPS41) and nifH type-X 

(CPS12 and CPS19), and these shared 100% and 97.7% similarity, respectively, with B. elkanii. 

 

Host authentication and cross-inoculation of rhizobial strains from Chamaecrista pumila 

Plant nodulation tests were conducted to analyze the host range of the diverse rhizobial strains 

nodulating C. pumila (Table 1). All the Bradyrhizobium and Ensifer strains effectively nodulated 

their host and also the crop legume V. radiata, but the Bradyrhizobium strains isolated from C. 
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pumila in different agro-climatic conditions showed variation in their nodulation response on G. 

max. Five strains (CP19, CP24, CPJH29, CPTN33 and CPUT49) showing close similarity with 

B. yuanmingense could nodulate G. max whereas the other five Bradyrhizobium strains (CPS1, 

CPS6, CPS12, CPS19 and CPS30) isolated from acidic soils in Shillong (ME) failed to nodulate 

it. None of the tested Bradyrhizobium strains could nodulate another crop species, C. 

tetragonoloba, although it was nodulated by Ensifer (CP7 and CP11) strains isolated from C. 

pumila. Both wild species of Tephrosia tested for cross-nodulation, T. villosa and T. wallichii 

(Papilionoideae), were effectively nodulated by all the tested Bradyrhizobium and Ensifer 

strains. When the Bradyrhizobium strains were tested on various mimosoid legumes, they failed 

to nodulate Leucaena leucocephala, Mimosa hamata, Senegalia senegal and species of Vachellia 

(V. jacquemontii, V. leucophloea and V. tortilis). However, native Prosopis cineraria plants were 

nodulated by both the Bradyrhizobium and Ensifer strains in the present study. Among the 

various strains tested, only Bradyrhizobium strains (CP19 and CP24) and Ensifer sp. CP11 

effectively cross-nodulated the invasive Prosopis juliflora. Ensifer sp. CP11 also nodulated other 

mimosoid legumes, such as (invasive) L. leucocephala, (introduced) V. tortilis and (native) V. 

leucophloea, but it failed to nodulate the closely related Indian endemic V. jacquemontii. 

Although the tested Ensifer strains were generally more capable than the Bradyrhizobium strains 

of nodulating mimosoid legumes, they still failed to nodulate either (native) M. hamata or S. 

senegal. 

 

Principal Component Analysis 

In PCA done using the environmental variables extracted for the location of the C. pumila 

rhizobial strains from the ENVIREM and ISRIC datasets the first two components explained 

~91% of the total variation in the dataset, where the first component accounted for 80.8% of the 

total variation while the second component accounted for 10.3% of the total variation (Fig. 8, 

Table S6A). The environmental variables having high correlations with the first PC axis are soil 

pH, soil organic carbon, PETWQ, PETWtQ, PETCQ, MTWQ, CMI, AI, APET, while the 

variables having relatively high correlations with the second PC axis are thermicity index and 

continentality (Table S6A). The first principal component axis clearly segregates ME from RJ, 

while the second axis segregates TN and GJ from UT. High soil organic carbon (SOC) and 

climatic moisture index (CMI) were the environmental variables most associated with the 
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partitioning of the ME strains separately from the other populations. While strains in RJ have 

positive associations with high soil pH, annual potential evapotranspiration rate, and aridity 

index (Fig. 8). The C. pumila rhizobial strains from TN and GJ are positively associated with 

thermicity index, while those from UT are positively associated with continentality.    

In PCA based on elevation and bioclimatic variables the first two components explained 

~82% of the total variation in the dataset, where the first component (PC1-elevation) accounted 

for 58.1% of the total variation while the second component (PC2-annual mean temperature) 

accounted for 24.4% of the total variation (Fig. S11, Table S6B). The first principal component 

axis clearly segregates the states of ME and UT from RJ, while the second axis segregates TN 

and GJ from UT and RJ (Fig. S11). The locations in ME and UT were characterized by elevation 

and precipitation related variables, while the locations in RJ were characterized by temperature-

related variables. The locations in the states of TN and GJ were characterized by isothermality.    

DISCUSSION 

Nodulation and nodule structure of Chamaecrista pumila 

Chamaecrista pumila was first reported to nodulate by Gehlot et al. (2012), but only nodule 

morphology was described and no rhizobial symbionts were characterized. The structure of 

nodules on C. pumila, regardless of the symbiont type (Bradyrhizobium or Ensifer), were 

generally similar to those described on herbaceous Chamaecrista species from other parts of the 

world. It was previously noted that the bacteroids in nodules on perennial woody species of 

Chamaecrista (large shrubs and small trees) were contained within fixation threads (FTs), which 

are a common (even defining) feature of nodules on all caesalpinioid (s.s.) species outside 

Chamaecrista (de Faria et al., 1987; Naisbitt et al., 1992; Fonseca et al., 2012). These FTs 

contain pectin which is a component of the plant cell wall, as evidenced by immunogold 

labelling with JIM5 (Fonseca et al., 2012). In the case of C. pumila, the bacteroids were not 

enclosed in a thick cell wall, but in a symbiosome membrane similar to that seen in nodules on 

other non-woody, herbaceous Chamaecrista species (Naisbitt et al., 1992; dos Santos et al., 

2017). However, the symbiosome membrane was also labelled with JIM5, which shows that 

bacteroids even in the herbaceous Chamaecrista species are surrounded to some degree by 

pectin-containing material, suggesting that the presence or not of FTs is not such an absolute 

feature, but may be a matter of the degree to which the symbiosome membrane is impregnated 

with pectin (and possibly other cell wall components) i.e. the larger and woodier the species the 
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more pectin is contained within the membrane, such that its appearance means that it can be 

effectively termed an FT.  

 

Chamaecrista pumila is nodulated by diverse Bradyrhizobium and Ensifer strains 

Most of the strains isolated from C. pumila nodules in the present study were Bradyrhizobium, 

but this is the first report of nodulation of C. pumila by Ensifer, and to our knowledge is the first 

report of any Chamaecrista species being nodulated by this rhizobial type. Almost all previous 

reports on symbionts of native Chamaecrista species in both the Old (Beukes et al., 2016) and 

the New World (dos Santos et al., 2017) have indicated that they were almost exclusively 

nodulated by species of Bradyrhizobium. It is known that edaphic and climatic factors play a 

major role in the distribution of legume symbionts in native ecosystems (Lemaire et al., 2015; 

Pires et al., 2018). For example, the PCA shows that soil pH is clearly a factor in the occurrence 

of diverse strains of Ensifer nodulating C. pumila in the alkaline soil of RJ; this rhizobial type 

has been frequently isolated from several native legumes in this region (Gehlot et al., 2012, 

2013, 2016; Tak et al., 2013, 2016; Le Queré et al., 2017; Sankhla et al., 2017, 2018; Choudhary 

et al., 2017, 2018). However, Ensifer strains were not the only symbionts of C. pumila in the 

alkaline soils of RJ; Bradyrhizobium MLSA type-I strains that were related to B. yuanmingense 

were also isolated. In addition, C. pumila growing in the neutral pH soils of UT (CPUT49), JH 

(CPJH29), and TN (CPTN33) yielded similar B. yuanmingense-like symbionts. This is not too 

surprising, as B. yuanmingense, has been isolated frequently from soybean and Vigna species 

growing in alkaline to weakly acidic soils in other parts of India (Appunu et al., 2008, 2009a, 

2009b; Vinuesa et al., 2008). 

Bradyrhizobia were the only symbiont types isolated from C. pumila growing in Shillong 

(ME), but in contrast to the alkaline-neutral soils of RJ, TN, UT and JH, no strains were related 

to B. yuanmingense. Instead, these strains which were isolated from high altitude, high rainfall 

and acidic soils of the Eastern Himalayan region were phylogenetically diverse forming novel 

clades and lineages across both Bradyrhizobium Mega-clades. However, there was a clear 

dominance of the Bradyrhizobium Mega clade-I type of strains as microsymbionts of C. pumila, 

with only three (CPS12, CPS19 and CPS41) forming a novel sub-clade within Mega clade-II. 

The Shillong-Bradyrhizobium strains were genetically diverse from established type strains, as 

well as from Bradyrhizobium strains associated with native Chamaecrista species growing in 
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acidic soils of South Africa (Beukes et al., 2016) and Brazil (dos Santos et al., 2017). The 

Shillong C. pumila Bradyrhizobium strains were also divergent from Bradyrhizobium strains 

recently isolated from Eriosema chinense and Flemingia vestita (tribe Phaseoleae) growing in 

similar acidic soils in the same region of ME (Ojha et al., 2017). Taken together, these data 

suggest that the widespread species C. pumila in India is not restricted to the “traditional” 

symbionts of Chamaecrista which have been reported in other parts of the tropics and sub-

tropics e.g. none of them were closely related to the bradyrhizobia which nodulate the genus in 

its main centre of radiation in Brazil (dos Santos et al., 2017). 

The selection of compatible rhizobia by the host legume depends upon the molecular 

dialogue between the two symbiotic partners, but it is also influenced by the local ecological 

factors such as soil pH (Yang et al., 2001; this study), soil nutrient availability (Pires et al., 2018) 

and precipitation. Pires et al. (2018) in their study on Mimosa symbionts in central Brazil noticed 

a very strong effect of soil pH on symbiont preference to the extent that endemic Mimosa 

species, such as M. claussenii, normally found to be nodulated (with Paraburkholderia) in low 

pH soils could not nodulate (with Rhizobium) in soils with neutral-alkaline pH, whereas more 

widespread Mimosa species were capable of nodulating with a greater variety of symbionts in 

soils with a wide range of pH levels. In terms of the composition of the microsymbiont 

community of C. pumila in India, it resembles widespread Mimosa species in Brazil, in that it is 

niche-specific and changes according to soil pH, resulting in the total dominance of 

Bradyrhizobium strains in acidic soils, but with Ensifer strains forming a substantial minority of 

symbionts in neutral-alkaline soils. 

 

Symbiotic diversity and host range of Chamaecrista pumila rhizobial strains 

The phylogeny of the sym (nodA and nifH) genes of the Ensifer strains isolated from C. pumila 

growing in the alkaline and neutral soils of three Indian states (RJ, TN and GJ) were quite 

incongruent with their housekeeping gene phylogeny, and were close to, but still substantially 

divergent from, the sym genes of E. fredii and other Ensifer species which nodulate soybean. The 

phylogenetic discordance between the core and sym genes in these Ensifer strains suggests 

plasmid-mediated lateral transfer of the sym genes (Haukka et al., 1998). All four of the strains 

analyzed were nested within a clade containing strains isolated from Tephrosia species in RJ 

(Tak et al., 2016), indicating the wide distribution of these novel sym genes within this region of 
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India. It is particularly interesting in terms of co-evolution of the symbiotic partners that the sym 

genes of the Ensifer strains isolated from C. pumila (Caesalpinioideae) clustered with the sym 

genes specific to local Papilionoideae (Tephrosia) (Tak et al., 2016) rather than to the local 

mimosoids (Mimosa, Senegalia and Vachellia) (Gehlot et al., 2013; Sankhla et al., 2017; 

Choudhary et al., 2017, 2018). In accordance with their sym gene phylogenies, the C. pumila 

Ensifer strains nodulated Tephrosia species, as well as several other promiscuous crop (Vigna) 

and invasive wild legumes (L. leucocephala, P. juliflora and V. tortilis). Out of this group of four 

Ensifer strains, of particular note is CP11, which is identical to E. aridi (Tak et al., 2016; Le 

Queré et al., 2017) in both its core and sym gene phylogenies, and like other E. aridi strains it is 

promiscuous, effectively nodulating several papilionoids (both crop and wild) and mimosoids.  

The B. yuanmingense-like strains (CP19, CP24, CPTN33 and CPUT49) clustered 

together in their sym and housekeeping gene phylogenies. They were quite promiscuous, capable 

of nodulating several papilionoid hosts, including soybean, Vigna and Tephrosia species, but 

they failed to nodulate the mimosoid species tested (except for the Prosopis species). The present 

study, taken together with earlier ones, illustrates the widespread occurrence in India of B. 

yuanmingense-like strains, especially in neutral to alkaline soils. However, it should be stressed 

that such strains are not confined to neutral to alkaline soils and are also found in mildly acidic 

ones (Appunu et al., 2009a), although never in the more acidic soils of ME (Ojha et al., 2017; 

this study).  

The genetically diverse Bradyrhizobium strains isolated from C. pumila growing in acidic 

soils in Shillong (ME) harbored diverse sym genotypes. Most of the Shillong strains (CPS1, 

CPS3, CPS6, CPS10, CPS30, CPS35, CPS38, CPS40, CPS42 and CPS48) were highly divergent 

from B. arachidis (isolated from A. hypogaea in China; Wang et al., 2013) in their housekeeping 

gene phylogeny, but harbored sym genes that were similar to or identical to it or to B. forestalis 

(isolated from Inga and Swartzia species in Brazil; Martins da Costa et al., 2018). Indeed, 

horizontal gene transfers are known to have generated Bradyrhizobium strains which carry 

mosaic combinations of symbiotic and core genes (Parker and Rousteau 2014). The remaining 

Shillong strains, CPS12, CPS19 and CPS41, clustered within Mega clade-II both in their core 

and sym gene phylogenies, with their symbiotic genes being most closely related to B. elkanii 

from soybean (Kuykendall et al., 1992). These were the only C. pumila strains from the present 

study in this Mega clade-II, and they had sym genes similar to other Shillong bradyrhizobia, such 
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as strains EHJO8 and EHNEHU6 from the papilionoid legume Eriosema (Ojha et al., 2017). As 

with the B. yuanmingense-like strains isolated from C. pumila in other parts of India, the ME 

bradyrhizobia could nodulate Vigna and Tephrosia species and failed to nodulate the mimosoid 

species tested (except for Prosopis cineraria), but unlike the B. yuanmingense-like strains none 

of them nodulated soybean, which contrasts with the aforementioned Bradyrhizobium strains 

from E. chinense and F. vestita (Ojha et al., 2017), and is particularly surprising in the case of 

the Mega clade-II strains, CPS12, CPS19 and CPS41, as they had nodA genes that were similar 

to B. elkanii. 

The nodA and nifH gene sequences of the C. pumila Bradyrhizobium strains were mostly 

congruent supporting their monophyletic origin, except for a few strains showing differences. 

There was no correlation between the phylogenetic affinities of the C. pumila-nodulating 

Bradyrhizobium strains based on individual and concatenated core gene sequences with that of 

their symbiotic genes, except for a few B. yuanmingense strains that maintained consistency for 

most of the studied gene sequences. These results suggest contrasting evolutionary histories of 

core and symbiotic genes for most of the Bradyrhizobium strains from C. pumila. The 

congruence of nodA and nifH trees and the high symbiotic diversity reported in this and previous 

studies (Moulin et al., 2004; Aserse et al., 2012) suggests that these genes in Bradyrhizobium 

strains are spread both by vertical and horizontal gene transfer, and then maintained. Taken 

together with the cross-inoculation results, the data from the present study demonstrate that C. 

pumila has no particular specificity for a particular microsymbiont type, and is capable of 

adopting the symbionts of other native legumes growing in a particular niche. 

The acidic soil-specific sym genes of Bradyrhizobium strains associated with 

Chamaecrista species in India, Africa and Brazil are phylogenetically diverse. These results 

indicate selection of distinct microsymbionts harboring specific sym genes by host legumes 

depends upon soil pH as well as on various other geographic-climatic factors. Chamaecrista 

pumila has a long history of occurrence throughout India, and its associated rhizobial 

microsymbionts have co-evolved with it in different niches. The high altitude, high precipitation 

rate and the acidic soils of Shillong favored the evolution of diverse genotypes of 

Bradyrhizobium strains. However, it should be noted that the C. pumila symbionts in India are 

still quite closely related to rhizobia which nodulate other legumes in the regions in which it lives 

i.e. it has recruited the local rhizobial micro-flora for its symbiotic requirements rather than adopt 
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“Chamaecrista-specific” Bradyrhizobium symbionts like their cousins in Brazil, which is the 

centre of radiation of the genus (dos Santos et al., 2017). In this respect C. pumila resembles 

Mimosa himalayana and M. hamata, which have adopted local Indian mimosoid-nodulating 

Ensifer strains as symbionts rather than being associated with the (Beta) rhizobial strains of their 

close relatives in South America (Gehlot et al., 2013). The core and symbiotic gene sequences of 

Chamaecrista sp. microsymbionts reported from three different continents (Africa, America and 

Asia {this study}) are significantly different from each other, supporting the likelihood of 

divergent evolution due to geographical separation followed by adaptation to local edaphic and 

climatic conditions, which also influences the availability of compatible legume hosts. Although 

microsymbionts are peripatetic and cosmopolitan their global distribution is determined 

primarily by their adaptability to a particular habitat rather than by geographic contiguity. 
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Fig. 1 Sampling locations of rhizobial strains in different states of India. The abbreviations 

against the state names can be expanded as tropical wet and dry (TWD), humid subtropical 

(HST), Low humid (LH), semi-arid (SA), and hyper-arid (HA). 
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Fig. 2 Structure of Chamaecrista pumila nodules examined using light (A–C) and transmission 

electron microscopy (D–F). 

(A) Profile of section of nodule from the Thar Desert (RJ). The infected zone is marked with *. 

Bar = 200 µm. 
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(B) Profile of section of nodule from Shillong (ME). The infected zone is marked with *. Bar = 

50 µm. 

(C) Higher magnification of infected cells packed with bacteria (*) in a nodule from the Thar 

Desert (RJ). Note the smaller, uninfected cells between the infected cells. Bar = 20 µm. 

(D) Bacteroids (b) in an infected cell in a nodule from the Thar Desert (RJ). This section was 

immunogold labelled with an antibody against the NifH protein of nitrogenase; the labelling is 

visible as 15 nm diameter black dots on the bacteroids. Bar = 1 µm. 

(E) Bacteroids (b) in an infected cell in a nodule from Shillong (ME). This section was 

immunogold labelled with JIM5, a monoclonal antibody recognizing pectin; the labelling is 

visible as abundant 10 nm diameter black dots on the plant cell wall (w), but there is also some 

sparser labelling surrounding the bacteroids (arrows). Bar = 1 µm. 

(F) JIM5 labelling (arrowheads) of the cell wall of an infection thread in a nodule from the Thar 

Desert (RJ). Bar = 500 nm. 
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Fig. 3 Maximum Likelihood tree using rrs-glnII-atpD-recA-dnaK concatenated gene sequences 

of Ensifer strains with type strains and close relatives. Bootstrap values more than 50% 

calculated for 1,000 replications are indicated at internodes. The scale bar indicates 2% 

nucleotide substitution per site. (Abbreviations: E., Ensifer; L, Lineage and 
T
, type strain) 
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Fig. 4 Maximum Likelihood tree using rrs-glnII-recA-dnaK-atpD concatenated gene sequences 

of Bradyrhizobium strains with type strains and close relatives. Bootstrap values more than 50% 

calculated for 1,000 replications are indicated at internodes. The scale bar indicates 2% 

nucleotide substitution per site. (Abbreviations: B., Bradyrhizobium; C, Cluster; L, Lineage and 

T
, type strain) 
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Fig. 5 Maximum Likelihood tree using nodA-nifH concatenated gene sequences of Ensifer 

strains with type strains and close relatives. Bootstrap values more than 50% calculated for 1,000 

replications are indicated at internodes. The scale bar indicates 5% nucleotide substitution per 

site. (Abbreviations: E., Ensifer; C, Cluster; L, Lineage and 
T
, type strain) 
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Fig. 6 Maximum Likelihood tree using nodA gene sequence of Bradyrhizobium strains with 

type strains and close relatives. Bootstrap values more than 50% calculated for 1,000 replications 

are indicated at internodes. The scale bar indicates 5% nucleotide substitution per site. Accession 

numbers from GenBank are in parenthesis. (Abbreviations: B., Bradyrhizobium; C, Cluster; L, 

Lineage and 
T
, type strain) 
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Fig. 7 Maximum Likelihood tree using nifH gene sequence of Bradyrhizobium strains with type 

strains and close relatives. Bootstrap values more than 50% calculated for 1,000 replications are 

indicated at internodes. The scale bar indicates 5% nucleotide substitution per site. Accession 

numbers from GenBank are in parenthesis. (Abbreviations: B., Bradyrhizobium; C, Cluster; L, 

Lineage and 
T
, type strain) 
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Fig. 8 Biplots of the principal component analysis (PCA) elucidating the correlation of different 

Chamaecrista pumila rhizobial strains with the environmental conditions in different climatic 

zones of India. Bradyrhizobium strains are represented by boxes, while Ensifer strains are 

depicted as cross marks. The strains have been color coded to depict their geographic locations 

and the climatic zones. Green vector lines along with letters in blue font depict the direction and 

magnitude of environmental influences on the bacterial strains sourced from different climatic 

zones in India.    
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Table 1: Plant nodulation assay results of Bradyrhizobium and Ensifer strains nodulating 

Chamaecrista pumila in India 

Host description Bradyrhizobium strains Ensifer strains 

Legumi

nous 

plant 

Subfam

ily 

Wild 

(Native/

invasive

/ 

introdu

ced) or 

Crop 

CP19 
CP2

4 

CPJ

H29 

CP

TN3

3 

CP

UT4

9 

CPS1 
CPS

6 

CPS

12 

CPS

19 

CPS

30 
CP7 

CP1

1 

C

P

G

48 

CP

TN4

5 

Chamae

crista 

pumila  

Caesalpi

nioideae 

Wild 

(Native) 
Nod+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 
Nod+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

N

od

+ 

Nod

+ 

Vigna 

radiata  

Papilion

oideae 
Crop Nod+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 
Nod+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

N

od

+ 

Nod

+ 

Glycine 

max  

Papilion

oideae 
Crop Nod+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 
NT 

Nod

- 

N

T 
NT 

Cyamop

sis 

tetrago

noloba  

Papilion

oideae 
Crop Nod- NT NT 

Nod

- 
NT Nod- NT 

Nod

- 

Nod

- 
NT 

Nod

+ 

Nod

+ 

N

T 
NT 

Tephros

ia 

villosa  

Papilion

oideae 

Wild 

(Native) 
NT 

Nod

+ 
NT 

Nod

+ 

Nod

+ 
NT NT NT 

Nod

+ 
NT 

Nod

+ 

Nod

+ 

N

T 

Nod

+ 

Tephros

ia 

wallichi

i  

Papilion

oideae 

Wild 

(Native) 
Nod+ 

Nod

+ 
NT 

Nod

+ 

Nod

+ 
Nod+ 

Nod

+ 

Nod

+ 
NT NT NT 

Nod

+ 

N

od

+ 

Nod

+ 

Leucae

na 

leucoce

phala  

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Invasiv

e) 

Nod- 
Nod

- 
NT NT 

Nod

- 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

Nod

+ 

Nod

+ 

N

T 
NT 

Mimosa 

hamata 

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Native) 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

N

od

- 

Nod

- 

Prosopi

s 

cinerari

a  

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Native) 
Nod+ 

Nod

+ 
NT 

Nod

+ 

Nod

+ 
Nod+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

Nod

+ 

N

od

+ 

Nod

+ 

Prosopi

s 

juliflora  

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Invasiv

e) 

Nod+ 
Nod

+ 
NT NT NT Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 
NT 

Nod

+ 

N

T 

Nod

- 

Senegal

ia 

senegal  

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Native) 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 

N

od

- 

Nod

- 

Vachelli

a 

jacque

montii  

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Native) 
NT 

Nod

- 
NT 

Nod

- 
NT Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 
NT 

Nod

- 

N

T 
NT 

Vachelli

a 

leucoph

loea  

Mimoso

id clade, 

Caesalpi

nioideae 

Wild 

(Native) 
Nod- 

Nod

- 
NT NT 

Nod

- 
Nod- 

Nod

- 

Nod

- 

Nod

- 

Nod

- 
NT 

Nod

+ 

N

T 
NT 
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Nod+ indicates positive nodulation, Nod- indicates no nodulation and NT indicates not tested 
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