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Abstract

Selective breeding is a common and effective approach for genetic
improvement of aquaculture stocks with parental selection as the key factor.
Genomic selection (GS) has been proposed as a promising tool to facilitate
selective breeding. Here, we evaluated the predictability of four GS methods
in Zhikong scallop (Chlamys farreri) through real dataset analyses of four
economical traits (e.g., shell length, shell height, shell width, and whole
weight). Our analysis revealed that different GS models exhibited variable
performance in prediction accuracy depending on genetic and statistical
factors, but non-parametric method, including reproducing kernel Hilbert
spaces regression (RKHS) and sparse neural networks (SNN), generally
outperformed parametric linear method, such as genomic best linear unbiased
prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the
predictability relied mainly on the heritability regardless of GS methods. The
size of training population and marker density also had considerable effects on
the predictive performance. In practice, increasing the training population size
could better improve the genomic prediction than raising the marker density.
This study is the first to apply non-linear model and neural networks for GS in
scallop and should be valuable to help develop strategies for aquaculture
breeding programs.
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Introduction

Selective breeding is a common and effective approach for genetic improvement

through choosing parents with desired characteristics. Traditional aquaculture
selection methods, such as sib-testing, have limited reliability due to that
selection candidates are evaluated based on mid-parent means (Odegard et al.
2014). Furthermore, classical selection schemes also lead to increased co-
selection among close relatives and applying constraints on inbreeding hinder
selection on the interested traits rather than selection for individually evaluated
traits (Rodriguez-Ramilo et al. 2015).
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Genomic selection has been proposed as a promising tool to facilitate selective
breeding (Meuwissen et al. 2001). The basic concept of GS is to estimate the
marker effect in a training population and to predict the genomic estimated
breeding value (GEBYV) of selection candidates. Compared with traditional
marker assisted selection method, GS requires no significant test, therefore,
avoids biases in marker effect estimates and could accelerate the breeding cycle
(Goddard and Hayes 2009; Hill 2013). Because of its high prediction accuracy,
GS has been widely used in agricultural plants (e.g., Bernardo and Yu 2007;
Piepho 2009; Jannink et al. 2010; Crossa et al. 2014) and animals (Gonzalez-
Recio et al. 2008; VanRaden 2008; Hayes et al. 2009; de los Campos et al.
2009a). The rapid generation of extensive genomic resources also enabled
genomic dissection of complex traits and application of GS in aquaculture
species (Ge et al. 2015; Kessuwan et al. 2016; Liu et al. 2016; Abdelrahman et
al. 2017; Negrin-Baez et al. 2016; Lin et al. 2018; Sawayama et al. 2017, 2018;
Wang et al. 2017a, b, ¢; Zhong et al. 2017; Li et al. 2018; Zhao et al. 2018). So
far, genomic selection has been applied in few aquatic animals, including the
large yellow croaker (Dong et al. 2016), the Atlantic salmon (Tsai et al. 2015),
the rainbow trout (Vallejo et al. 2016), and the Japanese Flounder (Liu et al.
2018).

The prediction performance is essential for successful application of GS. Several
factors affecting the prediction performance such as genetic trait architecture,
span of linkage disequilibrium (LD), sample size, trait heritability, and marker
density have been identified (Zhong et al. 2009; Daetwyler et al. 2010; Habier et
al. 2007). In general, the predictability increases as marker intensity and sample
size increases until reaches a plateau. The required marker density is determined
by the speed of linkage disequilibrium (LD) decays in the population. When LD
decays slowly, only a small number of markers could represent the genome
(Desta and Ortiz 2014). The predictability is also closely related to the
heritability. The traits with higher heritability tend to have higher predictability.
The predictabilities of low heritability traits, such as yield, were consistently
lower than high heritability traits (Goddard and Hayes 2009). In addition to
genetic factors, statistical models in GS have influence on the predictability.
Currently, commonly used parametric GS methods include genomic best linear
unbiased prediction (GBLUP) (Meuwissen et al. 2001), Bayesian methods
(Goddard and Hayes 2009), least absolute shrinkage and selection operator
(LASSO) (Tibshirani 1996), and partial least squares (PLS) (Gelandi and
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Kowalski 1986). These parametric models have defects because they typically
ignore complicated gene interactions or higher order non-linearity relationships
in determining marker effect. To take possible non-linearity into account in
prediction, it has emerged as a new tool for marker-based genomic predictions of
complex traits through non-parametric methods including support vector
machine (SVM) (Maenhout et al. 2007), reproducing kernel Hilbert spaces
regression (RKHS) (de Los Campos et al. 2009b), and neural networks (NN)
(Gianola et al. 2011; Wang et al. 2018).

So far, selective breeding in scallop has been performed mainly through
traditional selection method. Significant genetic gains from selection for growth
have been reported in the Catarian scallop (4rgopecten ventricosus) (Ibarra et al.
1999), the Japanese scallop (Patinopecten yessoensis) (Liang et al. 2010), and
the Bay scallop (Argopecten irradians irradians) (Zheng et al. 2006). With the
development of new genotyping technologies and recently generated genome
references (Wang et al. 2016, Li et al. 2647a;-b, Wang et al. 2017¢, dWangetal-
20+7ab+<), genomic selection becomes applicable for scallops. Despite that the
prediction performances of six parametric GS models have been evaluated in
Yesso scallop (Dou et al. 2016), the predictability of non-parametric models as
well as their dependent genetic and statistical factors are largely unknown. To
demonstrate the utility of GS in scallop selective breeding, we evaluated the
accuracy of genomic prediction in an admixed population of Zhikong scallop
(Chlamys farreri) using RKHS (de Los Campos et al. 2009b) and sparse neural
networks (SNN) (Wang et al. 2018). Their performances were compared with
traditional method include GBLUP and Bayes B under various conditions. We
also assessed the influence of heritability, marker density, and training
population size on predicting performance.

Results

The SNP-Based Heritability Estimation

The basic SNPs (26,471 SNPs with MAF > 2%) were used for heritability
estimation using GCTA. The SNP-based heritability héCT 4 Of shell length, shell
height, shell width, and whole weight was 0.42 (S.E. 0.09), 0.47 (S.E. 0.07),
0.54 (S.E. 0.11), and 0.28 (S.E. 0.03), respectively (Table 1). hZGCTA calculated
from 20,000 or 10,000 subsampled SNPs were very close to those from the
whole set of SNPs (31,361 SNPs) (Fig. 1). thCTA calculated using 2500 SNPs
were significantly lower in all traits, suggesting that insufficient markers could
reduce the accuracy. To test the effects of causative SNPs on heritability
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estimation, we also excluded 1000 SNPs that GWAS identified as mostly closely
associated with phenotypic variance for héCT 4 calculation. The calculated
héCT 4 Temains stable and consistent with reduced markers (Table 1). The results
reinforced that the SNP-based estimates do not require the information of major
loci for heritability estimation, as long as the SNP density is eligible to capture
the fine-scale relatedness.

Table 1
Estimates of hGCT 4 for four traits using basic SNPs with MAF > 2%, common SNPs with
MAF > 10%, and with the top 1000 major SNPs masked (MAF > 2%). Standard errors for

h coTA estimates are in parentheses

GCTA (S.E.) hGCTA (S.E.) GCTA (S.E.)
Trait
MAF >2% MAF >10% Major SNPs masked
Shell length 0.42(0.09) 0.39(0.08) 0.42(0.08)
Shell height 0.47(0.07) 0.43(0.09) 0.46(0.07)
Shell width 0.54(0.11) 0.50(0.12) 0.53(0.11)
Whole weight 0.28(0.03) 0.26(0.05) 0.28(0.03)
Fig. 1

Box-and-whisker plots of SNP-based heritability estimates from 100 samples each
made with the 509 scallops at 24 months in the selected groups and 2500, 10,000,
20,000, or 31,361 SNPs for shell length, shell height, shell width, and whole
weight
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Evaluation of the Predictive Power

We have compared the predictive performance of GBLUP, Bayes B, RKHS, and
SNN with the scallop data sets. Table 2 presents the evaluation of the predictive
performance of the models using basic SNPs with a tenfold cross-validation. The
predictabilities of the four models are generally correlated to the trait
heritability. As revealed by Table 2, shell width exhibits the highest
predictability across all methods, follows by shell height, shell length, and whole
weight. Despite the correlation coefficients of whole weight are lower than 0.38,
the predictabilities of most traits using different models are all above than 0.42.
Based on optimal GS models, the prediction accuracy for this empirical dataset
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could reach about 0.51, 0.56, 0.58, and 0.37 for shell length, shell height, shell
width, and whole weight, respectively. Different models also exhibited slightly
differences for particular traits. The largest differences in predictability among
the four methods vary from 0.0333 to 0.1047. Standard deviations of
predictabilities range from 0.0076 to 0.0173 across traits and methods, where the
high predictable traits tend to have smaller standard deviations than those low
predictable traits. Among the four methods, RKHS and SNN generally
outperformed GBLUP and Bayes B. For traits including hell height, shell length,
and shell width, RKHS is the most efficient method. While for whole weight,
SNN is the most efficient instead.

Table 2
Correlations between observed and predicted values for scallop dataset for four traits with

different SNP-based heritabilities

Bayes Bayes

Fold GBLUP R RKHS SNN  GBLUP "~ RKHS SNN
. . ) _
ohel herghdength with hgory Shell width with b2, = 0.54

] 0.4064  0.4316 0.5056 0.5098 0.4774  0.5064 0.5805 0.5815
COR correlation

Fold GBLUP Bages RKHS SNN GBLUP Ba];yes RKHS SNN
2 0.4241  0.4487 05283 0.5289 0.4681  0.5173 0.5847 0.5793
3 0.4377  0.4521 05185 0.5069 0.4906  0.5092 0.5656 0.5785
4 0.4427  0.4667 0.5358 0.5405 0.4891  0.5063 0.5956 0.5773
5 0.4342  0.4580 05012 0.5114 04892  0.5291 0.5741 0.5792
6 0.4275  0.4519 05170 0.5138 0.4729  0.5036 0.5745 0.5879
7 04132 04386 0.5152 0.5088 0.4715 0.5119 0.5668 0.5954
8 0.4078  0.4344 05104 0.5071 0.4948  0.5086 0.5785 0.5939
9 04181  0.4331 05296 0.5118 0.4782  0.5153 0.5878 0.5968
10 04188  0.4438 0.5332 0.5329 0.4781  0.5232 0.5708 0.5868

é\(/)gR 0.4231 0.4459 0.5195 0.5172 0.4810  0.5131 0.5799 0.5857

Sd

COR 0.0125  0.0117 0.0119 0.0122 0.0092  0.082  0.0095 0.0076

Shell height with A2y, =0.47 Total weight with h%, =0.28
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1 0.4657  0.4686 0.5657 0.5648 0.3288  0.3439 0.3802 0.3942
2 0.4733  0.4891 0.5784 0.5679 0.3271 0.3324 0.3851 0.3721
3 0.4743  0.4882 0.5720 0.5474 0.3548 0.3617 0.3710 0.3832
4 0.4504  0.4821 0.5706 0.5786 0.3268  0.3481 0.3445 0.3457
5 0.4482  0.4688 0.5493 0.5663 0.3426  0.3531 0.3866 0.3581
6 0.4589  0.4722 0.5585 0.5498 0.3528  0.3734 0.3834 0.359%4
7 0.4714  0.4548 0.5749 0.5591 0.3598  0.3212 0.3573 0.3745
8 0.4611 0.4783 0.5464 0.5857 0.3294  0.3548 0.3704 0.3733
9 0.4448  0.4786 0.5540 0.5564 0.3587  0.3484 0.3955 0.3974
10 0.4671 0.4579  0.5639 0.5704 0.3531 0.3785 0.3934 0.3926
é‘(/)gR 0.4615  0.4739 0.5634 0.5645 0.3434  0.3515 0.3767 0.3751
E%R 0.0107  0.0116  0.0111 0.0120 0.1411 0.0173 0.0161 0.0171

COR correlation

Influence of Marker Number and Training Population Size on
Predictability

In order to determine the effect of marker types and densities used for GS in
scallop, we selected six subsets of markers including common SNPs (11,941
SNPs with MAF > 10%), basic SNPs (26,471 SNPs with MAF > 2%), randomly
sampled SNPs (2500, 10,000, and 20,000 SNPs), and all high-quality SNPs
(31,361 SNPs). One hundred selections in a random way were carried out with
each subset. As shown in Fig. 2, the predictability remains consistent with over
10,000 SNPs. When the number of markers falls below 10,000, the
predictabilities begin to decrease significantly for all traits. The result also
reveals that the smaller the number of markers, the larger the variation in
predictabilities.

Fig. 2

Effect of marker density on the predictability. Six SNP subsets were selected using
randomly sampled SNPs (2500, 10,000, and 20,000 SNPs), common SNPs (11,941
SNPs with MAF >10%), basic SNPs (26,471 SNPs with MAF >2%), and all
high-quality SNPs (31,361 SNPs). Tenfold cross-validations are repeated 100
times for each subset of SNP markers. Error bars are constructed using one
standard error from the mean
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To investigate the impact of population size on the predictive power of the
models, we selected five subsets of training populations varying from 300
individuals to the total 509 individuals. As the size of training population
increases from 300 to 509, the average predictabilities of the four methods
(GBLUP, Bayes B, RKHS, and SNNR) increased averagely by 47.64%, 43.15%,
41.78%, and 60.23% for the four traits, respectively (Fig. 3). Although both the
marker density and the size of training population have influences on the
predictability, increasing the training population size could better improve the
genomic prediction than raising the marker density. For example, as the number
of makers decreases from 31,361 to 2500, the predictabilities of four traits only
decline by 11.65% on average, whereas the predictabilities drop by 48.31% on
average as the population size decreases from 509 to 300, which indicates that a
large training population is necessary to obtain high predictability.

Fig. 3

Effect of the population size on the predictability. Six subsets are selected with the
number of individuals varying from 300 to 509 using 10,000 SNP. Tenfold cross-
validations are repeated 100 times for each subset of the population. Error bars are
constructed using one standard error from the mean

GBLUP

E ) Tratis =

0 Shad Heght E "

2 — St langth 3

= ol Length 4 . 4
D — Shed Width 5 / .
E Whode Wesgt F—j

o b L 4 o

Population Size

http://eproofing.springer.com/journals_v2/printpage.php?token=FQrWiRjiIm3ArXsNLcuUXOe5tvZWhAXJIjwOnNXNljbg 10/24



8/5/2018 e.Proofing

RKHS

-_E"_-" e/ I.‘f..-" - Tratis E .
5 X / N—- e
s 7 = —swwwm § £
5 . _ — Skl Width O .
E;_’lf j.a-'"’ Whioie Weigh l':'il_‘f
Population Size
Discussion

In this work, we have evaluated the influences of the GS method, heritability,
marker number, and training population size on predictive performance for an
admixed population of Zhikong scallop. From the comparison of different
prediction methods, we found that non-parametric methods (RKHS, SNN)
performed better than parametric methods (GBLUP, BayesB) for the real dataset
of scallop. Our results were in consistence with previous studies. Heslot et al.
(2012) compared the performance of six parametric methods with four non-
parametric methods for genomic prediction in wheat, maize, and barley and
observed that the RKHS method performed the best across different species.
Ehret et al. (2015) investigated various Bayesian neural network architectures
using for predicting phenotypes in Holstein-Friesian and German Fleckvieh
cattle and suggested that neural networks can capture non-linearities and may be
useful for predicting complex traits using real data. Howard et al. (2014)
assessed many parametric and non-parametric methods using simulated genetic
architectures, and found that parametric methods performed slightly better than
non-parametric methods for additive genetic architectures, but parametric
methods had difficulty in capturing non-additive effects such as epistatic effects.
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Generally, GBLUP is the most robust method and generally gives the higher
predictability for highly polygenic traits; the Bayesian methods are better for
traits with major genes; RKHS and SNN perform well for traits under non-
additive genetic architectures. If the genetic architecture underlying the trait is
unclear, both parametric and non-parametric methods should be tried to cross-
confirm the results.

We also found that the size of training population had a greater impact on
predicting performance than the marker density did, which was in accordance
with earlier studies (Ehret et al. 2015). The increase in predictability quickly
reaches a plateau as the number of markers increases. In our study, the
predictability plateaued when 10,000 markers were used for prediction of all
traits. Research in an elite scallop breeding population genotyped with 2364
markers revealed that prediction accuracy for real dataset of scallop could reach
over 0.4 based on optimal GS methods (Dou et al. 2016). The optimal GS
methods using 10,000 markers in this work produced the most accurate
predictive ability about 18% greater than GS models using only 2364 markers
for scallop in Dou et al. 2016. Therefore, a low-density marker panel is desired
to obtain a favorable cost-benefit ratio for GS. With respect to the size of
training population, it has strong effect on the predictability. We observed a
monotonic increase in the predictability for each trait with enhancing population
size. Therefore, increasing the size of training population rather than increasing
the marker number can be preferable for scallop GS prediction.

Currently, researches on GS are mainly based on the additive model. However, a
few studies have suggested that incorporating dominance can produce higher
predictability than only considering additive effects (Vitezica et al. 2013). Our
result reveals that additive variances may not explain the majority of the trait
variances, and the improvement in predictability by including non-additive
variances, such as dominance variances, could be considered in near future. This
result is consistent with Wang et al. 2018, who found that on average, inclusion
of the dominance component yielded better predictions for milk yield supported

by results of non-additive effects on milk yield in Jersey cows (Aliloo et al.
2015).

Conclusions

We used an admixed population of Zhikong scallop consisting of 509 individuals
to evaluate the genetic and statistical factors affecting prediction in scallop. The
results showed that predictabilities for different methods were significantly
different, with the two non-linear methods (e.g., RKHS and SNN) better than the
two other linear methods. The predictability is closely related to the heritability.
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The traits with higher heritability tend to have higher predictability. The size of
training population had greater influence on predictive performance compared
with the marker density. Our results hold great promise for the implementation
of GS in scallop breeding.

Methods

Materials Collection

The Zhikong scallop (C. farreri) naturally distributes along the seacoasts of
China, Japan, and Korea and is a commercially important bivalve species in
China. Currently, genetic studies focusing on scallop growth, reproduction, and
immunity represent active research directions. Phenotype data were traditional
size-related characters as complex traits, such as shell length, shell height, shell
width, and whole wet weight. Shell height was measured from the hinge to the
opposite end of the shell. Shell length was measured as the maximum dimension
at right angles to the height. Shell width was measured as the greatest vertical
distance between the two valves. As shown in Fig. 4, the distributions of shell
length, shell height, and shell width were similar and deviated normally
distributed. While the distributions of whole weight be approximately normally
distributed.

Fig. 4
Distributions of the phenotypes (shell length, shell height, shell width, and whole
weight)
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The parental scallops used in this study were collected from a cultured
population in Qingdao Shazikou, Shandong Province, China. In February 2012,
1000 scallops for each trait were brought to the hatchery for selection and
conditioning. For the parental populations, the selection intensity planned was

i =1.755 for the four complex traits (Falconer and Mackay 1996). However, the
observed selection intensity, which was estimated from the standardized
difference between the means of the selected parents from the population divided
by the standard deviation of the population, was lower for the four traits, 1.651
for shell length, 1.647 for shell height, 1.732 for shell width, and 1.606 for
whole wet weight. We randomly collected 509 individuals at 24 months in the
selected groups of an admixed population and used 2b-RAD sequencing (Wang
et al. 2012) to obtain a high-quality set of SNPs (31,361) with an average calling
rate of 84% in this study. Using the physical map of Zhikong scallop (Jiao et al.
2014), the missing genotypes were inferred by the Beagle software (Browning
and Browning 2009). Imputation accuracy was measured using R square allelic
(R?), as described by Browning and Browning (2009). We could obtain allelic R?
for each imputed marker in a sample of 509 individuals. The average and
standard error of allelic R? values were 0.9084 and 0.1203, respectively.

Models of Prediction

GBLUP Meuwissen et al. (2001) introduced the use of linear regression models
in genome-enabled predictions. The basic linear regression model for additive
effects is

P
Yi :#+Zj:1$ijﬂj+6i7 1

where y; is a target trait measured on individual i; 4 is an intercept; f; is the

allele substitution effect of marker j and 3; ~ NIID (O, 05_) , where aé, is
J J
the marker variance; x;; is the jth marker genotype observed in individual i; and

e; ~ NIID (0, o2),where o2 is the residual variance. GBLUP method

2
B

makers. The variance-covariance matrix is

assumes ag. =1/ pag , where o2 1s the polygenic variance shared by all
J

var(y) = V=WW7/ <2Z§1pi (1 —pi)) JE + 102 = (GX+1) o2 2
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where \ = ag /o2 is the signal-noise variance ratio, W is a standardized

genotype matrix with the ij element w;; = (x; — 2p;), p; is the minor allele
frequency for SNP 7, and G is a genomic relationship matrix suggested by
VanRaden (2008) and can be written as

G = WWT/ (22;1% (1- Pz)) : 3

BayesB For the BayesB method, we followed Meuwissen et al. (2001). The

prior for marker ,Bj forj=1, ..., p is given by the hierarchical prior
4
B;| o3 ~NIID (0, o2 ),

73 ~ () + (1= m)x 2 (v, 9),

where d,,(.) denotes a point mass at zero that assigns zero variance to the effects
of a fraction 7 of markers. A priori, only a fraction 1 — 7 of markers was selected
to be in the model and a scaled inverted chi-square distribution ¥ 2(v, S) was
used as prior distribution for the variance of the marker effects with
hyperparameters degrees of freedom » and scale S, where v =4.234 and S =
0.0429 (see Meuwissen et al. 2001). In this study, we used “BLR” package (de
los Campos et al. 2013) to implement BayesB model and adopted the default
values for v and S.

RKHS The general form of the RKHS method is defined as
y=u+ Kh,B + €, 5

where K, 1s a kernel function, which can be used to map the input data to a
high dimensional space where the data can be more easily separated, £ and € are

assumed to have independent prior distributions 8 ~ NIID (O, Khaé) and
e~ NIID (O, Io-ez) . RKHS has been used for spatial smoothing, regression,
and classification, in which the reproducing kernel (RK) is one of the central

elements of model specification. Here, we selected the multi-kernel function and
implemented the method in the R package BGLR (de Los Campos et al. 2009b).

SNN The Single Hidden Layer Feed Forward Neural Networks for GS is
introduced by Gianola et al. (2011):

S p k 6
Y, =M1+ Zk:kagk (bk: + ijlwijﬂg ]> + €;.
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In terms of genome-enabled prediction using [3], in the hidden layer, the
genomic covariates X (forj=1, ---, p) of an individual i (for i =1, -+, n) are
linearly combined with a vector of input weights ,Bj[.k] that are specified in the
training phase, plus an intercept (in NN’s terminology also called “bias”) b,

with k=1, ---, § denoting a neuron. The resulting linear score is then transformed
using an activation function g,(.) to produce the output of the single hidden
neuron. To model non-linear relationship between phenotype and input, the

tangent hyperbolic function ( tanh(z) = m

hidden neurons. In the output layer, the § genotype-derived basis functions,

— 1) can be used in the

resulting from the hidden layer, are also linearly combined by using the W, W,,
o, Wg weights.

We obtain an estimate of sparse structure of model [6] by minimizing the
negative logarithm of likelihood of the data with sparsity enforcing L -norm

penalty on parameters {Wk, by, ﬁj[k]} (k=1,---,8; j=1,---,p)as follows:

mian,bk,ﬂj[.k]F (Wk, b, IBJ[H)

27 (Wk,bk,ﬂ][-k]) + (251 Z?:l)‘kaj

where the approximate square error.

L (Wk, bkaﬁ][' ]) = Zz’:l (Z;j:l Wkgk (bk + Z?:lmijﬂ][' ]) - yz) ”Ik,j(’lk,j> 0)
and 4,(4, > 0) are Lagrange multipliers that determine the amount of sparsity in
53{.'“] , W, , and b,. For SNN, we calculated the noise-to-signal ratio A = crf; /o2

and implemented the SNN method in the R package snnR (Wang et al. 2018).

Predictability and Heritability

The predictability for scallop hybrid performance was evaluated using a tenfold
cross-validation, where the sample was randomly partitioned into ten parts with
four parts being used to estimate parameters and the remaining part being
predicted. Finally, all parts were predicted once and used four times to estimate
parameters. The predictability is defined as the correlation coefficient between
the observed and predicted phenotypic values. The predictability may be affected
by how the sample is partitioned into the tenfold. Therefore, we replicated the
cross-validation analysis 100 times to achieve the average prediction results of
these replicates. In order to identify the impacts of training population size and
marker number on predictability, we used different subsets of training population
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and markers to evaluate the predictability. Data accessibility: phenotype and
sequence data are available from: “
http://mgb.ouc.edu.cn/ctfbase/html/download.php .”

To estimate the variance components, we used GCTA version 1.24.2 (Yang et al.
2011) to estimate the proportion of phenotypic variance explained by the
genotyped SNPs. First, GCTA was used to create the genetic relationship matrix
(GRM) for estimating the pair-wise genetic relationship between individuals.

Then, we estimated univariate heritabilities of complex traits of scallop by the

2
8

the residual and marker variance component estimates obtained by SNP-based
heritability using GCTA (Yang et al. 2011).

restricted maximum likelihood method in GCTA. Meanwhile, o2 and o2 being
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