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Abstract—Exclusive-or (XOR) operations are common in cryp-
tographic protocols, in particular in RFID protocols and elec-
tronic payment protocols. Although there are numerous appli-
cations, due to the inherent complexity of faithful models of
XOR, there is only limited tool support for the verification of
cryptographic protocols using XOR.

The TAMARIN prover is a state-of-the-art verification tool
for cryptographic protocols in the symbolic model. In this
paper, we improve the underlying theory and the tool to deal
with an equational theory modeling XOR operations. The XOR
theory can be freely combined with all equational theories
previously supported, including user-defined equational theories.
This makes TAMARIN the first tool to support simultaneously this
large set of equational theories, protocols with global mutable
state, an unbounded number of sessions, and complex security
properties including observational equivalence. We demonstrate
the effectiveness of our approach by analyzing several protocols
that rely on XOR, in particular multiple RFID-protocols, where
we can identify attacks as well as provide proofs.

I. INTRODUCTION

Security protocols aim to protect communication in the
presence of malicious parties, for example against an attacker
on the internet or an attacker on the local wireless network.
They are vital for applications including e-commerce, online
voting, e-government, and online banking to ensure security
properties, such as confidentiality, entity and message authen-
tication, anonymity, and untraceability. To this end, security
protocols employ cryptographic primitives, most commonly
symmetric and asymmetric encryption, digital signatures, and
cryptographic hash functions. Many protocols, in particular
those designed for applications where the participants have
limited power or computational resources, employ exclusive-or
(XOR) operations. Typical examples are RFID protocols [29],
[46], [43] and mobile communication protocols (3G [1],
4G/LTE [3], 5G [2]).

As illustrated by many attacks, e.g., [16], [8], [4], security
protocols are notoriously difficult to get right. Consequently,
many tools for the automated analysis of security protocols
have been developed, e.g., [7], [21], [38], [31], [40], [49].
Historically, the main focus of these tools has been the analysis
of authentication and confidentiality properties of protocols
that employ standard cryptographic primitives in a Dolev-Yao
adversary model. More recently there has been active research

on widening the scope of automated protocol verification
by extending the class of properties that can be verified to
include, e.g., equivalence properties [19], [24], [27], [52],
[14], extending the adversary model with complex forms of
compromise [13], or extending the expressiveness of protocols,
e.g., by allowing different sessions to update a global, mutable
state [6], [44].

Perhaps most significant is the support for user-specified
equational theories allowing for the modeling of particular
cryptographic primitives [21], [38], [49], [24], [35]. However,
these tools do not allow a faithful modeling of XOR or have
other strong limitations such as bounded verification or no
support for state. We refer to the related work section for a
detailed discussion. The difficulty in faithfully modeling XOR
is is due to the unique combination of algebraic properties that
XOR satisfies, specifically (i) the associativity (x⊕ (y ⊕ z) =
(x⊕ y)⊕ z) and commutativity (x⊕ y = y⊕x) properties and
(ii) the cancellation properties (e.g., x⊕x = 0). Modeling XOR
without one of the two properties provides only weak security
guarantees since whole classes of attacks are missed.

The TAMARIN prover [49], [57] is a state-of-the-art crypto-
graphic protocol verifier which allows the user to combine all
of the following: specifying complex security properties (both
trace and equivalence properties [14]), modeling cryptographic
primitives by means of equational theories, and allowing
protocols to maintain state information. The class of user-
specified equational theories supported by the tool is the
class of convergent equational theories that have the finite
variant property [30], in addition to built-in theories for Diffie-
Hellman exponentiations, bilinear pairings, and multisets. Al-
though TAMARIN supports such a large class of user-defined
equational theories, one cannot simply model XOR using a
user-defined theory due to its associativity and commutativity
(AC) properties. At the same time, TAMARIN supports AC
symbols in some built-in theories such as Diffie-Hellman
exponentiation, but the cancellation properties of XOR (see (ii)
above) require a special treatment, as a naive implementation
often results in non-termination.

Our contributions. In this paper, we significantly extend
TAMARIN to support a precise modeling of XOR operations
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taking into account its AC and cancellation properties. More
technically, we model XOR in TAMARIN’s term algebra by in-
troducing a symbol for XOR, treated modulo AC, that satisfies
the expected cancellation properties. To avoid systematic non-
termination issues in TAMARIN’s backward search, the explo-
ration needs to be constrained without affecting completeness
(i.e., preserving all attacks). We show that the previously
implemented constraints are not adequate for XOR since they
yield systematic non-termination in the presence of XOR. We
carefully devise new dedicated constraints for XOR and prove
that completeness is still ensured under the combination of all
constraints. Finally, we show that when analyzing equivalence
properties, the previous attacker model of TAMARIN is not
suitable for XOR as it yields spurious attacks (i.e., attacks
that are solely artifacts of this internal model). We improve
the attacker model to considerably enhance the precision of
the analysis in the presence of XOR.

We have implemented these extensions in the TAMARIN
prover and demonstrate that the tool succeeds to effectively
analyze diverse protocols including some that were previously
out of scope of automated verification.

We model and analyze in particular the RFID protocol
LAK’06 [46], which consists of two roles exchanging five
messages. This protocol is stateful, heavily relies on XOR,
and features an else branch. We analyze secrecy, non-injective
agreement (in both directions) as well as three unlinkability
notions. Considering an unbounded number of sessions, we
obtain semi-automatic proofs and attacks (i.e, limited number
of interactions to guide state exploration, all steps machine-
checked) for the reachability properties (i.e., secrecy and
agreement). We obtain fully automatic proofs for and attacks
on the different unlinkability notions for a bounded number
of sessions. Considering such a faithful modeling, all these
analyses were out of the scope of existing tools.

We fully automatically analyze two further XOR-based
RFID protocols, CH’07 [29] and KCL’07 [43] against similar
properties. Furthermore we study a version of Needham-
Schroeder-Lowe (NSL) with XOR and a challenge response
protocol using XOR. We also analyze the off-line variant
of Chaum’s digital cash protocol [25] which uses XOR and
blind signatures. In this protocol we prove that a customer
remains anonymous when not double-spending coins, and find
an attack on anonymity when double-spending. Previous anal-
yses [37], [35] could not model XOR precisely and therefore
provide weaker guarantees.
Related work. In the computational model, XOR operations
are common and supported by many tools, e.g., EasyCrypt [11]
or CryptoVerif [18]. However, computational tools typically
have a lesser degree of automation (e.g., EasyCrypt is mainly
interactive), or are tailored to specific applications (e.g., [10],
[12]).

In the symbolic model, there are numerous verification tools
for cryptographic protocols, some of which support XOR
operations.

In the case of a bounded number of sessions, AKISS [9]
and some solvers from the AVISPA [7] suite (CL-ATSE [58]

and OFMC [15]) support XOR operations. AKISS is designed
to verify observational equivalence properties, while OFMC
and CL-ATSE both are limited to trace properties. These
tools provide weaker guarantees than TAMARIN, as they only
consider a bounded number of sessions.

We will now discuss and compare our extension of
TAMARIN with other tools for automated verification for an
unbounded number of sessions.

SCYTHER [31] is restricted to a fixed set of cryptographic
primitives and does not allow XOR operations. Moreover,
it neither supports global mutable state nor verification of
equivalence properties.

CPSA [40] was designed for analyzing, essentially, au-
thentication and secrecy properties. The tool was used, in
combination with the theorem prover PVS, to analyze stateful
protocols [51]. However, like Scyther, it does neither support
XOR nor the verification of equivalence properties.

MAUDE-NPA [38] offers support for many equational the-
ories, in particular XOR. MAUDE-NPA treats algebraic prop-
erties, such as associative-commutative operators, in a more
generic way than TAMARIN, which only offers support for
built-in Diffie-Hellman and bilinear pairing theories, as well as
multisets, and with the extension presented in this paper XOR
operators. However, MAUDE-NPA does not support global
mutable state nor protocols with else branches. Moreover, the
verification of equivalence properties suffers from termination
problems [52].

PROVERIF [21] supports user-defined equational theories,
and allows for the verification of a rich variety of security
properties. Moreover, the abstractions (based on a translation
of applied pi calculus processes into Horn clauses) underlying
the theory of PROVERIF make it very efficient. However,
these abstractions may also cause false attacks, which make
the tool unsuitable to analyze stateful protocols. An extension
of PROVERIF (i.e., STATVERIF [6]) tries to overcome this
shortcoming. However, the support for stateful protocols that
can be effectively analyzed by STATVERIF remains partial. For
instance, only a fixed number of state cells may be declared
and non-termination arises frequently. Moreover, only secrecy
properties can be verified with STATVERIF. The user-defined
equational theories PROVERIF can handle are insufficient to
model XOR, but there is a different extension for PROVERIF
to handle some theories including XOR [45]. However, this
extension is limited to secrecy and simple authentication
properties, and again unsuitable for stateful protocols.

The TAMARIN front-end SAPIC [44] has been successfully
used to analyze stateful protocols given in an applied pi
calculus extension. It directly benefits from our work.

Although there cannot be a computational soundness proof
for symbolic models of XOR [59], we argue that symbolic
analysis is still useful in itself due to the higher grade of
automation. This higher grade of automation allows the han-
dling of more complex protocols, which are difficult to handle
manually, and which are the goal of our work. Moreover,
symbolic attacks still constitute valid attacks.



Outline. We present necessary preliminaries in Section II.
Our extensions of the theory and tool are described in Sec-
tion III. We evaluate the latter with the case studies shown in
Section IV, and we also argue why one needs both AC and
cancellation properties for faithfully modeling XOR. We give
concluding remarks in Section V.

II. PRELIMINARIES

In TAMARIN, messages are represented as terms. Protocols
and adversaries are modeled using multiset rewriting rules. We
also show how security properties are specified.

A. Messages represented as terms

As usual in symbolic security protocol verification we
represent messages and operations on them as terms in an
order-sorted term algebra, using an equational theory. We
assume a set of operators with their arities as signature ΣOp.
We define three sorts, a top sort msg including all terms
together with two incomparable subsorts fr and pub, where
terms of the former model random (“fresh”) values in general,
and nonces and keys in particular, while terms of the latter
represent publicly known (“public”) values. We also assume
countably infinite sets of variables Vs, for each sort s, and call
the union of all such sets V . We similarly treat names, with
a countable set Ns for each sort s, and their union N . The
set of terms given by the closure of using operators from the
signature containing variables in V and names in N is denoted
TΣOp(V,N). A term t is ground if it contains no variables and
we write TΣOp(N) for the set of all ground terms, or simply
TΣOp . A substitution σ is a function from variables to terms.
We homomorphically lift substitutions to terms and use postfix
notation, so σ(t) is written tσ.

Given a signature ΣOp, an equation is an unordered pair
of terms s and t, written s = t, for s, t ∈ TΣOp(V). An
equational presentation over ΣOp for a given set of equations
E is E = (ΣOp,E). The associated equational theory is the
smallest congruence closure containing all instances of E, for
which we write =E . Whenever it is clear from the context we
drop the signature and simply write =E . Two terms s and t
are equal modulo E if and only if s =E t. We consider sets,
sequences, and multisets modulo E by using the subscript E.

In TAMARIN, user-defined equational theories are given
using their rewrite rules oriented left to right. They have to be
confluent and terminating, i.e., convergent. In this case there
are unique normal forms for all terms, written t↓E . Thus we
reason about terms in normal form in the following.

Example 1. To model asymmetric signatures, let ΣOp

be the signature consisting of the functions sign(⋅, ⋅),
checksign(⋅, ⋅), and pk(⋅) together with the equation
checksign(sign(x, k), pk(k)) = x.

TAMARIN also requires that equational theories have the
finite variant property (FVP) [30]. For a theory with the
FVP, for any term t, we can compute a finite set of terms
t1, . . . , tn with the following property: For any substitution
σ, there is an i ∈ {1, . . . , n} and substitution φ such that

x⊕ x = 0 (1)
x⊕ 0 = x (2)

x⊕ x⊕ y = y (3)

x⊕ (y ⊕ z) = (x⊕ y) ⊕ z (4)
x⊕ y = y ⊕ x (5)

Fig. 1: Equational theory EXOR for XOR

tσ↓E= tiφ. This enables efficient symbolic protocol analysis
by using a pre-computation to replace the equational theory.
More precisely, the complete set of variants modulo E for a
term t is denoted ⌈t⌉E . This set can be computed via folding
variant narrowing [39].

XOR operations are usually (see, e.g., [30]) modeled using
the equations given in Figure 1. Equation (1) models the main
cancellation property of XOR, (2) models the fact that 0 is the
neutral element, and (3) is required for technical reasons (to
achieve AC-coherence, shown in [39]). Equations (1) to (3)
can be ordered from left to right and result in a convergent
rewriting system with the finite variant property, and could
thus even be used in a user-specified equational theory in
TAMARIN. However, equations (4) and (5) cannot be handled
in the same way as the resulting equational theory would not
be terminating.

B. Modeling protocols and adversaries using multiset rewrit-
ing rules

Security protocols are modeled by multiset rewriting rules.
These rules work on sets of facts. Formally, we assume an un-
sorted fact signature ΣFact, partitioned into linear and persistent
facts. The set of facts is defined as F = {F (t1, . . . , tn) ∣ ti ∈
TΣOp(V,N), F ∈ ΣFact of arity n}. Linear facts can only be
consumed as often as they have been created, while persistent
facts can be consumed an unbounded number of times. We
denote the set of multisets of facts as F ♯ and the set of ground
facts as G♯. The function set(⋅) converts multisets to sets by
dropping the multiplicity. We use the superscript ♯ to denote
operations on multisets, e.g., ∪♯ denotes the union on multisets.

Labeled multiset rewriting rules give the system’s state
transitions. Such rules are given as (id, l, a, r) with id a unique
identifier, and l, a, and r multisets of facts. The resulting rule
is ri = id ∶ l−−[ a ]→r. We say its name is name(ri) = id, its
premises are prems(ri) = l, its conclusions concs(ri) = r, and
its actions acts(ri) = a.

We denote the ground instances ginsts(R) for a set of
multiset rewriting rules R. We denote by lfacts(l) the multiset
of linear facts and by pfacts(l) the set of persistent facts in l.
The semantics of a set of multiset rewriting rules R are given
by a labeled transition relation →R ⊆ G♯ ×G♯ ×G♯, defined by
the following step rule, where S is the current state (a multiset
of facts):

ri = id ∶ l−−[ a ]→r ∈E ginsts(R) lfacts(l) ⊆♯ S pfacts(l) ⊆ S

S
set(a)
ÐÐÐ→R ((S ∖♯ lfacts(l)) ∪♯ r)



Note that the initial state of a labeled transition system derived
from multiset rewriting rules is the empty multiset of facts ∅.
The transition according to the step rule transforms a multiset
of facts into another multiset of facts. The actions of the rule
are the label attached to the transition. We define our security
properties over these labels. We rewrite modulo equations E,
so we use ∈E for the rule instance modulo. Linear facts are
consumed and need to be available sufficiently often, while
persistent facts just need to be present. The next state is derived
by removing consumed linear facts and adding all generated
linear (with correct multiplicity) and persistent facts.

There is a single distinguished fresh rule: Fresh ∶ −−[]→Fr(n).
This rule has no premise and is the only rule allowed to
create the linear Fr facts. To ensure that the generated n is
unique, there is an additional condition enforcing that within
an execution the variables n from two instances are different.
A detailed explanation is available in [55].

We define an execution e of a protocol P as
the alternating sequence of states and rule instances:
S0, (l1−−[ a1 ]→r1), S1, . . . , Sn−1, (ln−−[ an ]→rn), Sn such that
S0 = ∅, and that for all i ∈ {1, . . . , n} we have all
(Si−1, (li−−[ ai ]→ri), Si) are valid steps according to the step
rule. We associate the trace trace(e) = [set(a1), . . . , set(an)]
with such an execution e. We write exec(P ) for the set of
executions of P .

We consider a standard Dolev-Yao style adversary with full
control over the network and the ability to apply all operators.
The message deduction rules are given by MD below. The
adversary learns all messages sent by participants as they
are put into the linear Out facts and are subsequently stored
in the persistent adversary knowledge K. The adversary can
send messages to protocol participants by putting them into
linear In facts. Moreover, the adversary can generate his own
random values and knows all public values. He can also apply
functions from the signature using the rules in the third line
of MD.

MD = { Out(x)−−[]→K(x), K(x)−−[ K(x) ]→In(x),
Fr(x∶fr)−−[]→K(x∶fr), []−−[]→K(x∶pub) }

∪ { K(x1), . . . ,K(xn)−−[]→K(f(x1, . . . , xn))

∣ f ∈ ΣOp with arity n }

We consider all terms modulo the given equational theory,
so these rules do not deal explicitly with the equations
modeling the cryptographic theory. As a more efficient form,
TAMARIN uses dependency graphs to represent the protocol
and adversary deduction rules which are applied.

Definition 1 (Dependency Graph). We say that the pair
dg = (I,D) is a dependency graph modulo E for R if I is
a sequence of E-ground instances of rules from R ∪ Fresh,
D ∈ N2 ×N2, and dg satisfies the conditions:
DG1 For every edge (i, u) ↣ (j, v) ∈ D it holds that i ≤ j

and the conclusion fact of (i, u) is syntactically equal to
the premise fact of (j, v).

DG2 Every premise of dg has exactly one incoming edge.

Rule instances

Fr(m)
ri.1:

Fr(m)

St(A,m) Out(m)
ri.2: [Start(m)]

Out(m)

K(m)
ri.3:

K(m)

In(m)
ri.4: [K(m)]

St(A,m) In(m)
ri.5: [End(m)]

Trace States

S0 = ∅

S1 = {Fr(m)}

S2 = {St(A,m),
Out(m)}

S3 = {St(A,m),
K(m)}

S4 = {St(A,m),
In(m),K(m)}

S5 = {K(m)}

Fig. 2: Example execution of (Pbasic ∪MD).

DG3 Every linear conclusion of dg has at most one outgoing
edge.

DG4 The Fresh instances are unique.
We denote the set of all dependency graphs modulo E for R
by dgraphsE(R).

Example 2. Consider a protocol Pbasic where agent A sends a
nonce m on the network and then receives it, specified using
the following rules:

Pbasic = {
Fr(m)

St(A,m) Out(m)
[Start(m)],

St(A,m) In(m)
[End(m)]}

Figure 2 gives a sample execution of this protocol as a
dependency graph. It also illustrates how the dependency graph
represents the trace and intermediate states.

We write dgraphs(R) to denote all possible dependency
graphs for the multiset rules R, and traces(dg) for the traces
of a dependency graph dg. It is easy to see that the dependency
graphs have the same traces as the labeled transition system
executions.

Lemma 1 ([55], Lemma 4). Let E be an equational theory.
Then for all protocols P :

{trace(e)∣e ∈ exec(P ∪MD)} =E

{t∣t ∈ traces(dg), dg ∈ dgraphsE(P ∪MD)}

C. Security property specification

We consider both trace properties and indistinguishability
properties. Examples of trace properties are secrecy and mu-
tual agreement. These properties are expressed as first-order



logic formulas. Formulas use variables of a new sort, temp,
for reasoning about the order of events, and are evaluated on
traces. The informal semantics of our atomic formulas are

● �: false;
● t1 ≈ t2: t1 and t2 are equal in the equational theory;
● F@i: fact F ∈E tr[i] where i is of sort temp and tr[i]

is the i-th element of the trace tr on which we evaluate
the formula;

● i ≐ j: timepoints i and j are equal;
● i ⋖ j: timepoint i occurs before timepoint j.
See [55] for all the details on the semantics and fragment of

first order logic accepted by TAMARIN. We write tr ⊧ ϕ when
ϕ holds on trace tr and lift the semantics to sets of traces:
given a set of traces Tr we write Tr ⊧∀ ϕ if tr ⊧ ϕ for any
tr ∈ Tr and Tr ⊧∃ ϕ if tr ⊧ ϕ for some tr ∈ Tr.

We specify unlinkability, anonymity, and more generally
equivalence properties by use of diff -terms (defining bi-
systems, i.e., two systems differing only in some terms) and
check their observational equivalence, see [14].

Example 3 ([14], Ex. 10). An equational theory representing
probabilistic encryption is pdec(penc(m,pk(k), r), k) = m.
This equation gives rise to the decryption rule for probabilis-
tic encryption for the adversary automatically generated by
TAMARIN:

Dpenc ∶ K(penc(m,pk(k), r)),K(k)−−[]→K(m) .

Consider now the following bi-system:

S = { GEN ∶ Fr(k)−−[]→Key(k),Out(pk(k)),
ENC ∶ Key(k),Fr(r1),Fr(r2), In(x)−−[]→

Out(diff[r1, penc(x, pk(k), r2)]) } .

Here TAMARIN will compare the system where
diff[r1, penc(x, pk(k), r2)] is replaced by r1 to the system
where it is replaced by penc(x, pk(k), r2). If the adversary
cannot distinguish the two systems, they are said to be
observationally equivalent. In this example, this means that
he cannot distinguish a probabilistic encryption from random.

For both types of properties, TAMARIN analyzes the reach-
ability of attack states, which are defined by a given security
property. It does so by exploring symbolic traces in a backward
fashion.

III. HANDLING XOR

In the following, we explain how we deal with the AC
properties of the XOR theory, and how we integrate it with
the existing built-in and user-defined equational theories.
Moreover, we show that the existing normal form conditions
are insufficient. To address this, we propose a new normal
form condition that eliminates redundant steps, and show its
soundness. Finally we explain why we also had to adapt the
adversary model for equivalence properties.

As explained above, one cannot handle the equational theory
for exclusive-or, EXOR, within the user-defined theories of
TAMARIN due to the combination of its associativity and com-
mutativity (AC) properties with its cancellation properties. To

deal with this equational theory, we split it into two parts: (i)
the convergent equations modeling the cancellation properties,
and (ii) the axioms for associativity and commutativity, and
then reason modulo the AC axioms. So, we define (i) XOR
to be the equational theory consisting of equations (1)-(3)
oriented left to right, and (ii) AC to be the equational theory
consisting of equations (4) and (5). As XOR has the required
properties (AC-convergence and AC-coherence, see [39] for
details and how XOR has these properties), we can define
t↓XOR as the normal form of term t with respect to XOR,AC-
rewriting and have s =EXOR t iff s↓XOR =AC t↓XOR. We say that
t is ↓XOR-normal iff t =AC t↓XOR.

TAMARIN already supports user-defined equational theories
(without AC operators) and some built-in equational theories
(with AC operators) such as the multiplication operation in
the Diffie-Hellman equational theory [55], as well as bilinear
pairing and multisets. To integrate the existing theories with
XOR, we refer by DHBPM to the rewriting part of equational
theory EDHBPM for Diffie-Hellman exponentiation, bilinear
pairing, and multisets as well as the user-defined convergent
theory with the finite variant property as used in TAMARIN,
and let ACC denote the underlying equational axioms of
associativity and commutativity for multiplication, bilinear
pairing, and multisets. Note that EDHBPM, in particular the
user-defined part, is not allowed to use the function symbols
from EXOR, so that the equational theories are disjoint. We
now consider ALL = XOR ∪ DHBPM, AC’ = AC ∪ ACC and
EALL = EXOR∪EDHBPM, i.e., the union of EXOR and the existing
built-in equational theories in TAMARIN.

Note that this is compatible with any user-defined equational
theory as well. In a first step to enable automated analysis, we
now switch from dependency graphs to dependency graphs
modulo AC using the finite variant property. For a protocol
P , we denote the variants of all protocol rules induced by the
equational theory ⌈P ⌉E . The following lemma establishes a
strong connection between both types of dependency graphs.

Lemma 2. For all protocols P ,

dgraphsEALL(P ∪MD)×ÖALL =AC’

{dg ∣ dg ∈ dgraphsAC’(⌈P ∪MD⌉
EALL) ∧ dg ↓ALL − normal}

Proof. By extension of Lemma 5 in [55]. The proof is analo-
gous as the equational theory has the same properties.

In a second step, we switch from dependency graphs modulo
AC to normal dependency graphs next.

A. Normal dependency graphs

Even for simple convergent theories containing only the
pairing function ⟨⋅, ⋅⟩ and the fst and snd operators, non-
normalized dependency graphs are not sufficient to automate
the analysis of traces. For example, consider the case where
the adversary deduces the first element a of a pair ⟨a, b⟩ by
applying the function fst(⋅), then pairs it with an element c,
and then again deduces a, this time from the new pair, to next



K(⟨a, b⟩)

K(a)
1:

K(a) K(c)
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Fig. 3: Message deduction graphs for pairing: the left repre-
sents a redundant dependency graph, the middle an impossible
deduction with ordered K-facts, and the right shows a shorter
deduction with final conclusion equivalent to the left.

build the pair ⟨a, d⟩. This is visualized in the left-most graph
of Figure 3. (Note that the topmost rule is actually an instance
of the function application rule for fst(⋅) where the conclusion
fst(⟨a, b⟩) is presented in the reduced form a, according to the
equational theory.) This is a correct dependency graph, but
redundant, as the steps containing c could have been skipped.
As this can be resolved in just one step TAMARIN uses normal
dependency graphs that exclude such useless steps. This is
necessary as otherwise automated analysis will easily loop.
Construction and Deconstruction Rules. To improve effi-
ciency and avoid the aforementioned redundancy, TAMARIN
makes the equational theory explicit by dividing the adver-
sary rules into two categories: construction rules and decon-
struction rules. Deconstruction rules correspond to equations
and are used by the adversary just after protocol rules to
deduce messages from what has been sent on the network.
Construction rules are, conversely, used to build messages
from the adversary’s knowledge that are then sent on the
network. To achieve this, adversary knowledge K facts are
equipped with an orientation, up and down, denoted K↑ and K↓.
Deconstruction rules have premises with both K↓ and K↑ facts
(as, e.g., decrypting a ciphertext that was received requires
knowing the key) and a conclusion with a K↓ fact. Construction
rules, conversely, have premises with only K↑ facts and their
conclusion is a K↑ fact as well. To match the purpose of
construction and deconstruction rules, the new Out rule has a
K↓ fact as conclusion, while the In rule has K↑ facts as premise.
The transition from K↓ to K↑ is achieved by a special rule with
label “Coerce”, see below, but no direct conversion from K↑ to
K↓ is possible to prevent loops. This enforces deconstruction
rules to be used before construction rules.

In the case of XOR, we have two deconstruction rules and
one construction rule, which directly result from the variants
of x1 ⊕x2. This results in normal deduction rules depicted in
Figure 4, including the usual pairing and unpairing operators.

With such rules, the adversary avoids cases of redundancy
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Fig. 4: Set of normal deduction rules NDXOR

as shown in Figure 3. In the following we consider the
normal deduction rules ND, which include NDXOR, as well as
the construction and deconstruction rules for Diffie-Hellman
exponentiation, bilinear pairing, multisets, as well as the user-
defined equational theory (see [55], [35] for details on these
rules).

Normal Form Conditions. We integrate the concept of normal
message deduction with construction and deconstruction rules
and dependency graphs, yielding normal dependency graphs.
Normal dependency graphs enforce additional normal form
conditions, called N1-N12 ([35], recalled in the technical
report [36]). These conditions help in avoiding other redundan-
cies by, for example, prohibiting the adversary from deducing
the same term multiple times.

The existing normal form conditions are however insuffi-
cient to handle XOR, as illustrated by the following example.

Example 4. TAMARIN uses backwards constraint-solving
to find normal dependency graphs representing the protocol
executions. Suppose that during the constraint solving the
adversary needs to compute a term a ⊕ b, or more precisely
TAMARIN encounters an unsolved K↓(a ⊕ b) premise. Then
TAMARIN will check all possible ways for the adversary to
compute this term: The premise can either be the result of a
protocol output, or the result of a deconstruction rule for XOR.
In the latter case, K↓(a⊕b) can, for example, be the conclusion
of a rule instance with premises K↓(a ⊕ c) and K↑(c ⊕ b).
TAMARIN will then try to resolve the new premises, and again
K↓(a⊕ c) can be the conclusion of a deconstruction rule with
premises K↓(a⊕d) and K↑(d⊕c), and so on, resulting in non-
termination. This is illustrated in Figure 5. Note that this is not
prevented by any of the previous normal form conditions, as
they are focused on handling the previous equational theories.

Such loops would occur in many cases when analyzing
even simple protocols containing XOR. To prevent them, we
introduce a new normal form condition, N13, which enforces
that there is no chain of applications of XOR deconstruction
rules.

Definition 2 (N13). There is no chain of repeated instantia-
tions of the deconstruction rules for XOR.

Intuitively, this does not limit the deducible terms for the
adversary, as one can always cancel out all terms in a single
step (i.e., using one deconstruction rule). This is formally



stated and proven below.

Definition 3. A normal dependency graph for a set of pro-
tocol rules P is a dependency graph dg such that dg ∈

dgraphs(⌈P ⌉ALL ∪ ND) and the conditions N1-N13 are sat-
isfied. We denote the set of all normal dependency graphs for
P with ndgraphs(P ).

Let tr denote the subsequence, called observable trace, of
all actions in a trace tr that are not equal to ∅. We can now
prove the main correctness theorem which states that the ob-
servable traces of the protocol are identical with the observable
traces of the normal dependency graphs. This is sufficient to
show soundness and completeness, as TAMARIN generates all
possible normal dependency graphs using constraint solving.

Theorem 1. For all sets P of protocol rules,

trace(execs(P ∪MD)) ↓ALL =AC’ trace(ndgraphs(P )).

Note that by relying on the observable trace we hide the
adversary’s deduction steps on both sides (which differ slightly
due to the normalized deduction), but ensure that security
properties (defined on actions) are carried over correctly. This
theorem shows that by ordering the K-facts the adversary does
not lose any power, and that we can simplify the deduction
using the finite variant property. The proof, given in the
technical report [36] is an extension of the proof of Theorem
1 in [35], where we need to add additional cases for the XOR
rules. Normal form condition N13 can be ensured because of
the boundedness property of XOR, which allows reaching any
term’s normal form in at most two steps, one to cancel all
duplicate terms, and another to cancel a possibly remaining
single 0 if needed (in our deconstruction rules the latter case
also corresponds to a single rule application). We also show
in the technical report [36] that N13 is sound and complete in
equivalence mode using a similar argument, and that our new
constraint solving rule to ensure N13 is correct.

B. Adversary Model for Equivalence Properties

TAMARIN verifies dependency graph equivalence, that is
similar to diff-equivalence in PROVERIF [19]. This notion
requires that for any dependency graph in one protocol there

⋮
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Fig. 5: Example 4: Infinite chain of deconstruction rules.
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Fig. 6: Dependency graph for an instance of the example
protocol and its mirror.

is a corresponding (“mirrored”) dependency graph in the other
protocol [14].

In doing so, TAMARIN enforces a strict one-to-one mapping
of rules: an instance of a rule can only be simulated using an
instance of the same rule, modulo the equational theory. For
protocol rules, this means that TAMARIN allows one variant
of a rule (modulo the equational theory) to be mirrored using
a different variant of the same rule. For adversary rules,
TAMARIN is more conservative: a deconstruction rule instance
can only be simulated by another deconstruction rule instance,
and not by construction rule instances, although they are
technically variants of the same function application rule. This
is usually desired: e.g., in the case of signatures, an instance of
the deconstruction rule for the signature verification function
corresponds to a successfully verified signature. If a signature
can be successfully verified in one protocol, then this must
also be the case in the other protocol, otherwise there is no
observational equivalence.

However, in the case of XOR, this mapping is too strict, as
an adversary cannot know whether an application of XOR ac-
tually canceled out some terms or not. Consider the following
toy protocol with only one rule that illustrates the problem:

Pr ∶ Fr(r)−−[]→Out(diff[r ⊕ c, r ⊕ d])

where c and d are constant functions in the signature. The
left and right instances of the bi-system should obviously be
equivalent, as the adversary does not know the fresh value r
(similar to a one-time pad encryption).

Consider now the dependency graphs given in Figure 6.
The dependency graph on the left hand side corresponds to a
protocol execution of the left bi-system. If we use TAMARIN’s
usual mirroring, this graph has no mirror, since in the right
execution the rule at the bottom is not a valid instance of any
deconstruction rule for XOR (cf. definition of NDXOR), and
TAMARIN would thus claim an attack. However, the last rule
still corresponds to an application of XOR, so the adversary
should not see any difference, as long as he cannot distinguish
the resulting terms.



To prevent these spurious attacks, we modified TAMARIN
to treat the XOR rules just like normal protocol rules, i.e.,
when mirroring an instance of an XOR construction or decon-
struction rule, any instance corresponding to an application of
the XOR operator is accepted (even if this does not strictly
correspond to a standard construction or deconstruction rule
as the ↑ and ↓ might be different), so long as it uses the same
input and all other constraints still hold. Hence the dependency
graph on the right of Figure 6 is considered a valid mirror.

Note that TAMARIN still verifies that all equalities from one
side carry over to the other side, and vice versa. In particular,
if we modify the protocol to also output the random value r,
TAMARIN reports an attack: the adversary can cancel out r,
and compare the result with the public constants c or d.

IV. CASE STUDIES

We first present a simple challenge-response protocol for
illustration purposes (Section IV-A). We then present our main
case study LAK’06 [46], introduce security properties, and
summarize our analysis results (Section IV-B). We present
our results on other RFID protocols (Sections IV-C, IV-D), an
eCash protocol (Section IV-E), and a version of the Needham-
Schroeder-Lowe public key protocol with XOR (Section IV-F)
after that. All our TAMARIN models are freely available in the
TAMARIN repository [56] folder /examples/csf18-xor
and TAMARIN as of v1.4.0 contains the presented XOR
extension. We present an overview of the results in Figure 12
in Section IV-G.

A. Introductory CR⊕ Example

We start with a toy example protocol to illustrate that a
faithful model of XOR with support for AC and cancellation
is necessary, as otherwise attacks can be missed. (Note that
the attack we find on this example with TAMARIN is the basis
of an attack on the real LAK’06 case study that follows.)
Consider the following basic challenge response protocol
called CR:

A∶ knows(k)
B∶ knows(k)
A∶ fresh(na)

CR1. A→ B∶ na
CR2. B → A∶ ⟨h(na, k, nb), nb⟩

TAMARIN automatically proves both aliveness and recent-
aliveness of the responder B, which is the protocol’s goal.

Consider now an extension of CR that uses ⊕, called CR⊕:

A∶ knows(k)
B∶ knows(k)
A∶ fresh(na)

CRx1. A→ B∶ na
CRx2. B → A∶ ⟨h(na⊕ k ⊕ nb), nb⟩

Our model for this protocol is bounded to two agents, and
TAMARIN automatically proves aliveness of the responder B,
but finds an attack on recent-aliveness, also automatically.
Note that this attack is expected as an attacker can craft a
correct response after having observed one real response. This

attack uses the same hash value as the legitimate previous
run, h(na ⊕ k ⊕ nb), but the attacker chooses the nonce
nb′ ∶= na⊕nb⊕na′ where na and nb are the values from the
original run, and na′ is the new challenge. This works because
na′⊕k⊕nb′ = na′⊕k⊕na⊕nb⊕na′ = k⊕na⊕nb = na⊕k⊕nb
and thus A accepts the old hash, as it expects h(na′⊕k⊕nb′).
This attack heavily relies on the cancellation property of
XOR as seen in the above equality, where the duplicate
na′ is removed. Additionally, it also requires proper support
for the AC property of the ⊕-operator. Without AC, one
would have to define specific cancellation equations, e.g.,
X ⊕ (Y ⊕ (X ⊕ Z)) = Y ⊕ Z, pick nb′ more carefully
as nb′ ∶= na′ ⊕ (na ⊕ nb) and as result would then have
na′⊕(k⊕nb′) = na′⊕(k⊕(na′⊕(na⊕nb)) = k⊕(na⊕nb)
which at least contains the same values, but still not in the
same order.

B. LAK’06

Protocol Description. LAK’06 [46] is an RFID protocol that
aims at mutual authentication of a tag and reader while provid-
ing untraceability for the tag. In order to achieve untraceability,
the protocol relies on a challenge-response mechanism based
on a shared secret that is modified at the end of each session.
We suppose that initially each tag has its own key k and
the reader maintains a database containing those keys. To
prevent desynchronization of the state k, the reader also
stores the last successful key k0 associated with each tag.
Initially, kinit = h(kinit0 ) where h(⋅) is some hash function. An
Alice&Bob description of the protocol is depicted in Figure 7a.

The reader starts by challenging the tag (1.) with a fresh
random r0, and the tag’s expected reply (2.) both (i) proves
the knowledge of the secret k bound to the fresh value r0 and
(ii) challenges back the reader. Upon receiving that message,
the reader is assured that the current key stored in the tag is k
and thus updates its secrets: k0 becomes the current key and k
becomes the next key to be used: h(k). It then replies to the
tag’s challenge proving it also knows the secret key k. When
receiving that reply, the tag updates its key to h(k).

When all messages reach their recipients, tag and reader stay
synchronized, storing the same key k = hi(kinit) where i is the
number of successful sessions (the reader additionally stores
k0 = hi−1(kinit)). However, if message 3. is lost or intercepted,
the tag does not update while the reader has already done
so. In that situation, the tag stores k and the reader stores
h(k) (as well as k0 = k). In order to recover from such
desynchronized states, LAK’06 allows the reader to accept
the tag’s replies based on the old key k0. This mechanism is
depicted in Figure 7b (reader accepts incoming message of the
form 2’.). Note that the reader does not update keys in order
to re-synchronize with the tag.
Modeling in Tamarin. LAK’06 is a stateful protocol whose
states are non-monotonic (i.e., if some tag stores k at some
point, k will be replaced by another value later on). Addition-
ally, we aim at modeling an unbounded number of sessions of
the protocol in order to establish strong security guarantees.
No tool other than TAMARIN can handle both features, and



R∶ knows(k, k0)
T ∶ knows(k)
R∶ fresh(r0)

1. R → T ∶ r0

T ∶ fresh(r1)
2. T → R∶ r1, h(r0 ⊕ r1 ⊕ k)

R∶ updates k0 ∶= k
R∶ updates k ∶= h(k)

3. R → T ∶ h(h(r0 ⊕ r1 ⊕ k) ⊕ k ⊕ r0)

T ∶ updates k ∶= h(k)

(a) Core protocol

R∶ knows(k, k0)
T ∶ knows(k0)
R∶ fresh(r0)

1. R → T ∶ r0

T ∶ fresh(r1)
2’. T → R∶ r1, h(r0 ⊕ r1 ⊕ k0)

3’. R → T ∶ h(h(r0 ⊕ r1 ⊕ k0) ⊕ k0 ⊕ r0)

T ∶ updates k ∶= h(k)

(b) Re-synchronization mechanism

Fig. 7: Alice&Bob description of LAK’06 [46]

we leverage its new capability of dealing with XOR theories
to provide the first faithful modeling of the protocol1 and
first formal analysis of both reachability and equivalence
properties.

Security properties. We are interested in analyzing secrecy,
authentication, and untraceability properties.

Reachability properties. First, we would like to prove that,
whenever a tag or a reader stores a key, then the attacker
never learns the key (in the past or in the future). Formally,
such a property is formalized in TAMARIN using the formula
defined below, where facts Claim Secret(a, k) are produced
for each rule of agent a (some tag or reader) which accesses
or stores a key k.

Definition 4. Secrecy is modeled via the following formula:

∀a t i. Claim secret(a, t)@i⇒ ¬(∃j. K(t)@j)

Next, we define the non-injective agreement [48]
property. We assume that the TAMARIN model is
equipped with facts Claim commit(a, b, ⟨A,B, t⟩)
(i.e., an agent a of role A claims it has established
agreement on data t with b whose role is B) and
Claim running(b, a, ⟨A,B, t⟩) (i.e., an agent b of role
B claims it tries to establish agreement on data t with a
whose role is A).

Definition 5. Non-injective agreement on data t of a role A
towards a role B is modeled via the following formula:

∀a b t i. Claim commit(a, b, ⟨A,B, t⟩)@i⇒
(∃j. Claim running(b, a, ⟨A,B, t⟩)@j)

Behavioral equivalence properties. We are interested in an-
alyzing untraceability which is one of the key requirements
of LAK’06. There are various notions of untraceability which
have been defined in the symbolic model in various frame-
works (see comparisons in [23], [22]). We have chosen to
analyze three notions of untraceability following three generic
constructions: (symbolic) game-based unlinkability [23] (no

1[41] considers a stateless abstraction, [9] only considers a small number
of sessions.

relation to game-based computational proofs), which we call
UK1 in the rest of the paper, unlinkability as being checked
in [9] (UK2), and strong unlinkability (UK3) following [41]
(itself strengthening [4]). We informally define below those
unlinkability properties as behavioral equivalences between
two different systems involving tags and readers of different
identities. Note that a tag and readers of same identity initially
share the same key k, while agents of different identities
initially have distinct keys k. We give identities to readers
because we consider reader sessions that expect to interact
with a tag of a specific identity.

Those constructions are unrelated in general [23], it seems
that UK3 is strictly stronger than the others [42] for realistic
classes of protocols. Comparing the three notions is out the
scope of this paper but being able to analyze all of them
enables us to provide more fine-grained security guarantees.

Definition 6 (UK1, informal). UK1 compares two systems
organized in two phases:

● during the learning phase, the attacker can run one
session for two tags and readers of identity id1 and id2

(the identity refers to the key a tag and a reader initially
share). This phase is identical for the two systems being
compared.

● during the guessing phase, the attacker can run a tag of
identity id1 (resp. id2) in the first (resp. second) system.

The property holds when the two systems are behaviorally
equivalent.

The two phases shall be understood as weak phases [32]
(also called stages [17]): no action from the learning phase
can be executed once an action from the guessing phase has
been executed. Intuitively, if the attacker can distinguish the
two systems then he must have a criterion to guess which is
the unknown tag in the guessing phase (i.e., id1 in the first
system, id2 in the second system). Here, the attacker can take
advantage of having interacted with tags and readers of identity
id1 and id2 during the learning phase.

Definition 7 (UK2, informal). UK2 holds when the two
following systems are behaviorally equivalent:



1) the first system is made of a tag of identity id1 and
a reader of identity either id1 or id2 (non-deterministic
choice).

2) the second system is made of a tag of identity id2 and
a reader of identity either id1 or id2 (non-deterministic
choice).

Additionally, for both systems, we assume that the attacker
initially knows one full transcript of a past honest interaction
between the tag and the reader of identity id1.

Intuitively, if the attacker can distinguish the two systems
then he is able to observe a link in the first system between the
past transcript (whose identity is id1) with data he can obtain
from the tag id1 while he doesn’t observe such a link in the
second system (which has no tag of identity id1).

Definition 8 (UK3, informal). UK3 holds when the two
following systems are behaviorally equivalent:

1) the first system is made of a tag and a reader sharing the
same identity that can perform two sessions each;

2) the second system is made of two different pairs of tag
and reader that can only perform one session each.

The second system corresponds to an ideal scenario where
there is nothing to link: no agent can be tracked because each
agent plays at most one session. This is not the case for the
first scenario where two sessions are considered for one single
tag and one single reader. Intuitively, if the attacker cannot
distinguish both systems then he has no way to track an agent
over two sessions.

Note that for all unlinkability notions, we are considering
finitely many agents and sessions only. For the case of strong
unlinkability (UK3), this is due to a known lack of precision
of diff-equivalence when it comes to verifying such strong
properties [41], [42]. Fortunately, for a bounded number of
sessions only, one can overcome this limitation in TAMARIN
using a simplified swapping approach [20]. On the contrary,
this is not a theoretical limitation for UK1 and UK2 (which is
the case for other existing tools that could handle XOR) but
rather a pragmatic approach: as proofs are getting highly com-
plex when combining behavioral equivalence, XOR reasoning,
and stateful protocols, verification requires either an excessive
amount of resources or some manual work. We thus prefer to
analyze more case studies but for slightly weaker notions of
unlinkability.
Analysis.
Analysis of reachability properties. We model secrecy of stored
keys (Definition 4) as well as the two non-injective agreement
properties for both sides (Definition 5), for one pair of tag and
reader that can play an unbounded number of sessions each.

We devise a dedicated oracle for the LAK’06 protocol to
encode superior proof-search choices compared to the default
heuristics. Oracles offer a light-weight tactics language to
guide the proof search in TAMARIN. This was necessary,
as the proofs involve inductive reasoning to cope with the
stateful nature of the LAK’06 protocol, unbounded number
of sessions, and intricate and long message deductions for

the equational theory including XOR. The oracle allows us
to automatically complete very long and highly technical sub-
proofs in order to focus the manual exploration on the high-
level proof structure. We can thus semi-automatically prove
secrecy of stored keys and non-injective agreement of the tag
role towards the reader role and TAMARIN automatically finds
an attack on non-injective agreement of the reader towards the
tag. The attack corresponds to the one described in [34] and
works just like the one presented for CR⊕ in Section IV-A.

Analysis of behavioral equivalence properties. We analyze
UK1,UK2, and UK3 using diff-equivalence verification in
TAMARIN [14]. However, since we consider those properties
for a bounded number of sessions only (1 or 2 sessions), we
have not modeled the key update mechanism and used an
abstraction where keys are chosen fresh for each session (e.g.,
as done in [41]). Thanks to those simplifications, we were able
to obtain fully automatic proofs as described next.

For UK2 (see Definition 7) we obtain a fully automatic
proof.

We analyze UK3 for four sessions in total, 2 sessions of
tag and 2 sessions of reader (see Definition 8). TAMARIN
automatically finds an attack. While it was known that the
property fails to hold [41], TAMARIN finds a slightly different
attack. Note that the protocol is claimed to be untraceable in
[34] for a weaker notion of unlinkability. Strong unlinkability
as being checked here may be considered too strong but [42],
[41] discuss how a variant of the attack found here constitutes
a practical privacy breach.

We are not able to directly analyze UK1 when taking readers
into account during the learning phase. Indeed, for such a
model, one needs a restriction2 for modeling weak phase,
that states that no action from the learning phase can be
executed after an action from the guessing phase. Such a
restriction is crucial for avoiding obvious false attacks. How-
ever, when dealing with both restrictions and diff-equivalence,
TAMARIN’s analysis frequently does not terminate, which is
a known limitation. Therefore, in order to get rid of that
restriction, we limit our analysis of weak unlinkability to tags
only. For that weak model, TAMARIN automatically proves
that UK1 holds, without oracle.

C. CH’07

Protocol Description. CH’07 [29] was designed to be a
challenge-response RFID authentication protocol that provides
tag untraceability. We base our model on [34]. Figure 8 shows
the protocol description.

The reader R and tag T share secrets k and ID. The reader
challenges the tag with a random bit string r1, modeled as a
nonce. T generates a nonce r2 and replies with a term derived
from h(r1 ⊕ r2 ⊕ k), where h is a hash function, and the
tag’s identifier ID. The hash and ID are used as input for a
function rot in which the bit string ID is rotated by a value
depending on the hash. We model rot as a hash function, but

2Restrictions can be used in a TAMARIN model to restrict considered
executions to the ones that satisfy a specific property.



R∶ knows(k, ID)

T ∶ knows(k, ID)

R∶ fresh(r1)
CH-1. R → T ∶ r1

T ∶ fresh(r2)
CH-2. T → R∶ r2, lh(rot(ID,h(r1⊕ r2⊕ k))⊕

h(r1⊕ r2⊕ k))
CH-3. R → T ∶ rh(rot(ID,h(r1⊕ r2⊕ k))⊕

h(r1⊕ r2⊕ k))

Fig. 8: The CH’07 RFID authentication protocol.

note that a better approximation would be provided by the
identity function. The term sent from the tag to the reader is
the output of the lh function which consists of the first half
of its argument bitstring. We model lh as a hash function.

The reader performs the same computation as the tag to
identify the tag. If the tag can be identified, the reader replies
with the output of the rh function, which is the second half
of the bitstring the reader computed. We model rh as a hash
function, too.

Analysis of reachability properties. We consider several au-
thentication properties: recent aliveness of tag and reader as
in [33], [34], and non-injective agreement (Definition 5) of tag
and reader, on different data items, namely on ⟨k, r1, r2⟩ and
on k ⊕ r1 ⊕ r2.

The protocol does not satisfy recent aliveness of tags, due
to an impersonation attack [33], [34]. The adversary can
impersonate a tag to a reader after one interaction with a tag.
We find this attack automatically using our TAMARIN model.
Recent aliveness of the reader R is satisfied and we find an
automatic proof.

Agreement on ⟨k, r1, r2⟩ is not satisfied for either role. In
both cases, this is because the adversary can modify both the
challenge and the response by an xor with a term x. The
adversary’s modifications cancel out and both parties complete
their protocol runs, but agreement is not satisfied on the nonces
r1 and r2. We again find the attacks automatically using
TAMARIN.

If we require agreement on the data k ⊕ r1 ⊕ r2 instead,
then both agreement claims are satisfied and TAMARIN finds
the proof automatically.

Analysis of behavioral equivalence. The protocol satisfies UK1

and UK2 (Definitions 6 and 7) and TAMARIN finds a proof
automatically. The protocol does not satisfy the property UK3

(Definition 8) because the same reader responds to a replayed
query with the same answer when the second time the attacker
picks r′2 = r

′
1⊕r1⊕r2, similarly to the attack in Section IV-A.

This allows the attacker to distinguish the two systems defining
the UK3 property: in the first system, the attacker will receive
the same response from the RFID reader in both sessions
while in the second system the attacker will receive different
responses. TAMARIN finds the attack automatically.

The interpretation of the attack is that it allows the adversary
to test whether a reader is still accepting a given tag. If tags can

R∶ knows(k, ID)

T ∶ knows(k, ID)

R∶ fresh(r1)
KCL-1. R → T ∶ r1

T ∶ fresh(r2)
KCL-2. T → R∶ ⟨ID ⊕ r2, h(r1, k) ⊕ r2⟩

Fig. 9: The KCL’07 RFID authentication protocol.

expire or be removed from a system, then this attack allows
the adversary to learn whether a previously observed tag has
expired or whether it is still valid.

D. KCL’07

KCL’07 [43] is an RFID protocol attempting to both au-
thenticate the tag and to provide untraceability for the tag.
It succeeds in providing the recent aliveness property for
authentication, but untraceability does not hold. Figure 9
shows the protocol description.

Informally, the aliveness property is guaranteed due to the
response including the hash of the challenge nonce r1 together
with the key k that is only used inside the hash and thus can
never be learned by an attacker. Note that the reader cannot
learn the value r2 actually chosen by the tag, as a man-in-
the-middle attacker can simply pick a random r3 and XOR it
to both elements of the pair the tag sends back to the reader.
Then, the reader believes r2 ⊕ r3 to be the chosen random
value. The reader can only check that the application of XOR
to both values results in ID⊕h(r1, k). Therefore, the random
value r2 is not relevant.

We thus apply a simplification in our model for the reader,
which is that it receives just one term (the XOR of the elements
of the pair output by the tag), while the tag sends the pair
using r2. To be precise, the sent term is ⟨id⊕ r2, h(r1, k) ⊕
r2⟩ received as ⟨idr2, hashr2⟩ while in our model the reader
simply receives X , interpreted as idr2⊕ hashr2.

The first property expected from this protocol is recent
aliveness, which we prove automatically with TAMARIN. As
explained in Deursen and Radomirović [34] in this protocol the
tag is not actually untraceable which can be seen by sending
the same nonce twice to a tag, and applying ⊕ to the elements
of the response pair, and comparing the results. For the same
challenge r1, the results of applying XOR to the response for
a given tag is always ID ⊕ h(r1, k). No reader is necessary
for this attack.

TAMARIN automatically finds attacks on UK1 and UK2. For
UK3, we construct the attack manually using TAMARIN.

E. Chaum’s Offline eCash Protocol

Protocol Description. Chaum’s offline eCash [26] is a suite
of three protocols that allows for anonymous, untraceable,
electronic currencies to be spent offline, i.e., without the need
to contact a bank during the payment. The protocols involve
three parties, the customer C, the seller S, and the bank B and
consist of the withdrawal protocol, where C withdraws eCash
from the bank, the payment protocol, where C pays S, and



eCash-1. C → B∶ blind(x⊕C, r),blind(x, r)
eCash-2. B → C ∶ sign(blind(x⊕C, r), skB),

sign(blind(x, r), skB)

eCash-3. S → C ∶ z
eCash-4. C → S∶ ⟨x′, sign(x′, skB)⟩ where x′=x if z=0

and x′ = x⊕C otherwise
eCash-5. S → B∶ ⟨x′, sign(x′, skB)⟩

eCash-6. B → S∶ x′

eCash-7. S → B∶ ok/not ok
Fig. 10: A simplified model of Chaum’s offline eCash protocol.

eC-1. C → E∶ blind(x⊕C, r),blind(x, r)
eC-2. E → C ∶ sign(blind(x′, r), skB)

where x′ = x or x′ = x⊕C
eC-3. C → E∶ ⟨x′, sign(x′, skB)⟩

Fig. 11: The simplified model of Chaum’s offline eCash
protocol with dishonest seller and bank represented by the
adversary-controlled environment E.

the deposit protocol, where S deposits the received currency
with B.

The protocol uses XOR as well as blind signatures, to
ensure anonymity. The blind signatures require a non subterm-
convergent equational theory, which illustrates that TAMARIN
is able to handle the combination of these two complex
equational theories.

We model a simplified version of these protocols by combin-
ing them into one protocol consisting of three (weak) phases
comprising withdrawal, payment, and deposit. We focus solely
on the mechanism that provides anonymity as long as the
customer does not double-spend a coin. We do not model
the cut and choose procedure during withdrawal and instead
assume that the customer generates well-formed coins.

The simplified protocol aims to provide anonymity to the
customer as long as he does not double-spend a coin and is
shown in Figure 10. Messages eCash-1 and eCash-2 model
the withdrawal phase, the next two messages model the
payment phase, and the remaining messages model the deposit
(redemption) phase of the protocol.

Analysis. In our TAMARIN model, we consider seller and bank
to be corrupted. This leads to a model where the customer
interacts with the environment E that is controlled by the
adversary and represents both S and B. The model is shown
in Figure 11. We model customer anonymity as secrecy of
the customer’s identity C. TAMARIN automatically verifies
that an honest customer is anonymous and finds an attack on
anonymity when the customer double spends.

F. NSLPK3xor

This is an insecure variant of the Needham-Schroeder-
Lowe [47] (NSL) 3-message public-key protocol. The dif-
ference to the classical NSL protocol is the presence of an
exclusive-or ⊕ instead of concatenation in message NSLx2.
This idea is due to Chevalier et al. [28], and this protocol has

previously been analyzed by Sasse et al. [53] using MAUDE-
NPA.

A∶ knows(sk(A), pk(B))

B∶ knows(sk(B), pk(A))

A∶ fresh(na)
NSLx1. A→ B∶ enc(⟨na,A⟩, pk(B))

B∶ fresh(nb)
NSLx2. B → A∶ enc(⟨na,nb⊕B⟩, pk(A))

NSLx3. A→ B∶ enc(nb, pk(B))

Our TAMARIN theory models the case where there is only
one key per agent and TAMARIN automatically finds attacks
on the secrecy of the two nonces as well as on the injective
agreement property, as described in detail in [53].

G. Summary of Experimental Results

We present in Figure 12 a summary of the protocols we
analyzed, the result obtained, the runtime required, as well
as the level of automation achieved. All experiments are
conducted on a server with 2 CPUs of type Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz (with 12 cores each), 256GB
of RAM, running Ubuntu 16.04.3, and we use 10 threads per
experiment.

All our theories are available at [56], in the folder
/examples/csf18-xor. Note that all theories also contain
a lemma showing that the protocol is actually executable,
avoiding modeling mistakes, all of which are verified, but not
listed in the table. We list what modifications we made on each
case study, or other modeling limitations, in the Modifications
column. Then we give the result, either (the property is
verified) or (the property does not hold - there is an attack).

For the automation level we show A for automated proofs
or attacks, meaning using the standard heuristic and proof tree
exploration. We show A (BFS) if the standard heuristic was
used to find attacks, but using a breadth-first search of the
proof tree (this is a common technique in TAMARIN, as BFS
is often quicker at finding attacks, but not for proofs). We
write O when an oracle was used to automatically find the
results, as described before. We use SM for a semi-manually
achieved proof, which means a short human exploration of
the state-space was conducted, and then the remainder of the
proof is automatic using the oracle. There is one case where
we manually constructed an attack, denoted M.

V. CONCLUSION

We have extended the TAMARIN prover with equational
theories including XOR, consequently expanding the class of
protocols that can be faithfully modeled and analyzed using
automatic verifiers. As TAMARIN is sound and complete, we
cannot hope for guaranteed termination since the underlying
problem is undecidable. However, our new normal form con-
ditions, heuristics, and use of light-weight tactics encoded as
oracles allow for a good level of automation as suggested by
our numerous case studies. We believe that TAMARIN can now
tackle large-scale real-life protocols with XOR.

As future work, we would like to study mobile telecommu-
nication protocols that use XOR such as the AKA protocol [3],



Protocol Name Property Modifications Result Automation Runtime
CR-xor aliveness tag A 0.7s

recent aliveness tag A 1.3s
NSL-xor nonce secrecy A 5.1s

injective agreement initiator A 1.4s
injective agreement responder A 4.0s

CH07 recent aliveness tag A 2.2s
recent aliveness reader A 1.1s
non-inj. agree. tag (k ⊕ r1⊕ r2) A 1.1s
non-inj. agree. tag (k, r1, r2) A 1.3s
non-inj. agree. reader (k ⊕ r1⊕ r2) A 1.0s
non-inj. agree. reader (k, r1, r2) A 1.1s

Chaum Offline *coins No phases O 10.4s
anonymity No phases A 2.8s
anonymity of double spender No phases A 12.7s

KCL07 recent aliveness tag XORed pair A 1.7s
LAK06 *helpingSecrecy A 0.4s

non-injective agreement tag A 22.0s
non-injective agreement reader A 1.3s

LAK06-state *helpingUpdateKey O 21.1s
*helpingStackHash A 19.6s
*helpingSecrecy SM †31.6s
non-injective agreement tag SM †55.7s
non-injective agreement reader A (BFS) 1m 38.7s

CH07 UK1 A 51.5s
UK2 A 12m16.6s
UK3 A 3m07.1s

KCL07 UK1 XORed pair A (BFS) 126m27.6s
UK2 XORed pair A 1m02.6s
UK3 XORed pair M †2.1s

LAK06 UK1 (tags only) bounded sessions A 4m25.4s
UK2 bounded sessions A 15m10.4s
UK3 bounded sessions A 85m46.1s

Fig. 12: Summary Table of Results. Automation: A = automatic, A (BFS) = automatic with breadth-first search for attacks,
O=oracle, SM=semi-manual, M=manual. † means the time is for verifying the resulting stored proof. More details in
Section IV-G. Properties starting with * are intermediate helping lemmas in the modular proofs.

[1]. Previous analyses of this protocol [5], [50] were not able
to model parts of the protocol making use of XOR, therefore
providing guarantees that are too weak in our opinion. We
would like to investigate the new perspectives opened by
our extension in TAMARIN and faithfully analyze the AKA
protocol as used in existing mobile networks (i.e., 3G [3]
and 4G [1]) as well as in 5G that is being standardized [2].
On the theory side an interesting challenge is to lift some
of the limitations of equivalence proofs in TAMARIN. For
example, dealing with the combination of diff-equivalence
and restrictions could enable additional case studies, including
protocols using weak phases.
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