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Abstract 

The highly convoluted cortical folding of the human brain is intriguingly complex and variable across 

individuals. Exploring the underlying representative patterns of cortical folding is of great importance for 

many neuroimaging studies. At term birth, all major cortical folds are established and are minimally 

affected by the complicated postnatal environments; hence, neonates are the ideal candidates for exploring 

early postnatal cortical folding patterns, which yet remain largely unexplored. In this paper, we propose a 

novel method for exploring the representative regional folding patterns of infant brains. Specifically, first, 

multi-view curvature features are constructed to comprehensively characterize the complex characteristics 

of cortical folding. Second, for each view of curvature features, a similarity matrix is computed to measure 

the similarity of cortical folding in a specific region between any pair of subjects. Next, a similarity network 

fusion method is adopted to nonlinearly and adaptively fuse all the similarity matrices into a single one for 

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
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retaining both shared and complementary similarity information of the multiple characteristics of cortical 

folding. Finally, based on the fused similarity matrix and a hierarchical affinity propagation clustering 

approach, all subjects are automatically grouped into several clusters to obtain the representative folding 

patterns. To show the applications, we have applied the proposed method to a large-scale dataset with 595 

normal neonates and discovered representative folding patterns in several cortical regions, i.e., the superior 

temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and cingulate cortex. Meanwhile, we have 

revealed sex difference in STG, IFG, and cingulate cortex, as well as hemispheric asymmetries in STG and 

cingulate cortex in terms of cortical folding patterns. Moreover, we have also validated the proposed method 

on a public adult dataset, i.e., the Human Connectome Project (HCP), and revealed that certain major 

cortical folding patterns of adults are largely established at term birth. 

Keywords: Cortical folding pattern, infant brain, spherical wavelets, sex difference, hemispheric 

asymmetry 

Highlights: 

1. A novel method for exploring representative folding patterns of human brains; 

2. Applications to discover representative folding patterns in several cortical regions; 

3. Folding patterns show region-specific sex differences and hemispheric asymmetries; 

4. Certain major cortical folding patterns of adults are largely established at term birth. 
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1. Introduction 

The cerebral cortex of the human brain is a convoluted structure with highly complex and variable folding 

patterns across individuals. Many neurodevelopmental and neuropsychiatric disorders are associated with 

abnormal cortical folding morphology, which is likely the consequence of the abnormality in the dynamic 

folding development during perinatal brain development. During the last trimester of human pregnancy, 

the cortex develops rapidly from a smooth lissencephalic structure to an extremely folded one with notable 

increases in terms of many measures, e.g., brain volume, cortical surface area, sulcal depth, and curvature 

(Kapellou et al., 2006; Dubois et al., 2007; Dubois et al., 2008; Studholme, 2011; Orasanu et al., 2016). 

Meanwhile, the hemispheric asymmetries of cortical folding emerge in several regions during this period, 

e.g., the Heschl’s gyrus, planum temporale, and superior temporal sulcus (Dubois et al., 2010; Habas et al., 

2011; Orasanu et al., 2016; Shimony et al., 2016). At term birth, neonates have already developed all the 

primary and secondary cortical folds and presented sex difference and hemispheric asymmetries (Chi et al., 

1977; Awate et al., 2010; Hill et al., 2010; Li et al., 2014b), largely resembling the complex cortical folding 

morphology of adults (Li et al., 2014d; Li et al., 2018). Therefore, studying the morphology of neonatal 

cortical folding could provide important insights into normal early brain development and 

neurodevelopmental and neuropsychiatric disorders.   

     However, noticing the remarkable inter-subject variability of cortical folding in neonates (Fig. 1), it is 

still unclear on what are the representative normal neonatal folding patterns in each cortical region. 

Discovering the underlying representative patterns of cortical folding in neonatal brains is of great 

importance for neuroimaging studies of early brain development. As this will help: 1) provide important 

insights into early cortical folding variability across individuals and better understanding of the possible 

relationship between folding patterns and behavioral/cognitive functions (Klyachko and Stevens, 2003; 

Choe et al., 2012; Sun et al., 2012; Im et al., 2015; Cachia et al., 2016); 2) build multiple infant cortical 

surface atlases based on cortical folding patterns for enabling better spatial normalization and registration 

of cortical surfaces across infants; 3) identify the abnormal cortical folding patterns that could potentially 

associate with brain disorders during infancy; 4) explore possible sex differences as well as hemispheric 
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asymmetries in relation to cortical folding patterns (Paus et al., 1996; Awate et al., 2010; Dubois et al., 

2010; Li et al., 2014d; Li et al., 2015a; Fish et al., 2016); and 5) investigate the latent relationships of 

cortical folding patterns between the developing neonatal brains and the matured adult brains. 

 

Fig. 1. Large variability of cortical folding patterns across 20 neonates, which are randomly selected from 

our dataset with 595 neonates. Cortical surfaces are color-coded by mean curvature, with the red denoting 

the sulci and the blue denoting the gyri. 

     Several pioneer studies of cortical folding patterns have been conducted based on visual inspection of 

adult brains. For example, the classic textbook “Atlas of Sulci” (Ono et al., 1990) comprehensively 

describes sulcal patterns of various regions, by visual examination of 25 autopsy specimen brains. Relying 

on MR imaging, Ebeling et al. classified the cortical folding of the inferior frontal gyrus into four types, 

and Clark and Plante further refined this classification (Ebeling et al., 1989; Clark and Plante, 1998; 

Tomaiuolo et al., 1999). Yucel et al. classified the cortical folding of the anterior cingulate cortex into three 

types by identifying the presence of the paracingulate sulcus (Yücel et al., 2001). Pereira-Pedro et al. 

classified the cortical folding of the precuneus into three categories by checking sulcal connections and 

sulcal shape patterns (Pereira-Pedro and Bruner, 2016; Bruner et al., 2017). However, visual inspection is 
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very subjective, error-prone and time consuming, and thus is not capable of fully capturing inter-subject 

variability of cortical folding in the modern large-scale MRI datasets.  

     To address this issue, several computational methods were proposed for automatically and objectively 

discovering cortical folding patterns (Sun et al., 2007; Sun et al., 2009; Coulon et al., 2012; Meng et al., 

2016). Sun et al. leveraged 3D moment invariants as shape descriptors of sulci to explore the folding 

patterns of the cingulate cortex, and successfully identified three patterns (Sun et al., 2007). As the 3D 

moment invariants may not be sufficient to capture the complexity of cortical folding, Sun et al. further 

combined the Iterative Closest Point (ICP) registration method and the Isomap algorithms to better explore 

the folding patterns in the superior temporal sulcus (STS), cingulate cortex, and inferior frontal region (Sun 

et al., 2009). This method led to the discovery of an additional parallel cingulate pattern, which indeed 

occupies a big percentage in large populations (Ono et al., 1990; Cachia et al., 2016; Meng et al., 2016). 

Coulon et al. proposed a template-based method to extract features for encoding the presence and 

orientation of sulcal regions and revealed five patterns of the left inferior frontal sulcus (IFS) (Coulon et al., 

2012). As the averaging-based template missed lots of specific folding information of individual subjects, 

these features still cannot comprehensively characterize cortical folding.  

      Although the above studies identified several meaningful folding patterns of specific cortical regions, 

they were only applied to adult datasets with relatively small or moderate sample sizes, where many 

representative cortical folding patterns might have been missed. Moreover, the existing discovered cortical 

folding patterns of adults might not be representative of that of neonates, due to the remarkable postnatal 

development and environmental influence. To date, the prenatal developmental mechanisms and postnatal 

origins of representative cortical folding patterns are not clearly underpinned. Therefore, Meng et al. 

devised a method to discover the sulcal folding patterns using a large neonatal dataset (Meng et al., 2016). 

Specifically, they characterized sulcal folding based on the spatial distribution of sulcal pits (i.e., deep sulcal 

landmarks) and their relational graphs, and revealed several typical folding patterns in the central sulcus, 

STS and cingulate sulcus. For example, three and four sulcal folding patterns were discovered in STS and 

cingulate cortex, respectively. However, since the folding patterns were characterized based on sulcal pits, 
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which are only applicable for deep sulci, this method is not suitable for mining gyral folding patterns. 

Indeed, sulci and gyri have distinct cortical properties, structural/functional connections, and developmental 

mechanisms (Van Essen, 1997; Nie et al., 2011; Li et al., 2015a; Li et al., 2015b). 

      In this paper, we propose a novel computational method for exploring the representative folding patterns 

in local regions (especially for gyri) of the infant cerebral cortex based on multi-view curvature features, 

by leveraging a large-scale neonatal dataset with 595 healthy subjects. Specifically, first we devise multi-

view curvature features to comprehensively characterize the complex and multi-scale nature of cortical 

folding. Then, for each feature in a local cortical region, we build a similarity matrix to measure the affinity 

of cortical folding between any pair of subjects. Third, we nonlinearly fuse the similarity matrices from all 

features into a single matrix to retain both shared and complementary similarity information of multi-view 

features. Finally, based on the fused similarity matrix, we apply a hierarchical affinity propagation 

clustering approach to group subjects into several clusters, each with a representative folding pattern of the 

specific region. To show the applications of the proposed method, we explore the representative folding 

patterns in four cortical regions, including the superior temporal gyrus, inferior frontal gyrus, precuneus, 

and cingulate cortex. The motivation of choosing these regions is that most of them have shown notably 

variable folding patterns in previous adult studies, thus we can easily compare our discovered neonatal 

folding patterns with those discovered adult folding patterns. Meanwhile, we also analyze the sex effects 

and hemispheric asymmetries of our discovered folding patterns of these regions. Importantly, we also 

validate the proposed method on an adult dataset, i.e., the Human Connectome Project (HCP), and compare 

the cortical folding patterns as well as their hemispheric asymmetries between infant and adult brains. 

2. Materials and Methods 

2.1 Subjects and MR Image Acquisition 

The Institutional Review Board of the University of North Carolina (UNC) School of Medicine approved 

this study. The dataset includes both healthy singletons and twin infants and is part of a large prospective 

study of early brain development. The UNC hospitals recruited the pregnant mothers during their second 

trimester of pregnancy. Parents of each recruited subject provided written informed consents. Infants with 
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abnormalities on fetal ultrasound as well as mothers with major medical or psychotic illness were excluded 

from the study. None of infants in this study cohort suffered from congenital anomalies, metabolic disease, 

and focal lesions (Gilmore et al., 2012).  

     MR images were acquired from 595 healthy neonates in this study, including 308 males (119 singletons 

and 189 twin children) and 287 females (124 singletons and 163 twin children). All infants were scanned 

unsedated. Before MRI scanning, infants were fed, swaddled, and fitted with ear protection. No significant 

difference was found in the gestational ages (GA) at birth and postmenstrual ages (PA) at MRI scan between 

male and female subjects. Demographic information of the infant cohort is shown in Table 1. The histogram 

of PA at MRI scan of infants in 8 sub-groups (related to male/female, singleton/twin and term-

born/premature) is displayed in Fig. 2.  

Table 1. Demographic information of the infant cohort. (GA: gestational age, PA: postmenstrual age. The 

range in the bracket denotes the age range of each group. All the ages are measured in ‘weeks’.) 

 All Male Female 
Subjects 595 308 287 

GA at birth 37.2 ± 2.8 (28.6 - 42.1) 37.4 ± 2.8 (28.9 - 41.7) 37.1 ± 2.7 (28.6 - 42.1) 
PA at scan 41.6 ± 1.8 (36.7 - 46.5) 41.8 ± 1.9 (36.7 - 46.4) 41.4 ± 1.7 (37.4 - 46.5) 

Singleton - Term-born 230 109 121 
GA at birth 39.6 ± 1.1 (37.0 - 42.1) 39.6 ± 1.0 (37.0 - 41.7) 39.6 ± 1.2 (37.0 - 42.1) 
PA at scan 42.6 ± 1.4 (38.9 - 46.1) 42.5 ± 1.3 (38.9 - 46.1) 42.6 ± 1.5 (39.1 - 45.7) 

Singleton - Premature 13 10 3 
GA at birth 35.8 ± 0.6 (34.4 - 36.4) 35.7 ± 0.7 (34.4 - 36.3) 36.0 ± 0.4 (35.6 - 36.4) 
PA at scan 40.2 ± 1.8 (37.9 - 44.4) 39.8 ± 1.4 (37.9 - 42.3) 41.7 ± 2.4 (40.3 - 44.4) 

Twin - Term-born 137 72 65 
GA at birth 37.8 ± 0.5 (37.0 - 39.9) 37.6 ± 0.5 (37.0 - 39.9) 37.9 ± 0.6 (37.0 - 39.0) 
PA at scan 41.8 ± 1.9 (38.6 - 46.5) 41.3 ± 1.6 (38.6 - 46.4) 42.3 ± 2.1 (39.2 - 46.5) 

Twin - Premature 215 117 98 
GA at birth 34.4 ± 2.2 (28.6 - 36.9) 34.5 ± 2.3 (28.9 - 36.9) 34.2 ± 2.2 (28.6 - 36.9) 
PA at scan 40.6 ± 1.5 (36.7 - 44.9) 40.7 ± 1.6 (36.7 - 44.9) 40.5 ± 1.4 (37.4 - 44.1) 
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Fig. 2. Histogram of postmenstrual ages at MRI scan of our dataset. 

T1-weighted and T2-weighted brain MR images were acquired on a Siemens head-only 3T scanner with 

a circular polarized head coil (Allegra, Siemens Medical System, Erlangen, Germany). T1-weighted images 

(160 sagittal slices) were acquired with a 3D magnetization-prepared rapid gradient echo (MPRAGE) 

sequence (TR = 1820 ms, TE = 4.38 ms, inversion time = 1100 ms, flip angle = 7º, and resolution = 1×1×1 

mm3). T2-weighted images (70 transverse slices) were acquired with the turbo spin-echo (TSE) sequences 

(TR = 7380 ms, TE = 119 ms, flip angle = 150º, and resolution = 1.25×1.25×1.95 mm3).  

2.2 Image Processing and Cortical Surface Mapping 

All T1-weighted and T2-weighted MR images were processed using the UNC Infant Pipeline (Li et al., 

2015c), which has been validated on >2000 infant MRI scans. Concretely, for image preprocessing, this 

pipeline includes the following main steps: 1) stripping the non-cerebral tissues through a learning-based 

method (Shi et al., 2012); 2) removing the cerebellum and brain stem by the HAMMER registration method 

(Shen and Davatzikos, 2002); 3) correcting the intensity inhomogeneity using N3 algorithm (Sled et al., 

1998); 4) segmenting the brain tissue into gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF) through an infant-specific level set based method (Wang et al., 2013; Wang et al., 2014b); 5) masking 
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the non-cortical structures (i.e., lateral ventricles and subcortical structures) and filling these regions, and 

then dividing each brain into left and right hemispheres. 

     Cortical surfaces of each hemisphere for each subject were reconstructed by a deformable surface 

method (Li et al., 2012b; Li et al., 2014a) based on the segmented tissues. Specifically, first, topology 

defects were corrected based on a learning-based method (Hao et al., 2016), thus ensuring a spherical 

topology for each hemisphere. Then, the corrected white matter was tessellated as a triangular mesh and 

further deformed by preserving its initial topology to reconstruct the inner and outer cortical surfaces. Each 

inner cortical surface was further smoothed, inflated and mapped onto a standard sphere (Fischl et al., 1999). 

Each spherical cortical surface was aligned onto the UNC 4D Infant Cortical Surface Atlas1 (Li et al., 2015c) 

using Spherical Demons (Yeo et al., 2010), thus establishing the vertex-to-vertex cortical correspondences 

across all subjects. All cortical surfaces were finally resampled to the same standard-mesh tessellation with 

163,842 vertices.  

2.3 Discovering Cortical Folding Patterns 

The proposed method for exploring the representative cortical folding patterns of infants is shown in Fig. 

3. Specifically, given the mean curvature map on the inner surface of each subject (Fig. 3-a), we first derive 

two kinds of curvature-related features: 1) decomposed curvature maps at multiple spatial-frequency scales 

(Fig. 3-b); and 2) gyral crest curves (Fig. 3-c) extracted from the mean curvature map. These “multi-view” 

curvature features lead to a comprehensive characterization of cortical folding. Second, to better measure 

the similarity among subjects on multi-view features in a specific cortical region of interest (ROI), the 

folding difference between any pairs of subjects was firstly computed for each feature, thus obtaining 

multiple inter-subject distance matrices (Fig. 3-d), which were further converted as similarity matrices (Fig. 

3-e). Third, leveraging the similarity matrix fusion (SNF) method (Wang et al., 2014a), these multiple 

similarity matrices were adaptively and nonlinearly fused together as a single comprehensive similarity 

matrix (Fig. 3-f) to carry both shared and complementary information across multi-view features. 

																																																													
1	UNC 4D Infant Cortical Surface Atlas: https://www.nitrc.org/projects/infantsurfatlas 



10 
 

Ultimately, all subjects were clustered into several groups based on this fused similarity matrix, with each 

group representing a typical cortical folding pattern in the specific cortical region (Fig. 3-g). We detail each 

of these steps in the following sections. 

 

Fig. 3. Pipeline of the proposed computational framework for exploring cortical folding patterns. (a) The 

original mean curvature maps on inner cortical surfaces of all the subjects. Here, N=595 is the total number 

of subjects in the dataset. (b) The decomposed curvature maps at multiple scales using over-complete 

spherical wavelets. (c) The extracted gyral crest curves based on the original mean curvature maps. (d) The 

six distance/dissimilarity matrices based on curvature-derived features for measuring the folding difference 

between any pair of subjects in a specific cortical ROI. (e) The six corresponding similarity matrices. (f) 

The fused similarity matrix by nonlinear fusion of six similarity matrices using SNF. (g) The discovered 

cortical folding patterns in a specific region (herein the superior temporal gyrus) using clustering. 

2.3.1 Computing Multi-View Curvature-based Features 

Cortical folding can be characterized at multiple scales and aspects (Li et al., 2010b; Mangin et al., 2010; 

Duan et al., 2017a; Duan et al., 2017b). For instance, the mean curvature has been extensively used to study 

the fine-scale features of cortical folding, as it is informative in the highly-bended regions, such as gyral 
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crests and sulcal bottoms. Sulcal depth has been used to explore the relatively coarse scale features of 

cortical folding, as it can capture the gradual slopes of gyri and sulci. However, both curvature and sulcal 

depth can only characterize cortical folding to some extent, and their intrinsic relationships remain unclear. 

To this end, we leveraged over-complete spherical wavelet transformation to decompose the mean 

curvature map of the cortical surface into multiple spatial-frequency scales for a natural multi-scale 

characterization of cortical folding. Meanwhile, we further extracted the gyral crest curves based on the 

curvature map as high-level characteristics. Thus, we obtain multi-view curvature features to 

comprehensively characterize the infant cortical folding. 

Multi-scale Decomposition of Curvature Map 

First, we computed the mean curvature map of the inner cortical surface (with a spherical topology) for 

each subject (Fig. 4-a) and further decomposed the mean curvature map into multiple complementary 

spatial-frequency scales (Fig. 4-b), by using over-complete spherical wavelets (Yeo et al., 2006; Yeo et al., 

2008). Of note, the conventional spherical wavelets (e.g., orthogonal/bi-orthogonal wavelet transforms) 

would fail to meet our purpose, since they suffer from sampling aliasing and thus lack translational and 

rotational invariance in surface parameterization (Yu et al., 2007). In contrast, over-complete spherical 

wavelets address this issue by guaranteeing that each scale is sufficiently sampled, and thus are much more 

robust and accurate in characterizing cortical folding. 

 

Fig. 4. Decomposed multi-scale curvature maps based on over-complete spherical wavelets. (a) The 

original mean curvature map of the inner cortical surface. (b) The decomposed curvature maps at levels 1-
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7. As we can see, at coarser levels, the wavelet coefficients encode the larger scale folding information; 

while at finer levels, the wavelet coefficients capture the smaller scale folding information. 

     Let ! be an input mean curvature map mapped onto a spherical cortical surface, and {#$}$&'(  be the 

spherical analysis filters at L frequency levels. By convolving each filter #$ with ! in the spherical domain, 

we can obtain a set of wavelet coefficients )$ at multiple spatial-frequency scales as: )$ = ! ∗ #$, which 

can thus encode multi-scale information of the original surface characteristics (Fig. 4). Herein, the analysis 

filter is defined as: #$ = ,$-, where ,$ is a nonlinear dilation operator and . is the frequency level (with a 

larger . corresponding to a narrower filter). - denotes the mother wavelet filter, which is defined as a 

Laplacian-of-Gaussian filter in our application.  

     To ensure the shape analysis is rotation-invariant, we over-sampled the wavelet coefficients with 

163,842 vertices on the spherical surface. As the underlying wavelet basis functions have local supports in 

both space and frequency, multi-scale wavelet coefficients encode rich information of cortical folding at 

different levels. As shown in Fig. 4, the original mean curvature map of one subject was decomposed into 

7 frequency levels, thus generating a natural multi-scale characterization of cortical folding. Specifically, 

at coarser levels, the wavelet coefficients encode larger scale folding information, while at finer levels, the 

wavelet coefficients capture smaller scale folding information. These 7 levels are sufficient to capture multi-

scale folding information, since the level 7 already mainly contains less useful high-frequency noises.   

Extraction of Gyral Crest Curves 

Gyral crest curves are high-level features of cortical folding and thus can be used as reliable landmarks for 

characterizing the inter-subject variability of cortical folding. To extract gyral crest curves, first, we 

partitioned the original mean curvature map of each surface into small patches, called supervertices (Li et 

al., 2012a). Herein, the boundaries of supervertices aligned well with the gyral crest curves and sulcal fundi 

in the highly bended cortical regions. Next, we automatically linked boundaries of these supervertices to 

form gyral crest curves. The flowchart of extraction of gyral crest curves is shown in Fig. 5.  
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Fig. 5. Extraction of gyral crest curves. (a) The original mean curvature surface with initial seeds of 

supervertices. (b) The boundaries of partitioned supervertices. (c) The results of supervertices partition, 

where different colors indicate different supervertices. (d) The extracted gyral crest curves. 

     The supervertices partition of the cortical surface was formulated as a labeling problem, i.e., assigning 

a supervertex label to each vertex by taking into account the spatial contextual information. First, a total of 

1280 seeds, which were relatively uniformly distributed on the cortical surface (Fig. 5-a), were initialized 

as the seeds of supervertices (Li et al., 2012a). Next, the label of each vertex belonging to a supervertex 

was determined based on geometric information by minimizing the following energy function: 

/ = (1 − exp	(−7 89: ; ))= + ? @(;, B) ∙ (1 − D( E= − EF )){=,F}∈H              (1) 

where the first term is a data term, the second term is a spatial smoothness term, and ?  is a weight 

determining the tradeoff between these two terms. Specifically, the data term was determined by the 

curvature-weighted geodesic distance 89:(;)  between each vertex ;  and each seed representing a 

supervertex label E=. The 89:(;) was computed by the fast marching method on triangular meshes (Kimmel 

and Sethian, 1998; Li et al., 2010a), with a marching speed setting as exp(−I J(;) ), where J(;) denotes 

the mean curvature of a vertex ;. Herein, we set ? = 0.1, 7 = 0.2, and I = 0.3, as suggested in (Li et al., 

2012a). Intuitively, given the seed of a supervetex, if a geodesic path connecting the supervertex seed and 
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another vertex passes through regions with large magnitudes of curvature, typically corresponding to sulcal 

bottoms or gyral crests, their weighted geodesic distance will be large. Thus the cost of labeling this vertex 

as the current supervertex is large. 

    In the smoothness term, @(;, B)  was a spatially-adaptive weight between a pair of vertices in the 

neighborhood H on the cortical surface, defined as: 

@ ;, B = '
O
(exp	(− J ; ) + exp	(− J B )) ∙ 1 + P ; ∙ P B                 (2) 

where P represents the normal direction. Accordingly, the cost of labeling two neighboring vertices ; and 

B is small at flat regions, but large at highly-bended regions, i.e., sulcal bottoms or gyral crests, especially 

for two vertices on the same sulcal bank. Hence, the above energy function encourages the boundaries of 

supervertices to align well with sulcal fundi or gyral crest curves at highly bended regions. This energy 

minimization problem was efficiently solved by alpha-expansion graph cuts method (Boykov et al., 2001). 

An example of supervertices partition is shown in Fig. 5-b and 5-c. 

    Based on supervertices partition, we extracted the gyral crest curves using a two-step threshold method. 

Note that the mean curvatures of the vertices on gyral crest curves are negative values on the cortical surface 

with inward-oriented normal vector field. First, we marked the boundaries with the average mean curvature 

smaller than a low threshold Q$RS as ‘strict’ segments of gyral crest curves, and marked those with the 

average mean curvature smaller than a high threshold QTUVT as ‘candidate’ segments. We empirically set 

Q$RS = −0.3 and QTUVT = −0.2, as suggested in (Li et al., 2012a). Then, from each strict segment, we 

performed curve linking by adding the adjacent strict or candidate segments with the minimum transition 

angle between them, thus obtaining the linked gyral crest curves, as shown in Fig. 5-d. Of note, if we set 

the thresholds as positive values, we can extract the sulcal fundi. Thus, the whole framework is applicable 

to discover folding patterns for both gyri and sulci as needed. 

2.3.2 Computing Similarity Matrices of Multi-view Features 

To integrate the high-dimensional multi-view features of a specific cortical region for clustering, a simple 

way is to first concatenate them together and then calculate a similarity matrix. However, it is very difficult 
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to define appropriate weights for different features and also difficult to leverage their complementary and 

common information. To address this issue, we first computed the similarity matrix of each feature and 

then adaptively and nonlinearly integrated all similarity matrices together, by leveraging an effective 

similarity network fusion (SNF) method (Wang et al., 2014a). To this end, for each feature we first devised 

a distance matrix for measuring inter-subject dissimilarity of cortical folding in a specific region, and then 

converted it as a similarity matrix.  

        For the multi-scale curvature features obtained via over-complete spherical wavelets, we only 

leveraged the levels 2 to 6 for our task. This is because level 1 only captures very large scale information 

that is highly similar across individuals, thus only containing the indistinctive information. As for level 7, 

it mainly contains useless high frequency noises, as shown in Fig. 4, making the results unreliable and 

unstable. Thus, both level 1 and level 7 were not useful for mining folding patterns. Given a specific cortical 

ROI, its distance matrices for decomposed curvature levels 2 to 6 were calculated as: 

W$ X, Y = ()$U ; − )$
Z ; )[	

= , . ∈ 2,3,4,5,6                                        (3) 

where X and Y indicate the i-th subject and the j-th subject, respectively, . is the decomposed level, and ; 

represents a vertex in the specific cortical ROI. Thus, we obtained five distance matrices {W[, … , W`} for 

all subjects. 

  As for the gyral crest curves on each surface, we first calculated their geodesic distance map on the 

aligned spherical cortical surface, with each vertex value denoting the geodesic distance between itself and 

its nearest gyral crest curve. For any pair of subjects X and Y, given their gyral crest curves aU and aZ in a 

specific cortical ROI, a point on aU is denoted as b, a point on aZ as c, the corresponding closest point of b 

as bd on aZ, and the corresponding closest point of c as cd on aU. The distance matrix of the specific cortical 

region was defined as: 

Wefg9h X, Y = '
[

'
ij	

kXEl b, bd	
m∈aj	

+ '
in	

kXEl c, cd	
o∈an	

                           (4) 

where kXEl(∙) defines the geodesic distance between two points on the aligned spherical cortical surface. 

pU	 and pZ	 are the total numbers of points on gyral crest curves qU and qZ in the specific ROI, respectively. 
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    After calculating the distance matrices, we converted them into similarity matrices through a scaled 

exponential kernel (Wang et al., 2014a), defined as:  

                    rs X, Y = exp −
Wt
u U,Z

vwj,n
                                                       (5) 

where Ws  is one of the distance matrices: {W[, … , W`} and Wefg9h . x  is a hyperparameter of the kernel 

function, and set as 0.8 as recommended in (Wang et al., 2014a). zU,Z is defined as:  

                       zU,Z =
{gm| Wt U,}j ~{gm| Wt Z,}n ~Wt(U,Z)

�
                                              (6) 

where ÄÅbÇ Ws X, ÉU  denotes the average distance between	X-th subject and its K nearest neighbors. 

Herein, we empirically set Ñ = 30. We thus obtained six similarity matrices rs: {r[, … ,r`} and refg9h, 

for comprehensively measuring inter-subject similarities of cortical folding in a specific region. 

2.3.3 Fusing Similarity Matrices of Multi-view Features 

As mentioned above, to properly integrate the similarity matrices of multi-view curvature features, we 

leveraged the effective SNF method (Wang et al., 2014a). Specifically, SNF nonlinearly fuses these 

similarity matrices together by propagating reliable information across them, thus capturing both shared 

and complementary information for effectively discovering folding patterns. For each similarity matrix rs, 

two corresponding matrices were derived: 1) Ös, which contains the full similarity information of each 

subject to all others; 2) Üs, which only carries the important sparse similarity information of each subject 

with its K nearest neighbors. The matrix Ös was obtained by normalizing the similarity matrix rs as: 

Ös X, Y =

rt(U,Z)
[ rt(U,á)àâj

, 	Y ≠ X
'
[
, 																			Y = X

			                                                (7) 

     By setting Ös X, X = '
[
, the normalized matrix will be numerically stable, since the self-similarities on 

the diagonal entries of rs were excluded. Let ãU denote the subject X’s K nearest neighbors including X. 

The sparse similarity matrix is defined as:  
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                     Üs X, Y =
rt(U,Z)

rt(U,á)à∈ãj
, 	Y ∈ ãU

0, 							otherwise
                                                    (8) 

     Through this equation, only the K highest values in each row of rs were normalized, and all elements 

with low similarity were set to zero. This is based on the assumption that elements with higher similarity 

values carry the most important information for pattern discovery, while those with low similarity values 

carry less useful information. By setting Ös
h&ì = Ös , these matrices were iteratively updated using the 

following equation: 

Ös
h~' = Üs×

Öà
ï

àât

ñ
×(Üs)ó	                                                   (9) 

where Ös
h~' was the status matrix of ò-th feature after l iterations and was normalized after each iteration 

based on Eq. 7. Thus, the isolated weak similarities disappeared, while the strong similarities were added 

to others. Meanwhile, the weak similarities supported by all matrices were retained, depending on their 

neighborhood connections across features. After convergence at l∗  iterations, the fused full similarity 

matrix was defined as the average of all Ös
h∗, which are typically similar to each other. In our experiments, 

this procedure typically converged in 20 iterations. 

2.3.4 Clustering of Folding Patterns based on the Fused Similarity Matrix 

To discover the representative patterns of cortical folding, a proper data-driven clustering method is needed 

to identify the groups of similar subjects. The majority of existing clustering methods require to predefine 

the number of clusters. However, there is no universally best method to choose a good cluster number, 

although there are many kinds of clustering quality measures, which typically lead to different results. As 

an exploratory study without prior knowledge on how many patterns existing in each region, we should 

choose one clustering method which decides the cluster number automatically based on the underlying 

characteristics of data. Thus we leveraged the widely used AP clustering method (Frey and Dueck, 2007), 

which doesn’t need to define cluster number. Moreover, since AP treats all the data points as potential 

exemplars in the beginning, it is more robust and unbiased by initialization. In AP, the real-valued 
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information ‘responsibility’ and ‘availability’ propagate between data points until the final exemplars and 

corresponding clusters emerge.  

      However, since cortical folding is typically complex and highly variable across subjects, too many 

clusters unexpectedly emerged in our study. To discover the most representative patterns of cortical folding, 

we further clustered the identified exemplars in a hierarchical way until the final cluster number was in a 

moderate range. Specifically, after performing the AP clustering, we obtained the subjects’ cluster map (i.e., 

assigned cluster labels to each subject) and exemplars. First, we constructed a new similarity matrix among 

these exemplars. Second, we performed the AP based on this new similarity matrix and obtained the 

exemplars’ cluster map (i.e., assigned cluster labels to each exemplar of previous hierarchy) and new 

exemplars. Third, we modified the subjects’ cluster map according to the exemplar’s cluster map obtained 

in the second step. We repeated these three steps to reduce the cluster number hierarchically. After several 

iterations, the resulted cluster number decreased to a moderate value, e.g., no more than M. For a compact 

inspection of major patterns, we set ô = 5 in this study, since the number of major folding patterns in some 

stable regions (e.g., the cingulate cortex, central sulcus, and superior temporal sulcus) are typically no more 

than 5 in most adult studies (Yücel et al., 2001; Sun et al., 2009; Pereira-Pedro and Bruner, 2016; Bruner 

et al., 2017). Of note, the proposed framework is generic for discovering folding patterns at other desired 

numbers. 

3. Experiments and Results 

We evaluated our method using a large-scale dataset including 595 healthy neonates. Specifically, we 

discovered representative cortical folding patterns independently in each of our selected four representative 

cortical regions, including the superior temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and 

cingulate cortex, which were automatically labeled by the method in (Li et al., 2014c) based on the protocol 

in (Desikan et al., 2006). Then, we investigated the sex difference as well as hemispheric asymmetries in 

our identified infant folding patterns of these four regions. We also further validated our method on the 

public Human Connectome Project (HCP) dataset (Van Essen et al., 2013) (500 release version) with 511 
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healthy adults, and compared the discovered folding patterns as well as their hemispheric asymmetries 

between infant and adult cortical surfaces. 

3.1 Validation on the Superior Temporal Gyrus 

As a novel exploratory study with absence of ground truth, we validated our method on STG by the 

following manners: 1) to visually validate the discovered patterns, we displayed the discovered cortical 

folding patterns as well as included examples of each pattern in representative individuals; 2) to show that 

the proposed method can capture much richer information and identify more representative folding patterns, 

we compared the discovered patterns by our method based on multi-view curvatures and those by the 

original mean curvatures and gyral crest curves separately; 3) to evaluate the reproducibility of the 

identified patterns and the effectiveness of cluster number selection, we used two different clustering 

methods (i.e., hierarchical AP and spectral clustering); 4) to validate the reproducibility and scalability of 

the proposed method, we performed an additional 2-fold cross-validation, as conventionally adopted in 

exploratory neuroscientific studies; and 5) to validate the reliability of the proposed method, we further 

applied our method on simulated datasets. 

 Fig. 6 shows the four discovered representative patterns of STG by the proposed method and 

representative individuals in each pattern, where we note the high intra-pattern similarity and low inter-

pattern similarity. Herein, STG includes the cortical regions with labels of STG, transverse temporal cortex 

(Heschl’s gyrus), and banks of the superior temporal sulcus (STS) in the Desikan cortical parcellation 

(Desikan et al., 2006). In pattern 1, STG is relatively straight, and its posterior region is flat as shown in the 

close-up view (second column of Fig. 6). In pattern 2, STG slightly bends around its posterior region. 

Compared with pattern 2, pattern 3 is even more curved in the posterior part, with a small gyral fold in the 

anterior bank, as highlighted by a dashed arrow in the close-up view of pattern 3. Pattern 4 is the most 

bended pattern with a notable gyral branch in the posterior part. In 595 neonates, the percentage of each of 

the four identified patterns is 36.3%, 25.0%, 18.5%, and 20.2%, respectively.  
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Fig. 6. Representative patterns of the superior temporal gyrus (STG). The first column displays the four 

discovered patterns. The second column presents the close-up views of distinct parts. The dashed arrows in 

patterns 1 and 2 point to the flat and bended posterior regions of STG, while in patterns 3 and 4 they point 

to the distinct gyral folds. Columns 3-7 display five typical individuals in each pattern, which indeed 

demonstrated that our discovered patterns exist in the dataset.  

    We compare the results by our proposed multi-view curvature features with those of using the original 

mean curvature map and gyral crest curves separately. We display in Fig. 7 the identified patterns by using 

the original mean curvature map (Fig. 7(a)), gyral crest curves (Fig. 7(b)), and the proposed multi-view 

curvature features (Fig. 7(c)). Note that, in our hierarchical AP, the resulting cluster number decreases from 

the earlier hierarchy to the later hierarchy. Based on the original mean curvature map, only 2 patterns (L1 

and L2) emerge in the clustering result of the last hierarchy. Hence, we further display the clustering results 

of the penultimate hierarchy, which revealed 6 patterns (P1 to P6). However, compared with the results 

(M1 to M4) by the proposed multi-view curvatures, all the patterns including L1 to L2 and P1 to P6 

discovered based on the original mean curvature map can be actually grouped into two patterns M1 and 

M2. Notably, patterns M3 and M4 have not been identified based on the original mean curvature map, due 

to its limited capability in characterization of cortical folding. In addition, we compared the identified 

patterns by using gyral crest curves (G1 to G4) with our results (M1 to M4). As we can see, the patterns 
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G1 and G3 are similar to our pattern M2, and the pattern G4 is similar to pattern M3. However, the pattern 

G2 is a transition state of the flat pattern M1 and the bended pattern M2. And the bended pattern M4 with 

a notable gyral branch is missing, indicating that gyral crest curves alone are also not able to 

comprehensively characterize cortical folding. In contrast, our proposed multi-view curvature features are 

able to better capture the complexity of cortical folding, and thus are more capable of revealing the diverse 

representative folding patterns. 

 

Fig. 7. Comparison of discovered patterns of the superior temporal gyrus by using (a) the original mean 

curvature map (L1 to P6), (b) the gyral crest curves (G1 to G4), and (c) the proposed multi-view curvature 

features (M1 to M4). Herein, patterns L1 to L2 and patterns P1 to P6 are the last hierarchy and penultimate 

hierarchy clustering results of using the original curvature feature, respectively. As we can see, the proposed 

method discovered four distinctive folding patterns, while using the original curvature feature or gyral crest 

curves essentially only discovered two or three distinct patterns, as several patterns are similar among their 

discovered folding patterns.  

     To evaluate the reproducibility of our results and the effectiveness of cluster number choosing, we 

compare our hierarchical AP method with an alternative clustering method: spectral clustering method (Ng 
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et al., 2002; Von Luxburg, 2007), based on our fused similarity matrix. The results of spectral clustering 

with cluster number M = 3, 4 and 5 are shown in the first three rows in Fig. 8. As we can see, when the 

cluster number was set to M = 4, which is identical to the automatically determined cluster number by 

hierarchical AP, both clustering methods revealed very similar patterns. However, when M = 3, the third 

pattern A-3/4 by hierarchical AP has not been captured in the discovered patterns S-1/3 to S-3/3 

(corresponding to patterns A-1/4, A-2/4 and A-4/4, respectively) by spectral clustering. When M = 5, the 

first two patterns S-1/5 and S-2/5 discovered by spectral clustering actually can be summarized in one 

pattern similar to the pattern A-1/4, and the remaining patterns S-3/5 to S-5/5 correspond to patterns A-2/4 

to A-4/4. These results indicate that our hierarchical AP is able to automatically discover a proper number 

of distinctive folding patterns and also that our findings are reproducible using a different clustering 

approach. 

 

Fig. 8. Comparison of discovered patterns of the superior temporal gyrus by using spectral clustering (top 

rows) and hierarchical AP (bottom row). For spectral clustering, the cluster number M is predefined as 3, 

4 and 5, and the corresponding discovered folding patterns are shown in the first three rows, respectively. 

While for the hierarchical AP, the four patterns A-1/4 to A-4/4 automatically emerge without predefining 

the cluster number.  

     To further validate the reproducibility and scalability of the proposed method, we use 2-fold cross-

validation to examine the differences of the revealed cortical folding patterns in these two sub-populations 
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(Fig. 9), which were obtained by randomly and equally dividing the whole dataset. The first two rows in 

Fig. 9 display the discovered folding patterns of STG in the first and second sub-populations and the third 

row displays the folding patterns based on the whole dataset. As can be seen, the four folding patterns 

identified using both sub-populations are highly consistent and also similar to those identified using the 

whole dataset, indicating that our method can obtain reproducible and scalable results.  

 

Fig. 9. Comparison of discovered patterns of the superior temporal gyrus using 2-fold cross-validation 

(rows 1-2) vs. the whole dataset (bottom row). The identified folding patterns are similar across different 

sub-populations and also consistent with patterns discovered using the whole dataset, indicating that our 

results are reproducible, scalable, and reliable. 

     To further validate the proposed method, we apply it on simulated datasets, which are generated based 

on the simulated deformation of our discovered folding patterns in real neonatal dataset. The details of 

generation of the simulated datasets are described in Eq. 1 in Supplementary Materials. To simulate 

different degrees of deformation, we set the deformation ‘rate’ to 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. 

Several surfaces simulated with typical deformation rates 0.3 and 0.5 are shown in Fig. S1 in Supplementary 

Materials. The discovered folding patterns of these two simulated datasets are shown in Fig. S2. As we can 

see, the discovered folding patterns in the simulated datasets are largely consistent with the folding patterns 
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discovered in our neonatal dataset. The average discovery accuracies of correctly clustering the simulated 

surfaces into their corresponding patterns in the five simulated datasets with deformation rates 0.1, 0.2, 0.3, 

0.4 and 0.5 are 100%, 100%, 100%, 93.5% and 85.2%, respectively. These results indicate that the proposed 

method is reliable and effective for cortical folding discovery. 

3.2 Discovered Folding Patterns in Other Cortical Regions 

For the precuneus, we discovered three typical patterns shown in Fig. 10. Specifically, in pattern 1, the 

precuneal gyrus shows a lowercase ‘m’ shape, with the precuneal sulcus (highlighted by the dashed arrow) 

reaching the edge of the precuneus. In pattern 2, the precuneal gyrus is similar to a capital ‘M’ shape. The 

precuneal sulcus does not reach the edge of the precuneus, while one additional sulcus branch shows in the 

middle of the dorsal peaks of the ‘M’ shape. As for pattern 3, compared to the first two patterns, we note 

the absence of the gyral structure right in the middle part of the precuneus and the presence of a long deep 

sulcus, thus exhibiting as an ‘II’ shape. The three discovered patterns occupy 47.7%, 27.1%, and 25.2% of 

our dataset, respectively.   

 

Fig. 10. Representative patterns of the precuneus. The first column displays the three discovered patterns. 

The dashed arrow highlights the precuneal sulcus, which reaches the edge of precuneus in patterns 1 and 3. 

Columns 2-6 display five typical individuals for each pattern. 
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     In the inferior frontal gyrus (IFG), four representative folding patterns are discovered as shown in Fig. 

11. Of note, IFG includes the pars opercularis, pars triangularis and pars orbitalis in the parcellation protocol 

in (Desikan et al., 2006). Pattern 1 resembles a slightly deformed capital ‘N’ shape, with an additional 

sulcus in the pars opercularis, as indicated by the dashed arrow. Pattern 2 has two continuous bended turns, 

showing as a lowercase ‘m’ shape slightly flattened around the middle. Compared with pattern 2, pattern 3 

becomes more bended and is interrupted by a sulcus (highlighted by a dashed arrow) in the middle, thus 

morphing into a capital ‘M’ shape. As for pattern 4, it appears as a combination of pattern 2 or 3 with pattern 

1 to some extent, as its anterior part is similar to that of patterns 2 or 3, while its posterior part is similar to 

that of pattern 1 with an additional sulcus in the pars opercularis (highlighted by a dashed arrow). These 

IFG patterns represent 25.2%, 29.6%, 30.8%, and 14.4% of our dataset, respectively.  

	

Fig. 11. Representative patterns of the inferior frontal gyrus. The first column displays the four discovered 

patterns. The dashed arrows point to the additional sulci. Columns 2-6 display five typical individuals for 

each pattern. 

     For the cingulate cortex, we found that the individual variability mainly locates in sulci rather than in 

gyri. Since the cingulate sulcus is spatially interlaced with the superior frontal gyrus, we examined a 

relatively large region, including the posterior cingulate cortex, caudal anterior-cingulate cortex, rostral 

anterior cingulate cortex, medial orbital frontal cortex, paracentral lobule, and medial superior frontal gyrus 
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in the Desikan parecellation (Desikan et al., 2006). Five typical folding patterns were identified in the 

cingulate cortex, as shown in Fig. 12. Specifically, pattern 1 shows a long cingulate sulcus interrupted by 

a narrow gyrus in the posterior part. Pattern 2 shows a long continuous cingulate sulcus with a set of small 

folds topping its anterior part. The cingulate sulcus in pattern 3 is interrupted in the middle part, while 

pattern 4 contains two long parallel sulci. Pattern 5 can be seen as a representation of pattern 1 with an 

additional shallow parallel sulcus in the anterior part. The percentage of each pattern in our dataset is 19.8%, 

16.6%, 18.7%, 23.0%, and 21.9%, respectively. 	

	

Fig. 12. Representative patterns of the cingulate cortex. The first column displays the five discovered 

patterns. Columns 2-6 show five typical individuals for each pattern. In pattern 1 and pattern 3, the dashed 

arrows point to the locations, where the posterior and middle parts of the cingulate are interrupted. 

3.3 Sex Differences of Cortical Folding Patterns 

Our dataset contains 595 healthy neonates, and the numbers of males and females are relatively balanced, 

i.e., 308 males (51.8%) and 287 females (48.2%). However, in each discovered pattern, the male percentage 

is not always similar to the female percentage. To examine the possible association between folding patterns 

and sex, cross tabulation and Pearson chi-square test were performed in each region (Table 2). According 

to the results of our statistical analysis, sex difference in folding patterns was observed in the STG, IFG and 

cingulate cortex, but not in the precuneus. Moreover, the proportions of male/female infants listed in Table 
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2 for different patterns in four cortical regions were displayed in Fig. T1 in Supplementary Materials, in 

which the patterns with significantly different proportions between male and female infants were marked 

based on Two-Proportions Z-Test.   

     In Table 2, the p-value obtained by the Pearson chi-square test for STG is 0.001, which suggests that 

the folding patterns of STG are significantly associated with sex. We also note that pattern 3 is significantly 

less associated with males (15.2%) than females (22.0%), while pattern 4 is significantly more associated 

with males (26.3%) than females (13.6%), as marked in Fig. T1. As for patterns 1 and 2, they were largely 

evenly associated with both males and females. In IFG, the folding patterns are also significantly associated 

with sex with p-value = 0.022 given by Pearson chi-square test. From Fig. T1, we clearly see that pattern 3 

contains significantly fewer males (26.6%) than females (35.2%), while pattern 4 contains significantly 

more males (17.9%) compared with females (10.8%). Another region with folding patterns significantly 

associated with sex is the cingulate cortex (p-value = 0.015), in which pattern 1 contains significantly fewer 

males (15.3%) than females (24.7%) as marked in Fig. T1. However, we did not observe significant sex 

difference in the precuneus (p-value = 0.154). In addition, we further performed two-sample t-test for 

testing the statistical dependence of sex distribution between different folding pattern pairs as shown in 

Table S1 in Supplementary Materials. According to Table S1, significant differences (p<0.05) of sex 

distributions were found between certain pairs of cortical folding patterns in STG, IFG and cingulate cortex, 

except for Precuneus. These results indicate that the sex differences of cortical folding patterns present in 

STG, IFG and cingulate cortex. Additionally, since sex is related to brain size, we investigated whether the 

folding patterns are related to brain volume using one-way analysis of variance (ANOVA). The 

corresponding results in Table S2 and corresponding brain volume distributions in Fig. T2 in 

Supplementary Materials show that the folding patterns are not related to brain volume in most cortical 

regions: STG, precuneus and cingulate cortex. However, brain volumes in different folding patterns of IFG 

significantly differ.  

Table 2. The folding patterns * sex cross tabulation and chi-square test results. ‘%’ is the percentage within 

patterns. ‘p-value’ denotes the 2-sided asymptotic significance of Pearson chi-square test. The significance 
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value highlighted in bold means that sex difference (p-value < 0.05) was observed in the corresponding 

region. (Each percentage in the bracket denotes the ratio of the number of male (female) infants in each 

pattern to the total number of male (female) infants.) 

Region Pattern Male (%) Female (%) Total p-value 

Superior Temporal Gyrus 
Pattern 1 108 (35.1%) 108 (37.6%) 216 

0.001 
Pattern 2 72 (23.4%) 77 (26.8%) 149 
Pattern 3 47 (15.2%) 63 (22.0%) 110 
Pattern 4 81 (26.3%) 39 (13.6%) 120 

Precuneus 
Pattern 1 137 (44.5%) 147(51.2%) 284 

0.154 Pattern 2 93 (30.2%) 68 (23.7%) 161 
Pattern 3 78 (25.3%) 72 (25.1%) 150 

Inferior Frontal Gyrus 

Pattern 1 83 (26.9%) 67 (23.3%) 150 

0.022 Pattern 2 88 (28.6%) 88 (30.7%) 176 
Pattern 3 82 (26.6%) 101 (35.2%) 183 
Pattern 4 55 (17.9%) 31 (10.8%) 86 

Cingulate Cortex 

Pattern 1 47 (15.3%) 71 (24.7%) 118 

0.015 
Pattern 2 52 (16.9%) 47 (16.4%) 99 
Pattern 3 53 (17.2%) 58 (20.2%) 111 
Pattern 4 79 (25.6%) 58 (20.2%) 137 
Pattern 5 77 (25.0%) 53 (18.5%) 130 

3.4 Hemispheric Asymmetries of Cortical Folding Patterns 

As all the above presented results are from the left hemisphere, to explore the left-right hemispheric 

asymmetries of infant cortical folding patterns, we further apply the proposed method onto the 

corresponding regions in the right hemispheres. The comparisons of discovered cortical folding patterns on 

both hemispheres are shown in Fig. 13, in which the most similar patterns are placed in the same column 

in each region. Besides, the percentages of each discovered infant folding pattern in the left and right 

hemispheres in four cortical regions are displayed in Table S6 in Supplementary Materials. As we can see, 

significant asymmetries are observed in STG, and slight asymmetries are observed in the cingulate cortex, 

while no hemispheric asymmetry is observed in IFG and precuneus.  

       In STG, the first two patterns in the right hemisphere are more curved than the corresponding first two 

patterns in the left hemisphere, thus no flat STG pattern is found in the right hemisphere. And the third 

pattern in the right hemisphere is much shorter than that of the left hemisphere and also no small gyral fold 

is found in the anterior bank of STS as shown in the close-up view of Fig. 6. Moreover, the most asymmetric 
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pattern is the fourth pattern. Unlike the corresponding pattern with a notable gyral branch in the posterior 

part in the left hemisphere, there is only a small gyral fold in the inferior-posterior region of the banks of 

STS on the right hemisphere. As for the cingulate cortex, we found that most cortical folding patterns are 

similar on both hemispheres except the second and third patterns. Different from the corresponding patterns 

in the left hemisphere, the second pattern shows a cingulate sulcus without a set of small folds in the anterior 

part, and the third pattern shows a long smooth sulcus without interruption in the middle part in the right 

hemisphere.  

 

Fig. 13. Comparisons of the discovered infant folding patterns in the left and right hemispheres. (a) Superior 

Temporal Gyrus; (b) Precuneus; (c) Inferior Frontal Gyrus; (d) Cingulate Cortex. 

3.5 Other Confounding Factors 

Considering other confounding factors which may affect folding patterns, we further analyze the effects of 

postmenstrual ages (PA) at scan, twins, and preterm birth in our discovered folding patterns (see 

Supplementary Materials). To investigate whether the discovered folding patterns are related to PA at scan, 

one-way ANOVA is performed as shown in Table S3, and the distributions of PA at scan in different 

patterns of four regions are shown in Fig. T3. We can see that the folding patterns are not related to PA at 

scan in all regions except for the cingulate cortex. As for the other two factors, we firstly apply the proposed 

method on the subsets with either only singletons or only term-born neonates, respectively, to visually 

examine whether the discovered folding patterns are influenced by twins or premature neonates. The 
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comparison of the discovered cortical folding patterns of the whole dataset and the singleton subset is shown 

in Fig. S3, and the comparison with the term-born neonate subset is shown in Fig. S4. These two figures 

indicate that the majority folding patterns are not influenced by the factors of twin and premature infants. 

Besides, to statistically analyze the independence of the cortical folding patterns with singleton/twin infants, 

the Pearson chi-square test is performed in each region as shown in Table S4. The proportions of 

singleton/twin infants in each pattern are displayed in Fig. T4, in which the patterns with significantly 

different proportions between singleton and twin infants are marked based on Two-Proportions Z-Test. 

Similarly, the results for studying the independence of folding patterns with term-born/premature infants 

are displayed in Table S5, and the corresponding plot is shown in Fig. T5. Moreover, since subjects 

overlapped in singleton/twin and term-born/premature groups, the Pearson chi-square test is further 

performed to analyze the independence of discovered cortical folding patterns and four subject groups (i.e., 

Singleton - Term-born, Twins - Term-born, Singletons - Premature, and Twins - Premature) in specific 

regions, as shown in Table S8. These tables and figures indicate that the folding patterns are independent 

of the factors singleton/twin, term-born/premature, and their combinations. In conclusion, all these results 

suggest that the majority of our discovered folding patterns cannot be significantly influenced by these 

confounding factors. (see Supplementary Materials for more details). 

3.6 Validation on Adults 

To investigate the applicability of our method to adult data, and more importantly, to compare the infant 

and adult folding patterns more intuitively and reveal their underlying relations, we apply the proposed 

method on a widely used adult dataset, i.e., the Human Connectome Project (HCP) (Van Essen et al., 2013). 

Herein, the HCP 500 Subjects + MEG2 Data Release2 is adopted. Our experiment uses 511 young adults’ 

cortical surfaces, which are obtained through the HCP structural preprocessing pipeline and HCP 

FreeSurfer pipeline (Glasser et al., 2013). We extract the cortical features and discover the folding patterns 

using the same steps detailed in Section 2. Similarly, we explore the same four cortical regions in our infant 

																																																													
2	HCP 500 Subjects + MEG2 Data Release: https://www.humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-release	
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study, including the left STG, precuneus, IFG, and cingulate cortex. Fig. 14 shows the comparisons of the 

discovered infant and adult cortical folding patterns. The majority of folding patterns discovered in the four 

cortical regions of adult brains are largely consistent with those of infant brains, indicating that our method 

is reliable and applicable to both infant and adult datasets. However, in STG, an extra pattern emerges in 

adult brains, which shows a notable gyral branch occupying the middle STS; as for IFG, pattern 1 

discovered in the infant brain disappears in the adult brain.  

Fig. 14. Comparisons of the discovered folding patterns in infant and adult brains. (a) Superior Temporal 

Gyrus; (b) Precuneus; (c) Inferior Frontal Gyrus; (d) Cingulate Cortex. 

     To explore the left-right hemispheric asymmetries of adult cortical folding patterns, and reveal the 

relations of the hemispheric asymmetries of infants and adults, we further apply the proposed method on 

the right hemispheres in HCP dataset. The comparisons of the discovered adult folding patterns in left and 

right hemispheres are shown in Fig. 15. The percentages of each discovered adult folding pattern in both 

hemispheres in four cortical regions are displayed in Table S7 in Supplementary Materials. As we can see, 

most of the discovered cortical folding patterns of adults in the four regions are largely symmetric on two 

hemispheres, while the hemispheric asymmetries are observed in STG and cingulate cortex. In STG, the 

posterior part of the third pattern in the right hemisphere is more bended and shorter than that in the left 

hemisphere, and no small gyral fold is found in the anterior bank of STS in the right hemisphere. Moreover, 

the most notable asymmetric pattern is the extra pattern presenting in the left hemisphere but absenting in 

the right hemisphere. As for the cingulate cortex, the asymmetric pattern is observed in the third pattern, 
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which shows a long smooth sulcus in the right hemisphere, but shows a sulcus with an interruption in the 

middle part in the left hemisphere. 

 

Fig. 15. Comparisons of the discovered adult folding patterns in the left and right hemispheres. (a) Superior 

Temporal Gyrus; (b) Precuneus; (c) Inferior Frontal Gyrus; (d) Cingulate Cortex. 

4. Discussion 

4.1 Computational Method 

One main contribution of this paper is that we have developed a novel computational framework based on 

multi-view curvature features for discovering the representative patterns of cortical folding in large-scale 

datasets. Our proposed method has several appealing aspects. First, we leveraged multi-view curvature 

features, i.e., the decomposed curvature maps at multiple spatial-frequency scales and high-level gyral crest 

curves, to comprehensively characterize the cortical folding. Indeed, the proposed multi-view features are 

able to identify the most representative patterns of cortical folding, a few of which were not depicted when 

using the original curvature map or gyral crest curves (Fig. 7). Second, we showed that our framework is 

robust to the clustering methods and that the identified patterns using affinity propagation clustering 

methods are reproducible when using an alternative clustering method (i.e., spectral clustering). Third, the 

proposed framework can easily integrate more geometric features, such as local gyrification (Luders et al., 

2006; Schaer et al., 2008; Li et al., 2014d) and sulcal depth (Im et al., 2006b; Fornito et al., 2008) through 

the adaptive nonlinear fusion procedure. Fourth, it is generic and can be easily applied to any cortical region 
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or even the whole cortex. Noting that most existing studies in this field generally group the folding patterns 

based on visual inspection (Ono et al., 1990; Borst et al., 2014; Garrison et al., 2015; Pereira-Pedro and 

Bruner, 2016; Bruner et al., 2017), the proposed method greatly contributes to neuroimaging research with 

a sharp focus on folding morphology analysis of specific cortical regions.  

4.2 Comparison of Infant and Adult Folding Patterns  

Another main contribution of this paper consists in unravelling the distinctive representative folding 

patterns of four typical cortical regions: STG, IFG, precuneus, and cingulate cortex, in both infant and adult 

brains. STG plays an important role in higher-order auditory processing, language processing and social 

perception (Buchsbaum et al., 2001; Bigler et al., 2007; Leff et al., 2009; Chang et al., 2010; Jou et al., 

2010). Current evidence indicates that STG is structurally and functionally altered in many 

neurodevelopmental disorders, e.g., schizophrenia and autism (Delisi et al., 1994; Keshavan et al., 1998; 

De Bellis et al., 2002; Kasai et al., 2003; Bigler et al., 2007; Lee et al., 2007; Takahashi et al., 2009). Hence, 

discovering the typical folding patterns of STG might help spot atypical changes due to specific 

neurodevelopmental disorders. Herein, we discovered four typical folding patterns of STG in infants, which 

display similar morphologies to a large extent with the first four patterns discovered in HCP adult dataset, 

while an extra fifth folding pattern with a notable gyral branch occupying the middle STS is shown in the 

discovered adult patterns (Fig. 14-a). As for the fifth pattern, the reason for its absence in infants and 

existence in adults is unclear. It might emerge with postnatal neurodevelopment, since STG develops 

rapidly in folding degree during infancy (Li et al., 2014d). However, this needs to be further investigated 

in future studies. To the best of our knowledge, no previous studies have explored typical folding patterns 

of STG. Only a few studies explored the folding patterns of STS (Sun et al., 2009; Meng et al., 2016; Le 

Guen et al., 2018), which overlaps with the STG, thus providing meaningful information to our discovery. 

For instance, Le Guen et al. found the sulcal interruption (equal to the gyral branch in our study), named 

plis de passage (PP), in STS on the average surface of a subset from HCP. In particular, two types of PPs 

were found respectively in the posterior STS and in the middle STS. These findings are consistent with our 

discovered fourth pattern in both datasets and the fifth pattern in adult dataset, respectively. These also 
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indirectly demonstrate the reliability of our discovered STG folding patterns. For the first time, we revealed 

representative neonatal folding patterns of STG in a large-scale dataset. These could be employed as 

references for the future comparative studies of normal and abnormal folding patterns of STG. 

     Precuneus is an important region involved in visuo-spatial integration, self-awareness, egocentric 

memory, motor imagery and autonoesis (Cavanna and Trimble, 2006; Bruner et al., 2017). In our 

experiment, the discovered folding patterns in precuneus of infant brains are largely consistent with that of 

adult brains, as shown in Fig. 14-b, which are also similar to other discoveries in the related existing adult 

studies. For instance, through multiple times of visual examination on a dataset with 50 adult specimens 

(Pereira-Pedro and Bruner, 2016; Bruner et al., 2017), Pereira-Pedro et al. classified the precuneus into 

three categories, totally 14 types, based on different sulcal connections and sulcal shape patterns. Among 

these types, their identified patterns B2, B3 and C3 are actually very similar to our discovered patterns 1, 2 

and 3, respectively. Notably, they indicated that in B category, patterns B2 and B3 account for 88% of their 

whole dataset; while in C category, pattern C3 is the most frequent type. These findings on adults are largely 

in line with our results on neonates, and further emphasize that the three patterns discovered by our method 

are prevalent since early postnatal brain development. 

     IFG is critical for motor control (Swann et al., 2009; Hampshire et al., 2010; Swann et al., 2012) and 

language processing, including word comprehension and production (Indefrey and Levelt, 2000; Costafreda 

et al., 2006). In addition, IFG is the core structure of emotional empathy, involved in emotional contagion 

and emotion recognition (Schulte-Rüther et al., 2007; Shamay-Tsoory et al., 2009). Several studies have 

focused on studying the folding patterns of IFG in adults through visual inspection (Ebeling et al., 1989; 

Clark and Plante, 1998; Tomaiuolo et al., 1999). Ebeling et al. classified IFG folding patterns into four 

types, and Clark et al. further classified the third type into four subtypes. In our study, we discovered four 

distinct folding patterns in infants, among which, the last three folding patterns ‘mirrored’ the discovered 

adult folding patterns in HCP dataset, as shown in Fig. 14-c. Based on our qualitative comparison with 

previous studies, we found that the infant folding patterns 1 and 4 (Fig. 11) correspond to the subtypes of 

‘TYPE III’ in (Clark and Plante, 1998), which show an additional sulcus in the posterior IFG. Furthermore, 
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both pattern 2 and the bended pattern 3 ( a small extra sulcus presents in its middle part), correspond to the 

‘TYPE I’ in (Clark and Plante, 1998).	Since Clark et al. classified IFG folding patterns based on the 

structural connections of its surrounded sulci, they did not identify the gradual folding we discovered in 

patterns 2 and 3 with the same type of surrounded sulci. Overall, patterns ‘TYPE I’ and ‘TYPE III’, which 

have corresponding folding patterns in our results, are most prevalent (Clark and Plante, 1998) to represent 

93.9% of their depicted 7 IFG patterns in adults. This indicates that our proposed method can discover the 

most representative folding patterns of IFG, and also suggests that the adult folding patterns in IFG are 

largely established at term birth. 

     As for the cingulate cortex, existing studies have reported that the anterior cingulate cortex is involved 

in emotional processing and performance monitoring of cognitive control (Devinsky et al., 1995; Rainville 

et al., 1997; Carter et al., 1998; Bush et al., 2000; MacDonald et al., 2000; Critchley et al., 2003; Botvinick 

et al., 2004; Kerns et al., 2004). The morphological differences in the cingulate cortex could associate with 

hallucinations and inhibitory control (Borst et al., 2014; Garrison et al., 2015). Herein, we discovered five 

typical folding patterns of infants, including both single sulcus types and parallel sulci types, which are 

largely consistent with our discovered patterns of adults in HCP dataset (Fig. 14-d), and are also in line 

with the discoveries in previous studies in adults and infants (Ono et al., 1990; Sun et al., 2009; Cachia et 

al., 2016; Meng et al., 2016). Specifically, the four types of the cingulate cortex patterns in adults (Sun et 

al., 2009) correspond to our neonatal patterns 4, 2, 3 and 5, respectively, while the four neonatal patterns 

identified in (Meng et al., 2016) correspond to our patterns 1, 4, 3 and 5, respectively. Thus, compared to 

both studies, our proposed method is able to identify an additional representative folding pattern, which 

represents more than 15% of subjects in the whole dataset, indicating the advantage of our method. 

4.3 Sex Difference of Cortical Folding Patterns 

The influence of sex on the cortical folding patterns is still largely unknown. To fill this knowledge gap, 

for the first time, we explored the sex difference in our discovered cortical folding patterns in the STG, IFG, 

cingulate cortex, and precuneus. As shown in Table 2, sex is significantly associated with cortical folding 

patterns in STG, IFG, and cingulate cortex, but not in precuneus. This indicates that some typical folding 
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patterns may present male or female dominant trends. Some studies on older children and adults showed 

gender differences in cortical folding (Awate et al., 2010; Li et al., 2014d; Takerkart et al., 2017). For 

instance, Takerkart et al. found the gender differences in the spatial organization of sulcal pits in parts of 

the frontal cortex (overlapped with IFG) and the cingulate cortex, which are partially consistent with our 

results. In addition to cortical folding, many studies found gender differences in the STG, IFG and cingulate 

cortex in terms of cortical morphology (e.g., cortical volume, cortical thickness, and surface area) and 

functional activations (Blanton et al., 2004; Schirmer et al., 2004; Hofer et al., 2006; Im et al., 2006a; Koch 

et al., 2007; Wang et al., 2007; Schulte-Rüther et al., 2008; Brun et al., 2009; Li et al., 2014d; Meng et al., 

2014). Specifically, the cortical volume of IFG, the cortical thickness of IFG and STG, and the surface 

areas of auditory structure (parts of the STG) and cingulate region, are larger in females than in males, 

which might be related to the general higher language skills in females (Blanton et al., 2004; Im et al., 

2006a; Brun et al., 2009). These studies show that structural and functional gender differences exist in the 

STG, IFG and cingulate region, which might also be related to cortical folding morphology as highlighted 

by our findings.  

4.4 Hemispheric Asymmetries of Cortical Folding Patterns 

Human brain exhibits hemispheric asymmetries in terms of structure and function (Toga and Thompson, 

2003). In existing infant studies, cortical hemispheric asymmetries, which appear before term birth and 

largely preserve during postnatal brain development, have been observed in various cortical measurements, 

e.g., surface area, sulcal depth, cortical thickness, vertex position, as well as sulcal pits distribution (Hill et 

al., 2010; Li et al., 2014d; Meng et al., 2014; Li et al., 2015a; Le Guen et al., 2017; Takerkart et al., 2017; 

Im and Grant, 2018). Herein, we found hemispheric asymmetries present in STG and cingulate cortex by 

comparing our discovered cortical folding patterns in left and right hemispheres of both infant and adult 

brains. Consistent with a number of studies in infants (Hill et al., 2010; Glasel et al., 2011; Li et al., 2014b; 

Li et al., 2014d; Meng et al., 2014; Leroy et al., 2015; Li et al., 2015a) as well as adults (Im et al., 2009; 

Leroy et al., 2015; Maingault et al., 2016; Le Guen et al., 2018), we found that the most significant 

hemispheric asymmetries of cortical folding are in STG, which might be related to the lateralization of 
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language functions and the asymmetric genetic programs. Specifically, in infants, the most asymmetric 

folding pattern of STG exists an obvious gyral branch in the banks of STS on the left hemisphere, while no 

such gyral branch is found on the right hemisphere, as shown in Fig. 13. Interestingly, in adults, this folding 

pattern is present in the right hemisphere, occupying a small percentage in the HCP. The most asymmetric 

folding pattern in adults is the extra folding pattern with a notable gyral branch in the middle STS, which 

is only present in the left hemisphere, as displayed in Fig. 15. Recently, it has been shown that STS is the 

most asymmetric sulcus in both children and adults, and the asymmetry of STS is associated with more 

frequent sulcal interruptions, i.e., PPs, shown in the left hemisphere (Leroy et al., 2015; Le Guen et al., 

2018). This is consistent with our discovered fourth pattern in both datasets and the fifth pattern in HCP in 

the left hemisphere. Le Guen et al. also found that when the PPs are present in the right hemisphere, they 

are mostly located at the junction between the STS main horizontal branch and its caudal branch, and the 

pattern with this kind of PPs occupies a small percentage (11.2%) in their dataset. This supports our finding 

that the fourth pattern with gyral branch in the posterior STG exists in the right hemisphere, and it also 

occupies a small percentage (11.7%, see Table S7 in Supplementary Materials). Moreover, we also found 

that the posterior temporal region of third and fourth patterns in the right hemisphere is much shorter than 

those in the left hemisphere, which is in line with previous findings that the right Sylvian fissure is shorter 

than the left one (LeMay, 1984) and the left hemisphere presents a larger planum temporale (Geschwind 

and Levitsky, 1968; Glasel et al., 2011). As for the cingulate cortex, slightly asymmetric patterns are found 

based on the presence and extension of the paracingulate sulcus. From Tables S6 and S7, and Fig. 13 and 

15, we clearly see that the paracingulate sulcus occur more pronounced and more often in the ACC of the 

left hemisphere (patterns 2, 4, and 5) as compared to that of the right hemisphere in both infant and adult 

datasets, in line with a previous study in adults (Huster et al., 2007). More importantly, from Tables S6 and 

S7, we can see that in precuneus, IFG, and cingulate cortex, the percentages of most of the corresponding 

patterns in the left and right hemispheres are largely similar, while the percentages in STG with significant 

hemispheric asymmetries are quite different. This further indicates that the discovered folding patterns 
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presenting hemispheric asymmetries are reliable. In summary, our findings suggest that hemispheric 

asymmetries of cortical folding patterns in adults are likely present in neonates.  

4.5 Limitations and Future Work 

This work has several limitations. First, in our current method, we only leveraged curvature-derived multi-

view features for discovering cortical folding patterns. One can also use the proposed generic framework 

to incorporate more cortical features, e.g., local gyrification and sulcal depth, to examine the possible 

relevance of other features. Second, although the most representative cortical folding patterns discovered 

in each region are largely consistent when applying the method on different sub-datasets, the cluster number 

automatically determined by hierarchical AP is not always very stable and the appearance of a few folding 

patterns could slightly change. As shown in Fig. S3 and Fig. S4 in Supplementary Materials, several folding 

patterns occupying small percentages in the whole dataset may not be discovered when using small sub-

datasets, but the major cortical folding patterns are consistently present. Third, although we found that the 

discovered cortical folding patterns of neonates are largely in line with our discovered adult patterns in 

HCP and reported visual examination results in related studies, we also found few STG and IFG patterns 

differed between infants and adults. The mechanisms driving such differences are still unclear, but it may 

relate to rapid development of cortical folding in STG and IFG during infancy (Li et al., 2014d). Further 

studies are needed to give more insights into these findings. Last, we also note that little is known about the 

underlying mechanisms of forming these variable folding patterns from a smooth neuronal tube during 

prenatal brain development. As white matter fiber connectivity is thought to be a major driving force of 

cortical folding formation (Van Essen, 1997; Nie et al., 2011; Li et al., 2015b), it would be interesting to 

investigate the relationship between these discovered folding patterns and the underlying fiber connectivity 

using diffusion tensor imaging. In our future work, we will further apply our proposed method to fetal 

datasets at different gestational ages to examine when these major folding patterns emerge, and apply it to 

toddler and also other adult datasets. These findings will thus reveal the evolution of cortical folding 

patterns during prenatal and postnatal brain development. Moreover, we will investigate the identified 

cortical folding patterns in relation to genetics, cognitive scores, and early neurodevelopmental disorders.   
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5. Conclusion 

We have presented a novel computational method to automatically explore the most representative folding 

patterns of the cerebral cortex in a large-scale dataset of neonates. Leveraging the multi-view curvature-

derived representations, our method is capable of comprehensively capturing the complexity and variability 

of cortical folding patterns. We unprecedentedly identified in neonatal brains the representative distinct 

folding patterns of the superior temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and cingulate 

cortex. On one hand, most of the folding patterns in the infant cortex are in line with those in the adult 

cortex discovered through our method, and also in line with previous reports in adult studies largely based 

on laborious and time-consuming visual inspection, suggesting that the variability of folding patterns has 

been largely established at term birth. On the other hand, our results revealed a few new folding patterns of 

specific cortical regions that were absent in the state-of-the-art studies. Moreover, for the first time, we 

found sex differences of neonatal folding patterns in the STG, IFG and cingulate cortex, as well as 

hemispheric asymmetries of folding patterns in the STG and cingulate cortex. Our method can be widely 

applied to automatically identify cortical folding patterns and study their possible relationships with 

cognition, function, connectivity, and brain disorders. (Li et al., 2015c) 
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Simulation Experiments 

To validate the reliability of the proposed method, we applied it on the simulated datasets, which were 
generated based on the simulated deformation of our discovered folding patterns in real data. Taken the 
superior temporal gyrus (STG) as an example, four patterns	"1, "2, "3, and "4 are shown in Fig. 6. The 
simulated samples '1 for pattern "1 were generated using the following formula: 

         '1()) = "1()) + - ∗ "2()) − "1()) + 0 ∗ "3()) − "1()) + 1 ∗ "4()) − "1())                �1�  

2. 4. , -	 > 	0, 0	 > 	0, 1	 > 	0, -	 + 	0	 + 	1	 = 	8-49	(9. :. , 0.1, 0.2, 0.3, 0.4, -;<	0.5)  
where -, 0, and 1 are the weights of the other three patterns, respectively, and are random positive numbers 
whose sum equals to a fixed deformation ‘rate’. '1()) indicates the 3D coordinate at the vertex ) of a 
simulated pattern. Thus the simulation was performed based on the coordinate of each corresponding vertex 
in the discovered patterns. Accordingly, at each rate, 50 simulated surfaces were generated for each pattern 
based on the above equation with 50 different random combinations of -, 0, and 1. To simulate different 
degrees of deformation, we set the deformation ‘rate’ to 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. Several 
surfaces simulated with typical deformation rates 0.3 and 0.5 are shown in Fig. S1. As we can see, the 
morphology of the simulated surfaces of each pattern are in accordance with the original surface to some 
extent. 

     The proposed method was then applied to each simulated dataset. The discovered folding patterns of the 
simulated datasets with typical deformation rates 0.3 and 0.5 are shown in Fig. S2. As we can see, the 
discovered folding patterns in the simulated datasets are largely consistent with the folding patterns 
discovered in our dataset with 595 neonatal brains. The average discovery accuracies of correctly clustering 
the simulated surfaces into their corresponding patterns with deformation rates 0.1 - 0.5 are 100%, 100%, 
100%, 93.5%, and 85.2%, respectively. These results indicate that the proposed method is reliable and 
effective for cortical folding discovery. 
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Fig. S1. Typical cortical surfaces (columns 2 to 4) of the superior temporal gyrus in the simulated datasets 
generated using different deformation rates, i.e., 0.3 and 0.5. The simulated surfaces are color-coded by 
mean curvature. 

 
Fig. S2. Discovered cortical folding patterns of the superior temporal gyrus (STG) in the simulated datasets 
generated using a deformation rate of 0.3 and 0.5, respectively. The close-ups in third and fourth columns 
show the posterior STG. As we can see, the discovered pattern 3 shows the small gyral fold in the anterior 
bank of the superior temporal sulcus, and the discovered pattern 4 shows a notable gyral branch in the 
posterior part of STG, which are largely consistent with the original discovered patterns in our real neonatal 
dataset.  
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Fig. S3. Comparisons of the discovered patterns in the whole dataset (595 neonates including 252 twin 
neonates) and singletons (343 neonates). (a) Superior Temporal Gyrus; (b) Precuneus; (c) Inferior Frontal 
Gyrus; (d) Cingulate Cortex. The patterns in magenta are discovered based on the whole dataset, while the 
patterns in light purple are discovered based on singletons. In the superior temporal gyrus (STG), the third 
pattern discovered in the whole dataset is missing, when using the sub-dataset with only singletons, and the 
other three corresponding patterns are similar in both datasets. The percentages of four patterns of STG 
discovered in whole dataset are 36.3%, 25.0%, 18.5% and 20.2%, respectively, and the missing third pattern 
occupies the smallest percentage of 18.5%. In the inferior frontal gyrus (IFG), the first three patterns 
discovered in both datasets are almost the same, while the fourth pattern discovered in the whole dataset is 
missing when using only singletons. Similarly, the percentages of four patterns of IFG discovered in the 
whole dataset are 25.2%, 29.6%, 30.8% and 14.4%, respectively, and again the missing fourth pattern 
occupies the smallest percentage of 14.4%. The cortical folding patterns of the precuneus are very stable in 
both datasets. As for the cingulate cortex, the first, second, fourth, and fifth folding patterns discovered in 
the whole dataset correspond to the four patterns discovered in dataset with only singletons, while the third 
pattern has not been revealed. And the percentages of the five patterns of the cingulate cortex discovered 
in the whole dataset are 19.8%, 16.6%, 18.7%, 23.0% and 21.9%, respectively, and again the missing third 
pattern only occupies a small percentage though not the smallest one. 
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Fig. S4. Comparisons of the discovered patterns in the whole dataset (595 neonates including 228 preterm 
babies) and term-born neonates (367 neonates). (a) Superior Temporal Gyrus; (b) Precuneus; (c) Inferior 
Frontal Gyrus; (d) Cingulate Cortex. The patterns in magenta are discovered based on the whole dataset, 
while the patterns in light purple are discovered based on term-born neonates. As we can see, in superior 
temporal gyrus (STG) and precuneus, all the folding patterns discovered in whole dataset are similar to the 
corresponding patterns discovered in the subset with only term-born neonates. As for inferior frontal gyrus 
(IFG), the first three patterns discovered in both datasets are almost the same, while the fourth pattern 
discovered in the whole dataset is missing, when using only term-born neonates. In the cingulate cortex, 
the first, fourth, and fifth patterns discovered in whole dataset correspond to the three patterns discovered 
in subset with only term-born neonates, while the second and third patterns have not been revealed in the 
subset. Of note, the percentages of IFG patterns discovered in the whole dataset are 25.2%, 29.6%, 30.8% 
and 14.4%, respectively; and the percentages for the cingulate cortex are 19.8%, 16.6%, 18.7%, 23.0% and 
21.9%, respectively. We found that the missing patterns when using the subset all occupy the smallest 
percentages in their corresponding regions. We can conclude that the preterm babies in the whole dataset 
will not affect the discovered cortical folding patterns in STG and precuneus. As for IFG and cingulate 
cortex, several clusters occupy the smaller percentages in the whole dataset have not been revealed in the 
subset with only term-born neonates. 
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Table S1. P-values of two-sample t-test of male/female distributions between discovered folding pattern 
pairs in different cortical regions. The values in bold mean that there are significant differences (p < 0.05, 
FDR-corrected) of sex distribution between the corresponding pattern pairs. 

Regions  Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 

Superior 
Temporal 

Gyrus 

Pattern 1 1.0000 0. 7535 0.3225 0.0038 - 
Pattern 2 - 1.0000 0. 4485 0.0038 - 
Pattern 3 - - 1.0000 0.0008 - 
Pattern 4 - - - 1.0000 - 

Precuneus 
Pattern 1 1.0000 0.1605 0.4573 - - 
Pattern 2 - 1.0000 0.4573 - - 
Pattern 3 - - 1.0000 - - 

Inferior 
Frontal 
Gyrus  

Pattern 1 1.0000 0.3380 0.1125 0.2962 - 
Pattern 2 - 1.0000 0.3380 0.0997 - 
Pattern 3 - - 1.0000 0.0197 - 
Pattern 4 - - - 1.0000 - 

Cingulate 
Cortex 

Pattern 1 1.0000 0.2064 0.3819 0.0219 0.0217 

Pattern 2 - 1.0000 0.5464 0.5440 0.4470 
Pattern 3 - - 1.0000 0.2414 0.1880 
Pattern 4 - - - 1.0000 0.7961 
Pattern 5 - - - - 1.0000 

Table S1 displays the results of two sample t-test for testing statistical dependence of sex between different 
pairs of folding patterns. Specifically, in the superior temporal gyrus, pattern 4 showed significant sex 
difference (p < 0.05) compared with patterns 1, 2, and 3, respectively. In the inferior frontal gyrus, 
significant sex difference was observed between patterns 3 and 4. As for the cingulate cortex, pattern 1 was 
statistically different from patterns 4 and 5. No significant sex difference was observed between any pair 
of folding patterns in the precuneus. We have controlled the false discovery rate (FDR) with the Benjamini-
Hochberg procedure for multiple comparisons. 

 

Fig. T1. Distributions of male/female infants for different patterns in four cortical regions in Table S1. 
(The percentage is calculated as the ratio of the number of male (female) infants in each pattern to the total 
number of male (female) infants. * indicates that the group comparison in this pattern is statistically 
significant at the 0.05 level, based on Two-Proportions Z-Test.) 
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Table S2. One-way analysis of variance (ANOVA) results comparing the total brain volumes (mm3) in 
different folding patterns in specific cortical regions. (df: degree of freedom) 

Regions  Sum of Squares (×109) df Mean Square (×109) F p 

Superior Temporal Gyrus 
Between patterns 4.66 3 1.55 

0.53 0.66 Within patterns 1728.25 591 2.92 
Total 1732.91 594  

Precuneus 
Between patterns 9.82 2 4.91 

1.69 0.19 Within patterns 1723.09 592 2.91 
Total 1732.91 594  

Inferior Frontal Gyrus 
Between patterns 32.81 3 10.94 

3.80 0.01 Within patterns 1700.10 591 2.88 
Total 1732.91 594  

Cingulate Cortex 
Between patterns 15.39 4 3.85 

1.32 0.26 Within patterns 1717.52 590 2.91 
Total 1732.91 594  

From Table S2, we can see that the folding patterns are not significantly related to the total brain volume 
in the superior temporal gyrus, precuneus, and cingulate cortex with p-value < 0.05. However, the brain 
volumes significantly differ in the different folding patterns in the inferior temporal gyrus. Further analysis 
can be performed to study whether the discovered folding patterns in inferior frontal gyrus are more related 
to sex or brain size.  

 

Fig. T2. Histogram of brain volumes in each pattern of the four cortical regions in Table S2. 
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Table S3. One-way analysis of variance (ANOVA) results comparing the postmenstrual ages (week) at 
scan in different folding patterns in specific cortical regions. (df: degree of freedom) 

Regions  Sum of Squares df Mean Square F p - value  

Superior Temporal Gyrus 
Between patterns 10.36 3 3.45 

1.06 0.37 Within patterns 1933.21 591 3.27 
Total 1943.57 594  

Precuneus 
Between patterns 7.91 2 3.96 

1.21 0.30 Within patterns 1935.66 592 3.27 
Total 1943.57 594  

Inferior Frontal Gyrus 
Between patterns 20.60 3 6.87 

2.11 0.10 Within patterns 1922.97 591 3.25 
Total 1943.57 594  

Cingulate Cortex 
Between patterns 39.40 4 9.85 

3.05 0.02 Within patterns 1904.17 590 3.23 
Total 1943.57 594  

From Table S3, we can see that the folding patterns in the superior temporal gyrus, precuneus, and inferior 
frontal gyrus are not significantly related to postmenstrual ages at scan. However, the postmenstrual ages 
at scan significantly differ in the different folding patterns in the cingulate cortex. 

 

Fig. T3. Histogram of postmenstrual ages at scan in each pattern of the four cortical regions in Table S3. 
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Table S4. The folding patterns * subject groups (singleton/twin) cross tabulation and chi-square test results. 
‘p-value’ denotes the 2-sided asymptotic significance of Pearson chi-square test. 

Regions  Singleton Twin Total p - value 

Superior Temporal Gyrus 

Pattern 1 77 (31.7%) 139 (39.5%) 216 

0.087 
Pattern 2 66 (27.2%) 83 (23.6%) 149 
Pattern 3 54 (22.2%) 56 (15.9%) 110 
Pattern 4 46 (18.9%) 74 (21.0%) 120 

Precuneus 
Pattern 1 111 (45.7%) 173 (49.2%) 284 

0.397 Pattern 2 73 (30.0%) 88 (25.0%) 161 
Pattern 3 59 (24.3%) 91 (25.8%) 150 

Inferior Frontal Gyrus 

Pattern 1 65 (26.8%) 85 (24.2%) 150 

0.583 
Pattern 2 75 (30.9%) 101 (28.7%) 176 
Pattern 3 73 (30.0%) 110 (31.2%) 183 
Pattern 4 30 (12.3%) 56 (15.9%) 86 

Cingulate Cortex  

Pattern 1 57 (23.5%) 61 (17.3%) 118 

0.077 
Pattern 2 29 (11.9%) 70 (19.9%) 99 
Pattern 3 47 (19.4%) 64 (18.2%) 111 
Pattern 4 55 (22.6%) 82 (23.3%) 137 
Pattern 5 55 (22.6%) 75 (21.3%) 130 

Table S4 analyzed the independence of the folding patterns in specific regions and the subject groups: 
singleton and twin. Given that all the p-values in four regions are larger than 0.05, we accept the 
independence hypothesis and conclude that the folding patterns and subject groups (singleton/twin) are 
independent. Thus our discovered cortical folding patterns are not influenced by the factors of twin infants. 

 

Fig. T4. Distributions of singleton/twin infants in different patterns in the four cortical regions in Table S4. 
(The percentage is calculated as the ratio of the number of singleton (twin) infants in each pattern to the 
total number of singleton (twin) infants. * indicates that the group comparison in this pattern is statistically 
significant at the 0.05 level, based on Two-Proportions Z-Test.) 

We found that the proportions of singleton and twin infants are not significantly different in all patterns of 
four regions, except for the pattern 2 of the cingulate cortex. 
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Table S5. The folding patterns * subject groups (term-born/premature) cross tabulation and chi-square test 
results. ‘p-value’ denotes the 2-sided asymptotic significance of Pearson chi-square test. 

Regions  Term-born Premature Total p - value 

Superior Temporal Gyrus 

Pattern 1 123 (33.5%) 93 (40.8%) 216 

0.128 
Pattern 2 95 (25.9%) 54 (23.7%) 149 
Pattern 3 77 (21.0%) 33 (14.5%) 110 
Pattern 4 72 (19.6%) 48 (21.0%) 120 

Precuneus 
Pattern 1 164 (44.7%) 120 (52.6%) 284 

0.134 Pattern 2 108 (29.4%) 53 (23.3%) 161 
Pattern 3 95 (25.9%) 55 (24.1%) 150 

Inferior Frontal Gyrus 

Pattern 1 93 (25.3%) 57 (25.0%) 150 

0.666 
Pattern 2 112 (30.5%) 64 (28.1%) 176 
Pattern 3 114 (31.1%) 69 (30.2%) 183 
Pattern 4 48 (13.1%) 38 (16.7%) 86 

Cingulate Cortex  

Pattern 1 84 (22.9%) 34 (14.9%) 118 

0.196 
Pattern 2 56 (15.3%) 43 (18.9%) 99 
Pattern 3 67 (18.3%) 44 (19.3%) 111 
Pattern 4 82 (22.3%) 55 (24.1%) 137 
Pattern 5 78 (21.2%) 52 (22.8%) 130 

Table S5 analyzed the independence of the folding patterns in specific regions and the subject groups: term-
born and premature. Given that all the p-values in four regions are larger than 0.05, we accept the 
independence hypothesis and conclude that the folding patterns and subject groups (term-born/premature) 
are independent. Thus our discovered cortical folding patterns are not influenced by the factors of premature 
infants. 

There are three sub-categories of preterm birth, based on gestational age: extremely preterm (less than 28 
weeks), very preterm (28 to 32 weeks), moderate to late preterm (32 to 37 weeks). In our dataset, most of 
the premature neonates are moderate to late preterm (32 to 37 weeks). Maybe that’s why the folding patterns 
of these premature neonates are similar to the term-born neonates in our study.  

 

Fig. T5. Distributions of term-born/premature infants in different patterns in the four cortical regions in 
Table S5. (The percentage is calculated as the ratio of the number of term-born (premature) infants in each 
pattern to the total number of term-born (premature) infants. * indicates that the group comparison in this 
pattern is statistically significant at the 0.05 level, based on Two-Proportions Z-Test.) 

We found that the proportions of term-born/premature infants are significantly different only in pattern 3 
of the superior temporal gyrus and pattern 1 of the cingulate cortex. 
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Table S6. The percentages of each infant folding pattern in the left and right hemispheres in four cortical 
regions, respectively. 

Regions Hemisphere Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 

Superior Temporal 
Gyrus 

Left 36.3% 25.0% 18.5% 20.2%  

Right 19.9% 34.6% 27.7% 17.8%  

Precuneus 
Left 47.7% 27.1% 25.2%   

Right 49.7% 28.2% 22.0%   

Inferior Frontal Gyrus 
Left 25.2% 29.6% 30.8% 14.4%  

Right 23.2% 34.1% 27.6% 15.1%  

Cingulate Cortex 
Left 19.8% 16.6% 18.7% 23% 21.9% 

Right 22.0% 21.3% 18.2% 19.0% 19.5% 

As we can see, in the precuneus, inferior frontal gyrus, and cingulate cortex, the percentages of each pair 
of corresponding patterns are largely similar. For the superior temporal gyrus, since there is notable 
hemispherical asymmetry in the discovered folding patterns in this region, the percentage of pattern 
distributions across hemispheres are quite different.  

 

Table S7. The percentages of each adult folding pattern in the left and right hemispheres in four cortical 
regions, respectively. 

Regions Hemisphere Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 

Superior Temporal Gyrus 
Left  35.6% 15.3%  17.0%  13.5% 18.6% 

Right 47.2% 16.4%  24.7%  11.7%   

Precuneus 
Left  37.4% 30.9%  31.7%   

Right 40.7% 34.2%   25.1%    

Inferior Frontal Gyrus 
Left 23.9% 54.4% 21.72%    

Right 25.1% 40.7%  34.2%    

Cingulate Cortex 
Left 17.2% 22.9 %  18.6% 21.5%  19.8% 

Right 26.2% 14.9% 20.4%   20.9%  17.6% 

As we can see, in the precuneus, inferior frontal gyrus, and cingulate cortex, the percentages of each pair 
of corresponding patterns are largely similar. For the superior temporal gyrus, since there is notable 
hemispherical asymmetry in the discovered folding patterns in this region, the percentage of pattern 
distributions across both hemispheres are quite different.  
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Table S8.  The folding patterns * subject groups cross tabulation and chi-square test results. ‘p-value’ 
denotes the 2-sided asymptotic significance of Pearson chi-square test. 

Regions  Singleton - 
Term-born 

Twin - Term-
born  

Singleton -
Premature 

Twin - 
Premature Total p - value 

Superior 
Temporal Gyrus 

Pattern 1 76 (33.0%) 47 (34.3%) 1 (7.7%) 92 (42.8%) 216 

0.097 
Pattern 2 60 (26.1%) 35 (25.6%) 6 (46.1%) 48 (22.3%) 149 
Pattern 3 52 (22.6%) 25 (18.2%) 2 (15.4%) 31 (14.4%) 110 
Pattern 4 42 (18.3%) 30 (21.9%) 4 (30.8%) 44 (20.5%) 120 

Precuneus 
Pattern 1 105 (45.7%) 58 (42.3%) 6 (46.1%) 115 (53.5%) 284 

0.460 Pattern 2 70 (30.4%) 39 (28.5%) 3 (23.1%) 49 (22.8%) 161 
Pattern 3 55 (23.9%) 40 (29.2%) 4 (30.8%) 51 (23.7%) 150 

Inferior Frontal 
Gyrus 

Pattern 1 62 (27.0%) 31 (22.6%) 3 (23.1%) 54 (25.1%) 150 

0.926 
Pattern 2 71 (30.9%) 41 (30.0%) 4 (30.7%) 60 (27.9%) 176 
Pattern 3 70 (30.4%) 44 (32.1%) 3 (23.1%) 66 (30.7%) 183 
Pattern 4 27 (11.7%) 21 (15.3%) 3 (23.1%) 35 (16.3%) 86 

Cingulate Cortex  

Pattern 1 52 (22.6%) 32 (23.4%) 5 (38.5%) 29 (13.5%) 118 

0.126 
Pattern 2 29 (12.6%) 27 (19.7%) 0 (0.00%) 43 (20.0%) 99 
Pattern 3 45 (19.6%) 22 (16.1%) 2 (15.4%) 42 (19.5%) 111 
Pattern 4 51 (22.2%) 31 (22.6%) 4 (30.8%) 51 (23.7%) 137 
Pattern 5 53 (23.0%) 25 (18.2%) 2 (15.4%) 50 (23.3%) 130 

We further analyzed the independence of the folding patterns in specific regions and the four subject groups, 
i.e., singleton - term-born, twin - term-born, singleton - premature, and twin - premature. Given that all the 
p-values in four regions are larger than 0.05, we accept the independence hypothesis and conclude that the 
cortical folding patterns and four subject groups are independent. Thus our discovered cortical folding 
patterns are not influenced by the factors of twin and premature infants. 

 

 

 

 

   


