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Abstract 

Objective: A preliminary study to determine collagen fibril diameter (CF-ED) distribution on 

medial and lateral sides of cleft lip (CL).  

 

Material and Methods: Tissue samples from medial and lateral sides of CL were fixed in 

2.5% glutaraldehyde and 1% osmium tetroxide and embedded in Araldite CY212 resin for 

transmission electron microscopy. The analysis of CF-ED was performed using the ImageJ 

program. To characterize the packaging of collagen fibrils (CFs) in the two tissues, we 

estimated the collagen number density (CF-ND) and fibril-area-fraction (FAF). Differences 

in measurements across the two sides were calculated using Wilcoxon signed rank test.  

 

Results: The CF-ED was statistically significantly (p<0.001) smaller on the medial side 

(45.69 ± 7.89 nm) than on the lateral side (54.18 ± 7.62 nm). The medial side had a higher 

CF-ND and a higher percentage of FAF than the lateral side.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Conclusion: Our finding of a smaller CF-ED and higher CF-ND and FAF for the medial side 

suggest possible differences in size and distribution of CFs between medial and lateral sides 

of CL. This finding provides knowledge towards underlying tissue biomechanics that may 

help reconstruction of perioral tissue scaffolds, ultimately resulting in better treatment of 

patients with oral clefts.  

 

Introduction 

Cleft lip with or without palate (CL/P) is one of the most frequent congenital anomalies 

worldwide, with a prevalence among live births of 1 in 700 (Dixon, Marazita, Beaty, & 

Murray, 2011). Approximately, 70-80% of CL/P cases are non-syndromic (Leslie et al., 

2016). Labial architecture is dramatically altered in CL/P cases that may be attributed to the 

impairment in the muscle forces (Barlow, Trotman, Chu, & Lee, 2012; Trotman, Barlow, & 

Faraway, 2007). CL/P clinically can occur as a unilateral or bilateral gap between the medial 

and the lateral upper lip structures (Carroll & Mossey, 2012). 

 

The development of the upper lip involves co-ordination among complex series of events 

which requires cell migration, differentiation and apoptosis (Mossey, Little, Munger, Dixon, 

& Shaw, 2009), and particularly growth and fusion of the paired medial nasal process (MNP) 

and maxillary process (MxP) (Jiang, Bush, & Lidral, 2006). The MNP and MxP form the 

medial and lateral aspects of the upper lip structure, respectively (Dixon et al., 2011). Any 

cellular and morphological changes affecting the growth or fusion of the MNP and/or MxP 

may result in orofacial clefting involving the upper lip (Walker & Podda, 2018). 

 

A fine modulation in the extracellular matrix in the orofacial region during development is 

essential for the cells to interact and respond to the remodeling or change in mechanical 

properties of the extracellular matrix (McDaniel et al., 2007; Gagliano et al., 2010), which is 

likely critical to cellular migration, differentiation (Badylak, 2005), and etiology of orofacial 

cleft (Smane-Filipova, Pilmane, & Akota., 2016; Mansell et al., 2000). Studies in 

experimental models of fibroblast cells obtained from CL/P cases have suggested molecular 

mechanisms involved in phenotypic variation among fibroblasts (Bosi et al., 1999; Bodo et 

al., 1999). These mechanisms are thought to be regulated by the collagen degradation 

pathway via matrix metalloproteinases and their endogenous tissue inhibitors; or by 

regulation of collagen cross-linking (Gagliano et al., 2010). Mechanical loading of the tissues 
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can influence metalloproteinases expression, production and activity causing an imbalance 

between metalloproteinases and their inhibitors that further remodel the tissue extracellular 

matrix component (Nagase, Visse, & Murphy, 2006). Relatively little attention has been 

given to the structure of the extracellular matrix in CL/P tissues. 

 

The collagen fibrils (CFs) and proteoglycans are the two major components that make up 

the extracellular matrix of oral tissue structure (Levine, 2011), with fibrillar shaped collagen 

being the predominant component. This fibrillar collagens form a rope like structure, which 

shows characteristic banding pattern, and appears rounded on a transverse section under 

electron microscopy (Arseni et al., 2018). Several ultrastructural studies on healthy and 

pathological oral connective tissues have been reported (Chavier, Couble, Magloire, & 

Grimaud, 1984; Pêgo et al., 2016; Agrawal, Rai, & Jain, 2011); these studies have shown 

different CF arrangement in different oral tissues, with variation in CF distribution pattern 

and fibril diameter (Craig, Birtles, Conway, & Parry, 1989; Xu, Ohsaki, Nagata, & Kurisu, 

1993) and exposure to biomechanical forces (Craig, Eikenberry & Parry, 1987). 

 

The few studies that have investigated the relationship between structural and 

biomechanical properties in clefting have generally focused on proteoglycans and their 

involvement in cleft palate (Brinkley & Morris-Wiman, 1987a), with evidence of hyaluronic 

acid proteoglycan content regulating the hydration, and allowing elevation of palatal shelves 

(Brinkley & Morris-Wiman, 1987b). However, knowledge of the variations in structural 

organization of CFs, which is pivotal in determining the biomechanical properties of the oral 

soft connective tissue (Cornelissen, Stoop, Von den Hoff, Maltha, & Kuijpers-Jagtman, 2000) 

has been little investigated in research on orofacial clefts, particularly CL. 

 

The tensile strength of the extracellular matrix and the mass average diameter of the 

constituent CFs are positively correlated, with CF diameter reflecting the mechanical 

properties of a tissue (Parry, Barnes, & Craig, 1978). Tissues with small diameter CFs can 

withstand high mechanical load (Parry, 1988), determined by unimodality or bimodality-

mainly represented in fibril frequency histogram (Williams, Elder, Horstemeyer, & 

Harbarger, 2008). Additional studies in a mouse model have showed the structural-functional 

relationship between CFs area fraction to be correlated to strength and stiffness of a tissue 

(Robinson, Lin, Jawad, Iozzo, & Soslowsky, 2004). 
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The size distribution of CFs is mainly determined by intra-fibrillar covalent cross-linking 

provided by enzymes of the Lysyl-oxidase (LOX) family (Herchenhan et al., 2015). The 

deletion of LOXL3 gene has been shown to impair collagen assembly and cross-linking 

leading to smaller size CFs during palate development in a mouse model (Zhang et al., 2015). 

Additionally, our group has recently found a variant in this gene to be associated with non-

syndromic cleft palate (Khan et al., 2018). The morphogenesis of lip and palate fusion 

involves highly regulated sharing of signaling molecules, and so it is possible that lip fusion 

promotes palate fusion (Smane-Filipova et al., 2016). Therefore, improper fusion of the lip 

may secondarily affect palate fusion (Meng, Bian, Torensma, & Von den Hoff, 2009). This 

inter-relationship demonstrates the importance of investigating CFs distribution to gain 

insight into the contribution of extracellular matrix component at a stage prior to palate 

development, i.e. upper lip fusion, which to our knowledge, remains largely unknown. 

 

There are many approaches to studying the involvement of extracellular matrix in CL/P 

morphogenesis such as investigation of metalloproteinases and their inhibitors and collagen 

turnover, and/or the genes encoding them, as previously described. Each approach 

emphasizes different aspects of the extracellular matrix structure. However, to our knowledge 

no studies to date have investigated the organizational diversity of CFs, as revealed by 

electron microscopy, in medial and lateral tissues of CL cases. This might in future provide 

possible useful avenues underlying tissue biomechanics and help towards reconstruction of 

perioral tissue scaffolds. 

 

 Materials and Methods 

Tissue samples  

Tissue samples from the medial and lateral sides of CL were collected from four non-

syndromic CL/P cases (two with CL and two with cleft lip and palate [CLP], each with the 

cleft on the left side). The average age of cases at the time of first lip surgery was eight 

months (95% CI 4.6-11.4). The samples were collected at the Regional Centre for Orofacial 

Clefts and Craniofacial Anomalies, San Paolo Hospital, Milan, Italy in the framework of the 

PENTACLEFT project (Khan et al., 2018), which was approved by local IRB (prot. N.08-

2011). Written informed consent from one or both parents for case enrolment was obtained. 
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Tissue fixation and processing for transmission electron microscopy  

The medial and lateral CL tissues were fixed in 2.5% glutaraldehyde in 0.1 M phosphate 

buffer at pH 7.4 overnight. They were then washed three times in 0.1 M phosphate-buffer (15 

min ×3). Tissues were post-fixed in 1% osmium tetroxide for 1 hour, washed thrice (15 min 

×3) with  buffer and dehydrated with graded series of ethanol (50-100%) for 30 min in each. 

Tissues were infiltrated in toluene and Araldite CY212, and embedded in Araldite resin. Four 

blocks for each specimen (two for medial and two for lateral tissues) were prepared and 

polymerised in Araldite CY212 at 60°C for 72 hours. Ultrathin sections (70 nm thickness) 

were cut (from different regions of the tissues in the block) using Leica ultramicrotome UC7 

and collected on 200 mesh copper grids. Each grid with ultrathin sections were stained with 

2% uranyl acetate (10 min) and lead citrate (10 min), and then observed under Tecnai G
2
-20 

transmission electron microscope (FEI Company, The Netherlands) at an operative voltage of 

200 kV, at the Sophisticated Analytical Instrumentation facility (SAIF)-Electron Microscope 

Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India. 

 

Image acquisition and processing 

The images were acquired under transmission electron microscope at 60000X using 

Digital Micrograph (Gatan, Inc.) software. Images were acquired for the medial and lateral 

sides of each CL specimen (with different levels of the blocks - each section being separated 

by a distance of 500 nm). The areas and diameter of CFs from each medial and lateral CL 

tissue specimen were measured using an open-source image processing software, ImageJ 

(Ver. ImageJ 1.49h, Dresden, Germany). Equating the irregular transverse area (Ai) of the 

collagen fibrils to an equivalent circle, led to the determination of edge diameter of CFs 

(                ), as previously described (Khan, Nag, Igathinathane, Osuagwu & 

Rubini, 2015).   

 

To analyse the collagen fibril diameter (CF-ED), our original 8-bit greyscale images were 

processed to obtain the binary image. Standard commands of ImageJ were used for 

preprocessing the images (Ferreira & Rasband, 2012). The original greyscale image (Figure 

1a) was first segmented using thresholding image with moments scheme and no dark 

background (Figure 1b). The lower and the upper limit of intensities were then adjusted for 

clear visibility of CFs of interest, a lower threshold limit of 0 and upper limit of 120-170 for 
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white background were found to be optimal for images to convert to binary format (Figure 

1c). The sequence of assigned operations in ImageJ were followed for a section of input-

image to obtain an area desired for each CFs which were color coded using ROI color coder 

plugin (Ferreira, 2014) for clear visualization of different CFs (Figure 1d-g). The output area 

of each CF was in pixel unit which made it essential to convert to physical unit by using the 

line tool of ImageJ. The data were transferred to Excel spreadsheet from ImageJ software for 

further analysis. 

 

Collagen number density (CF-ND) and fibril-area-fraction (FAF) 

Collagen number density is the number of CFs per unit area (µm
2
). It was calculated using 

the formula;    
                

                      
  

We made use of the Ai of each of the CF included within an image area (A) to calculate 

the fibril-area-fraction also known as fibril-volume fraction (Starborg et al., 2013) by making 

use of the formula;      
  

 
 (Ai; transverse area of each fibril and A; is the total area of 

an image). 

 

Statistical analysis 

The distribution of collagen fibrils were checked for normality using Shapiro–Wilk test for 

small samples in the IBM SPSS Statistics 21. The differences in measurements of CF-ED 

across the medial and lateral sides of CL was done using Wilcoxon signed rank test. In 

addition a paired student’s t-test was used to check for differences in FAF and CF-ND 

between medial and lateral tissues. Considering the total of four cases included in this study, 

and assuming an α-error (two-tailed) of 0.05 and a 1-β-error of 0.80, at least 208 CF-ED from 

each side per sample would be required to detect a change of 20% in CF-ED, FAF or CF-ND, 

as calculated using G * POWER software 3.1.9.2 version (Faul, Erdfelder, Lang & Buchner, 

2007). 
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Results 

The mean CF-ED for the medial and lateral sides of the 4 tissues are presented in Table 1. 

We found a significantly smaller diameter CFs on the medial side in each of the four cases 

compared to fibrils on the lateral side. The frequency histogram of CFs on the medial and 

lateral sides for each of the four cases/tissues are presented in Figure 2. The differences in 

CFs across the two sides, averaged across the four cases, were significant, with medial side 

showing smaller CFs (45.69 ± 7.89 nm) than the lateral side (54.18 ± 7.62 nm); p<0.001 

(Table 1). The transmission electron micrographs of medial and lateral CFs were digitized 

and color coded to estimate distribution of CF-ED (Figure 3). The pattern of CF-ED 

distribution is shown in an overall frequency histogram (Figure 4), and percentage of CF-ED 

falling in different range is presented in Table 2. 

 

For the medial side, we found that the percentage of CF-ED were almost equally in the 29-

44 nm and 45-59 nm ranges. Whereas, the lateral side CF-ED showed a wide-range, with 

majority (70%) of CF-ED falling within 45-59 nm (Table 2). We further calculated collagen 

fibril number density (CF-ND) and total cross-sectional area fraction of the CFs as a valuable 

indicator to determine the packing of the CFs. We found a higher CF-ND for the medial 

tissue (538) compared to the lateral tissue (376). The calculated averaged FAF showed a 

higher percentage value of 32.28 ± 8.13% for the medial side and a smaller percentage value 

of 27.28 ± 3.77% for the lateral side (Table 3, Figure 3). 

 

Discussion 

In the present preliminary study we demonstrate for the first time an estimation of CFs in 

the medial and lateral aspects of upper lip structure obtained from CL/P cases at primary lip 

surgery. We observed a significant difference in diameter of collagen fibril (CF-ED) between 

medial and lateral sides of CL. The collagen fibril density (CF-ND) was found to be higher 

for the medial side. Estimation of collagen fibril-area fraction (FAF) showed a higher 

percentage value for the medial side compared to lateral side.  

 

We observed a significant difference (p<0.001) in CF-ED between medial (45.69 ± 7.89 

nm) and lateral (54.18 ± 7.62 nm) CL tissues, with the medial tissue having a smaller CF-ED 

compared to lateral tissue. This observation of mean difference across the two tissues appears 

to be compatible with the finding of Moeller et al., (1995) that mechanical overloading on the 
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connective tissue could eventually cause the thick CFs to become thinner. Based on this 

finding, we infer that mechanical stimuli may affect CF-ED distribution across the two cleft 

sides, reflected in the observed differences (Table 2; Figure 4). 

 

Estimation of CF-ND and FAF provided valuable indication on how tightly or loosely 

packed is the CFs across the two sides of CL. The CF-ND or number of collagen fibrils per 

micrometer square area was found to be higher for the medial side compared to the lateral 

side (Table 3). This arrangement may reflect an increased mechanical load distribution across 

the two sides, with medial side showing higher value for CF-ND. Moreover, our result 

showed that despite having a smaller CF-ED, increasing CF-ND resulted in an increased FAF 

(32.28 ± 8.13%) for the medial side compared to lateral side (27.28 ± 3.77%), clearly 

represented in color coded image (Figure 3e & 3f). This indicates that medial side gains 

strength and stiffness with increase in FAF, which adds to the mechanical load of the medial 

tissues. 

 

Studies elsewhere have shown that small and large fibrils have distinct roles in stiff state 

and only the small fibrils have a role in the disease states and hence lending to changing 

properties (Goh & Holmes, 2017), which could be the case in our medial tissues. 

Nonetheless, the possible role of factors apart from CF-ED or a consequence of CF-ED 

cannot be ruled out for compromised extracellular matrix of the medial tissue, based on 

previously described ability of metalloproteinases and their inhibitors to participate in matrix 

remodeling during lip fusion (Smane-Filipova et al., 2016). We postulate that remodeling of 

the extracellular matrix components (collagen fibers and/or proteoglycans) that forms the 

migration substrate for the cranial neural crest cells mesenchyme (Henderson & Copp, 1997; 

Jiang et al., 2006) could be different across the two sides. Some empirical evidence of 

reduced proliferation and migration of these mesenchymal cells particularly affected on the 

medial side is shown in a separate animal study (Everson et al., 2017). Moreover, these 

mesenchymal cells eventually form the continuous bands of the future orbicularis oris muscle 

(Lazzeri et al., 2008), which is shown to have altered diameter (Khan et al., 2018) and 

arrangement (Wijayaweera, Amaratunga, & Angunawela, 2000) across the two sides in CL 

cases. Notably, collagen and muscles share structural functional relationship to ensure proper 

alignment (Calvi et al., 2012). Therefore, observation of changes in the orbicularis oris 

muscles across the two sides could be an outcome of changes in distribution of CF-ED, which 

affects the medial side more than the lateral side in cases with CL. 
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It is well known that the diameter of the CFs increase with age (Ottani et al., 1998). We 

consider that our observation of differences in CFs distribution across the two cleft sides is 

little influenced by ageing as we used tissues derived from the same individual with relatively 

similar age. However, we realize that inclusion of CL and CLP subtype might have 

influenced our result but relying on a recent study demonstrating similar rate of development 

of the two subtypes, the effect might have been neutralized (Sharp et al., 2017). 

 

Moreover, our study has potential limitations with respect to small sample size with low 

statistical power owing to difficulties in collecting tissues (Stock et al., 2016), and therefore 

we were unable adequately to assess inter-individual variability. We also note that lack of 

clarity or darker patches in our original image could have interfered in the binary image 

creation, leaving holes that might have effect on the measured parameters. Therefore, the 

differences in CFs across the two sides should be interpreted with caution until replication 

data become available; these would be based on a larger sample size and  good quality input 

images for better segmentation of CFs while processing to binary images. Another limitation 

is the lack of data on lip tissues from normal babies to determine whether the difference 

between the sides is present in general population or is specific to infants with clefts. 

Nevertheless, investigation of differences using tissues from CL/P cases is a promising 

approach in investigating the etiopathology of CL/P. 

 

In conclusion, the result of this study suggest of differences in CF-ED across the two cleft 

side, with medial side having smaller diameter and higher stiffness that might play a role in 

migration of mesenchymal cells in these tissues, causing a tissue deficiency that prevents 

contact with opposing lateral tissues, resulting in cleft lip. Additionally, our study could 

provide knowledge towards underlying tissue biomechanics that may help reconstruction of 

perioral tissue scaffolds, ultimately resulting in better treatment of patients with oral clefts. 
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Table 1. Mean ± Standard deviation (SD) values of collagen fibril edge diameter (CF-ED in 

nm) on the medial and lateral sides of four N1-N4 (number of measured CFs) infants with 

cleft lip.  

Cleft lip tissues N1 (532) N2 (289) N3 (509) N4 (511) Mean N1-N4 (1841) 

      

Medial 36.32 ± 4.21 47.99 ± 6.03 46.85 ± 4.31 52.98 ± 4.21 45.69 ± 7.89 

      

Lateral 51.74 ± 7.04 49.63 ± 5.36 58.73 ± 7.82 54.76 ± 6.57 54.18 ± 7.62 

      

 Z= -19.637 Z= -2.774 Z= -18.568 Z= -5.792 Z= -28.387 

 p<0.001 p=0.006 p<0.001 p<0.001 p<0.001 

 

 

Table 2. Percentages of collagen fibril-edge diameters (CF-ED) in different ranges on the 

medial and lateral sides of the cleft lip in four affected infants.  

Cleft lip tissues  15-29 nm 30-44 nm 45-59 nm 60+ nm 

     

Medial 2 40 57 1 

     

Lateral <1 10 70 19 

     

 

 

Table 3. Collagen number density (CF-ND) and fibril area fraction (FAF) on the medial and 

lateral sides of the cleft lip in four affected infants.  

Cleft lip tissues  Density of collagen fibrils 

(µ
2
) 

Area fraction of collagen fibrils 

(%) 

   

Medial 538 32.28 ± 8.13 

   

Lateral 376 27.28 ± 3.77 

  

p=0.477 

 

p=0.415 
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Figure 1. Preprocessing of micrographs using ImageJ standard commands to obtain 

digital color-coded image. (a) original 8-bit grey-scale image; (b) thresholding image with 

“moments” scheme and “no dark background” to convert image to binary format; (c) mask 

prepared by analyzing the particles with “no exclude edge” and “fill holes” options; (d) 

inverted mask giving black background using “invert”; and (e) “watershed” segmented 

image; (f) labelled collagen bundles; and (g) area based color-coded collagen bundles for 

better visualization of sizes. 

 

Figure 2. Frequency histogram of collagen fibril diameter (CF-ED) for medial and 

lateral cleft sides of each of the four cases (N1, N2, N3 & N4).  

 

Figure 3. Electron micrograph, binary images and digital images of collagen fibrils of 

the medial and lateral sides of CL. (a) original grey-scale image of medial side with smaller 

CF-ED; (b) original grey-scale image of the lateral side larger CF-ED; (c) binary image of 

medial and (d) lateral side; (e) digital colour coded image of medial side with higher CF-ND 

and FAF; (f) lateral side showing smaller CF-ND and smaller FAF.  

 

Figure 4. Overall (N1-N4) frequency histogram of collagen fibril diameter (CF-ED) for 

medial and lateral cleft sides. 
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