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20 Abstract
21 Soft highly porous carbonate rocks such, as calcarenites, and soluble sulphate rocks, as gypsum, are 

22 very common in the Mediterranean region and, due to their microstructure and chemical 

23 composition, are prone to water induced weathering mechanisms. Cliffs, underground cavities and 

24 other morphological features in such formations are hence affected by intense erosion phenomena 

25 and weathering processes responsible of unexpected collapses and sinkholes. Just considering the 

26 Apulian region (Italy), 150 sinkholes have been recorded since 1925, with increasing frequency since 

27 2000 (Fiore et al. 2018). The geosystem’s failure is often the short or long-term result of a very 

28 complex hydro-chemo mechanical process taking place at the micro-scale which can be detected 

29 and analysed by means of field and laboratory experimental test campaigns.  Therefore, stability 

30 problems are often related to changes of the mechanical properties of the rock forming the cave 

31 caused by environmental weathering processes, despite the external boundary conditions are not 

32 changing with time. The paper deals with the assessment of hazard associated to the stability of 

33 abandoned underground caves, which is nowadays frequently required for land and urban planning 

34 activities. A methodological approach for hazard assessment based on a step-by-step procedure is 

35 proposed. This includes in-situ surveys, laboratory experimental studies, theoretical analyses and 

36 finally numerical investigations. The approach derives from the experience developed from several 

37 case studies analysed by the authors. In this work, two of these are presented. The first one concerns 

38 the stability of an anthropic cavity in a calcarenite formation which is affected by a water induced 

39 short-term and long-term debonding processes. The second one regards the stability of a three-
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40 level abandoned gypsum mine, the lowest level being partially flooded by water. The 

41 methodological procedure aims to evaluate the factors controlling the change of the mechanical 

42 properties of the rock leading to failure, so that efficient remediation measures can be designed in 

43 order to avoid any further decay of the rock mass stability with time. 

44 The proposed methodological approach, validated on real case studied, shows the convenience of 

45 performing advanced experimental, theoretical and numerical studies to properly assess the hazard 

46 in space and time and to better design the mitigation measures if they are required. The adoption 

47 of the proposed approach reduced the remediation costs of the second case study to one order of 

48 magnitude. 

49

50 1. Introduction 
51

52 The assessment of hazard associated to the stability of man-made underground caves, which were 

53 exploited and abandoned some decades ago, is still nowadays frequently underestimated during 

54 land and urban planning activities. This is generally related to the loss of historical memory 

55 concerning the existence of old underground caves in land management processes, as well as the 

56 change of the boundary conditions working on the cave systems that leads to the consequent 

57 variation of the rock material properties over time, even in a relatively short time. High risk 

58 conditions are also enhanced by the fast development of urban areas, which gives frequently rise 

59 to the existence of buildings and infrastructures lying over caves that cannot be considered as safe. 

60 Recent case studies of collapse of man-made underground caves, with consequent sinkholes 

61 affecting urbanized areas, are well described in the literature, as for example those involving the 

62 calcarenite caves in Southern Italy (Parise and Lollino 2011, Vattano et al. 2013), the metal mining 

63 caves in Canada (Betournay, 2009), the siltstone Longyou caverns in China (Li et al. 2009, Yang et al. 

64 2011), the limestone mines in the Netherlands and Belgium (Bekendam 1998; Van Den Eeckhaut et 

65 al. 2007).

66 Instability of caves is frequently associated to the occurrence of degradation of the mechanical 

67 properties of the rock surrounding the cave as a consequence of environmental processes. In 

68 particular, water infiltration from ground surface or pipe leakage, increment of relative humidity of 

69 the cave environment, as well as more extreme cave flooding are all related to the increment of the 

70 degree of saturation of the rock over time and the consequent rock degradation (Figure 1). This is 



3

71 particularly true for those rocks that are highly sensitive to the interaction with water, as for 

72 example evaporitic rocks and soft porous rocks. Several studies have been proposed on this subject, 

73 as for example those concerning the iron ore abandoned mines in Lorraine, as discussed in Grgic et 

74 al. (2006), the aging of gypsum in underground mines (Auvray et al. 2004, Castellanza et al. 2010) 

75 and the works on the debonding processes affecting the calcarenite outcropping in Southern Italy 

76 (Andriani and Walsh, 2007; Ciantia and Hueckel, 2013; Ciantia et al. 2014, 2015).

77 The methods for the assessment of stability of underground caves that are available in the scientific 

78 literature can be generally classified according to three classes: phenomenological, analytical and 

79 numerical approaches. Phenomenological methods are generally based on abaci that show areas 

80 representing stable or unstable cave configurations on the basis of geometrical parameters of the 

81 cave and strength parameters of the rock, as derived from a large number of case studies (Potvin 

82 and Milne 1992, Nickson 1992, Carter 1992, Goodings and Abdulla 2002). Analytical closed-form 

83 solutions have been instead widely used to calculate elastic solutions for roofs with very simple 

84 geometries, such as caves with circular or rectangular shape (Obert and Duvall 1967, Jaeger and 

85 Cook 1979), followed by closed form solutions accounting for the elasto-plastic behaviour of the 

86 rock material (Lippmann 1971, Ribacchi and Riccioni 1977, Brown et al. 1983, Detournay and 

87 Fairhurst 1987, Panet 1995, Carranza-Torres and Fairhurst 1999, Gesualdo et al. 2001, Diederichs 

88 and Kaiser 1999). 

89 Recently, numerical modelling has provided a powerful tool to explore the stress-strain state within 

90 the rock mass around the cavities and the corresponding displacement field induced by a specific 

91 loading condition or changes of boundary conditions, also adopting advanced non-linear 

92 constitutive models. To mention a few, Mortazavi et al. (2009) propose a numerical investigation of 

93 the failure mechanism of rock pillars in underground openings by taking into account the effect of 

94 pillar geometry and pillar strength parameters for typical situations existing in the Canadian mines. 

95 Bekendam (1998) studied the stability of calcarenite and limestone mine pillars in the Netherlands 

96 by means of two-dimensional elasto-plastic finite element (FE) models, also implementing time-

97 dependent creep processes, whereas Parise and Lollino (2011) highlighted with the same 2D FE 

98 approach the role of the degradation processes of the limestone and calcarenite rock surrounding 

99 caves in Southern Italy in the development of sinkholes. Ferrero et al. (2010) detect the areas of 

100 highest stress concentration and calculate the corresponding safety factors of the most loaded 

101 pillars by means of 3D FE analysis of old underground calcareous quarries in the Western Alps (Italy). 

102 Ghabezloo and Pouya (2004) perform a FE analysis aimed at studying roof stability of limestone 
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103 caves in France due to tensile strength degradation induced by karst processes. Diederichs (2003) 

104 investigates rock fracture mechanisms and global collapse of caves by means of the distinct element 

105 method, whereas Wang et al. (2011) explore the failure mechanisms of underground cave pillars by 

106 means of the application of the Rock Fracture Propagation Analysis. From a theoretical point of 

107 view, a well-consolidated experience has been gathered in the numerical application of simple 

108 elasto-plastic constitutive models, such as those implementing the Mohr-Coulomb or the Hoek-

109 Brown failure criterion (Pelizza et al. 2000, Zhang et al. 2016, Fazio et al. 2017, Jiang et al. 2017). 

110 Trinh and Jonsson (2013) developed an elasto-plastic finite element model of an underground 

111 cavern room in hard rocks, also accounting for the effects of reinforced bolts. On the other hand, 

112 more advanced constitutive models have been recently implemented in numerical codes to 

113 simulate the variation of the rock mechanical properties due to environmental factors and the 

114 coupled chemo-mechanical processes associated (Fernandez-Merodo et al. 2007; Grgic et al. 2006; 

115 Ciantia and Castellanza 2016; Tamagnini and Ciantia 2016). 

116 Based on the aforementioned technological development, the paper aims to propose a procedure 

117 of hazard assessment for underground caves, based on the experience and the theoretical research 

118 developed by the Authors in some recent case histories. In particular, a methodological approach 

119 based on in-situ surveys (including the use of Laser-Scan techniques to define model geometry), 

120 laboratory and field investigations, theoretical and numerical analyses are presented in the 

121 following. Afterwards, two case studies are discussed within the framework of the procedure 

122 proposed and some conclusions regarding the evolution of the cave stability over time are drawn 

123 accordingly. 

124 2. Methodological approach

125 The proposed methodological approach for the quantitative assessment of failure susceptibility 

126 associated to the presence of underground caves follows a procedure formed of six steps (Figure 2):

127 1) In-situ survey: preliminary field surveys should be carried out both inside the caves and at 

128 the ground surface according to either conventional topographical survey methods or 

129 advanced tools, as laser-scan techniques, in order to define a three-dimensional geometrical 

130 model of the overall area; then, a detailed geological and hydro-geological analysis should 

131 follow to define the lithological model, the geo-structural setting and the eventual existence 

132 of hydro-geological features, as water circulation or infiltration from ground surface;
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133 2) Choice of the conceptual model: this second stage should be aimed at defining the general 

134 features of the real problem’s schematization and is represented by the choice between a 

135 2D or a 3D model geometry (based on the eventual existence of plane-strain conditions), as 

136 well as the choice between a continuum or a discontinuum model, according to the eventual 

137 existence of relevant joints;

138 3) Experimental analysis: this step is finalized at defining the factors that play a major role in 

139 the stability of the rock mass around the cave, as current mechanical properties of the 

140 involved material, susceptibility of the rock to weathering and degradation processes, 

141 propagation of weathering according to sharp-front or preferential ways, etc. At this stage, 

142 accurate laboratory tests aimed at characterizing the most important physical and 

143 mechanical properties of both the intact and the weathered rock material (unit weight, 

144 porosity, water content, elastic stiffness, uniaxial compressive strength, tensile strength, 

145 shear strength at high stress levels), as well as defining how the weathering degree changes 

146 with time and in space, should be performed. In particular, the laboratory tests should give 

147 an indication of the degree of in-situ weathering occurred from the time of cave excavation 

148 to the present, the thickness of the layer affected by the weathering process, the in-situ 

149 environmental conditions as well as the evolution of the weathering process; to this purpose, 

150 artificial weathering scenarios can be useful to define the law of variation of the rock 

151 strength in the short- and in the long-term. In particular, it is convenient to define: i) a short 

152 term weathering to describe the quick reduction of geomechanical properties of the rock 

153 material from dry to wet conditions; ii) a long term weathering associated to a relatively slow 

154 weathering process usually induced by chemical dissolution processes.

155 The results of the experimental analysis are then used to both initialize the initial conditions 

156 of the numerical model and to define a set of representative environmental scenarios in 

157 order to assess the cave stability in the short- and in the long-term.

158 4) Theoretical analysis: The mathematical model needed to describe the main features of the 

159 geomechanical behaviour of the rock, i.e. the constitutive model, should be here defined 

160 and calibrated using the experimental test results. Due to the large difference of timescales 

161 between mechanical and chemical processes (Ciantia and Hueckel, 2013) the assumption of 

162 uncoupled chemo-mechanical behaviour is considered to be reasonable (Ciantia et al, 2014). 

163 The use of elastic constitutive models, adopted for the application of simple analytical 
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164 methods in preliminary hazard assessment (see section #1), should be avoided as the elasto-

165 plastic behaviour that characterises any geomaterial should be properly taken into account. 

166 A Mohr-Coulomb elastic-perfectly plastic model is deemed to be appropriate for problems 

167 where shear type of failure is dominant (when the mean effective stress, p’, is low), whereas 

168 an elasto-plastic model with the Hoek-Brown failure criterion (Hoek and Brown, 1997) 

169 should be instead preferred in order to account, according to the equivalent continuum 

170 approach, for the influence of the eventual rock mass fracturing state or the non-linearity of 

171 the failure envelope at high p’. In a complex 3-D boundary value problem these simple 

172 constitutive models could be correctly used only to detect the critical areas where local 

173 plastic yielding starts to develop, since the eventual brittle behaviour of the rock material is 

174 not accounted for. 

175 Coupled hydro-chemo-mechanical advanced constitutive models could be eventually used 

176 to reduce the risk of oversimplification of both the spatio-temporal weathering evolution 

177 and the material mechanical behaviour (Ciantia et al., 2018). 

178 5) Numerical analysis: in this stage of the methodology the chosen elasto-plastic constitutive 

179 model is used to run FE analyses in order to define a quantitative assessment of the stability 

180 of the underground cave in the current state and eventually a possible scenario of the 

181 evolution of the stability with time (step #6: hazard assessment). At this stage, Preliminary 

182 results obtained with analytical methods based on elastic theory for either roof or pillar 

183 stability problems should be compared with the results of numerical elasto-plastic models. 

184 The choice of a 2D or 3D model depends on the eventual existence of plane strain conditions. 

185 In case of complex geometries, 3D modelling is mandatory. For those problems where no 

186 precise information of specific input data is available, 2-D sensitivity analyses are suggested 

187 to highlight the influence of specific factors, as the initial stress state of the rock mass or the 

188 flow rule of the constitutive model adopted. In general, the numerical model should be 

189 aimed at simulating the current state of the rock mass domain, by implementing the 

190 mechanical and hydraulic boundary conditions, the excavation process of the cave and the 

191 existing loading conditions. 

192 More sophisticated approach, suitable to describe the brittle failure mechanism of cavities 

193 are now suitable to be applied in 2D models (Lollino and Andriani, 2017), although in this 
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194 paper it is shown that the continuum approach is still one of the most convenient tool to 

195 perform quantitative hazard assessment analyses especially in 3D. 

196 6) Hazard assessment: If stable conditions result from the model representing the current state 

197 of the rock-mass (final result of step #5: numerical analysis), a strength reduction calculation 

198 stage, simulating the weathering mechanisms both for STD and LTD weathering processes, 

199 should be performed to derive an indication of the safety factor. This can be done using the 

200 c- reduction numerical technique (Griffiths and Lane, 1999; Aliguer et al, 2013). 

201 Rock weathering can be subdivided in two main temporal stages: one in the short term (STD) 

202 and the other in the long term (LTD). The first can be considered as the result of an imbibition 

203 process: water penetrates through the porous structure causing an instantaneous drop in 

204 strength (Cherblanc et al, 2016). The second one is the result of the chemical dissolution of 

205 the rock mass when interacting with water for long time periods inducing further damage 

206 (Ciantia et, al 2015a). The driving scalar variables of this two hydro micro-scale weathering 

207 mechanisms were found to be the saturation degree, Sr, and normalized dissolved mass, dis, 

208 respectively (see Ciantia et al, 2014). The concept of non-mechanical softening driven by the 

209 two-latter mentioned scalar quantities (Sr and dis) introduced by Ciantia et al, 2013 using a 

210 multiscale approach (see Ciantia and di Prisco, 2016), is extended to the practical 

211 methodology of the c- allowing to obtain a physical time evolution of the safety factor 

212 (Ciantia et al, 2015b). In fact, as the evolution of the yield locus can be described as a function 

213 of saturation degree, Sr, for the STD process, the dissolved mass, dis, induces in the LTD 

214 process a similar shrinkage of the yield locus (Tamagnini and Ciantia, 2016). 

215 On the other hand, as explained by Ciantia and Hueckel (2013), the worst weathering 

216 scenario is the one characterized by a rapid saturation and consequent fresh water recycle. 

217 Under these conditions, using specific weathering experimental test results that describe the 

218 strength evolution with Sr, for the short term debonding (STD) and physical time for the long 

219 term debonding LTD (step #3), it is possible to build the c- reduction coefficient - time 

220 abacus for the intact rock in an uncoupled manner and without having to solving the chemo-

221 hydraulic problem. Consequently, the classical c- reduction numerical analysis combined 

222 with the procedure here presented enables to estimate the evolution with time of the safety 

223 factor, Fs(t). 
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224 From a conceptual point of view, the stability factor of an ideal man-made cave, Fs, can be 

225 considered as evolving with time according to the scheme proposed in Figure 3. The  figure 

226 reports that the stability factor of an underground cave at the time of excavation, i.e. initial 

227 conditions, is represented by F0 and corresponds to the unweathered mechanical properties 

228 of the rock material. As weathering process proceeds with time, the stability factor of the 

229 cave, Fs(t), tends to reduce due to rock mechanical weakening and the corresponding law of 

230 variation might be potentially defined by performing numerical analyses implementing 

231 different sets of rock mechanical properties corresponding to different steps of the 

232 degradation process. Therefore, at time tr, when a stability factor of the cave equal to Fr has 

233 been reached and analysis for remediation is required, two possible approaches for 

234 remediation can be followed (Figure 3): 1) structural interventions, aimed at increasing rock 

235 mass strength, or 2) conservative interventions, aimed at preventing any further mechanical-

236 weakening weathering process. The first can generally lead to an increment of the stability 

237 factor (curve 1), whereas the latter is intended to maintain the cave stability constant over 

238 time (curve 2). Frequently, the second option includes preservation of air ventilation, 

239 reduction of water infiltration, prevention of chemical dissolution processes, creation of rock 

240 surfaces impervious to environmental weathering using specific chemical consolidation 

241 products, these being advisable for those cases when environmental preservation is 

242 required, as for cultural heritage sites. In this case, the increment of stability factor should 

243 be interpreted as the distance between curve (2) and curve (a) leading to rock mass failure, 

244 at time tF, in Figure 3. Such conservative interventions should be pursued along with 

245 monitoring activities aimed at controlling that the environmental conditions corresponding 

246 to curve (2) are effectively maintained in situ. This means that the environmental variables 

247 should be monitored as first and the rock mechanical properties should be controlled in 

248 order to kept them about constant over time, also by performing in-situ or laboratory tests 

249 at regular time intervals. 

250 The following case studies specify in detail the application of the methodology proposed to highlight 

251 how the effects of the environmental weathering could be practically evaluated in situ and in 

252 laboratory, how these effects can be taken into account using simple constitutive models and how 

253 complex three-dimensional finite element analyses could be very useful to assess hazard from a 

254 quantitative point of view. All the numerical analyses are run using GTS-NX FEM code (2010) and 

255 the NAFEMS (1983) suggestions have been considered for the setup of the analyses.
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256 In this research, a deterministic approach has been adopted with its inherent limitations. Such 

257 drawback leaves room for further research and may be addressed by employing a probabilistic 

258 approach (Griffiths and Fenton, 2004; Fenton and Griffiths, 2008; Gong et al. 2018).

259 3. Case studies

260 Two representative case studies are here presented in order to describe the methodology outlined 

261 in the previous section and highlight some criteria which might be adopted in the procedure of 

262 hazard assessment of underground caves in urbanized areas. The first case is represented by man-

263 made caves excavated in a calcarenite deposit in the urban area of Canosa di Puglia (Southern Italy), 

264 whereas the second one is a large multiple-level cave system formed of pillars and rooms located in 

265 San Lazzaro di Savena (BO, Northern Italy). For both the cases, rock is affected by high susceptibility 

266 to weathering processes and hazard conditions exist since the cavities lie below a densely urbanised 

267 area. 

268 3.1. Case study #1: Canosa di Puglia (Southern Italy)

269 In this case study the stability of two caves (Figure 4) excavated about two centuries ago within a 

270 calcarenite deposit belonging to the “Calcarenite di Gravina” Formation is investigated. The first, 

271 cave A, is overlaid by an older (B1 in Figure 4b) and a more recent building (B2 in Figure 4b); in 

272 particular, the recent building is founded on piles that cross the cave and transfer the structural 

273 loads below the cave. Cave B is instead characterized by a more complex geometry, with a building 

274 located at the ground surface (see Figure 4).

275 A plan view of the buildings and the cave geometry is shown in Figure 4b; owing to the complex 

276 subsurface geometry, it was decided to carry out a 3D laser-scan survey (see Figure 4c) according to 

277 Step #1 in Figure 2. The advantage of using such technology is the high-accuracy geo-referentiation 

278 of the interacting bodies. A geological survey is also performed to define the state of the rock mass, 

279 with regard to the eventual existence of joints, local stratigraphy, possible presence of water and 

280 evidence of environmental weathering within the cave. The main outcomes of the geological survey 

281 indicate that the rock mass can be classified as massive, i.e. no presence of relevant discontinuities, 

282 no water circulation is observed around the cave, relative humidity ranges between 60% and 90% 

283 and temperature is between 12° and 20°. Based on the results of the geometrical and geological 

284 survey (step #1), the conceptual model, developed according to step #2, implied the adoption of a 

285 3D FEM analysis aimed at studying the behaviour of the rock mass as a continuum. Owing to the 
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286 homogeneous state of the Calcarenite formation, just few points (see Figure 4b) are chosen for 

287 sampling the material to be tested experimentally (Step #3). 110-mm diameter cores are drilled for 

288 a depth of about 70 cm from the inner surface of the cave; then, 38-mm and 54-mm diameter 

289 samples are retrieved within the larger cores at a distance of 10, 20 and 50 cm from the cave 

290 boundary surface in order to assess the variation of the rock mechanical properties with depth from 

291 the cave wall, zs in Figure 5. 

292 It is known that calcarenites from southern Italy exhibit high susceptibility to water induced 

293 weathering (Castellanza and Nova (2004), Andriani and Walsh (2007), Castellanza et al. (2009)) and 

294 therefore, the experimental campaign is aimed at investigating the effects of the two microscale 

295 debonding processes that could take place in the short (STD) – and long-term (LTD) (see Ciantia et, 

296 al 2014 for details including sample preparation). Referring to the eventual mechanical decay 

297 induced by water saturation of the calcarenite (STD) and the slow chemically-induced mechanical 

298 decay of the saturated rock (LTD), the following experimental analysis (Step #3) has been carried 

299 out: 

300 - Micro-scale tests (Figure 6), including thin sections, SEM (Scanning Electron Microscopy) and 

301 XRPD (X-Ray Powder Diffraction), reveal that: i) the microstructure of the calcarenite is 

302 characterized by the presence of diagenetic (DG) and depositional (DP) bonds that connect 

303 calcite grains with organogeous origin, as well as ii) an average porosity equal to n = 0.45 and 

304 iii) a 98% mean composition of calcite;

305 - STD laboratory weathering is explored by means of Uniaxial Compressive Test (UCT) and 

306 Brazilian Test (BT) on dry, partially saturated and saturated (wet) calcarenite ( Figure 7a), 

307 and a reduction of both strength and stiffness up to 50% of the corresponding values 

308 representative of dry conditions is recorded after few minutes of soaking of a dry calcarenite 

309 specimen (Figure 7b). Since these tests are thought to reflect the effects of water infiltration 

310 in the cave, such a marked reduction should be properly considered for hazard assessment. 

311 For details related to saturation process and sample preparation see Ciantia et al. (2014). 

312 - LTD laboratory weathering tests such as “chemical” creep tests on calcarenite specimens 

313 subjected to water flux under constant load. For the specific case study, such tests have 

314 proved that the DG bonds dissolve very slowly when flushed by water with a pH value of 7, 

315 thus causing a strength reduction of 5% after 8 months. On the contrary, if a pH value of 2.8 
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316 is adopted the same strength reduction occurs in just few hours. The LTD tests can be seen 

317 as the worst representative weathering scenario of a flooded cave (Ciantia et al. 2014). 

318 - The effects of in-situ weathering were evaluated by performing UCT and BT on saturated 

319 specimens retrieved at 10, 20 and 50 cm from the cave wall (see Figure 5). Despite the 

320 significant scatter, the test results, as reported in Figure 8, do not show significant reduction 

321 of the rock uniaxial compressive strength (UCS) and stiffness with zs. These results suggest 

322 that no significant weathering has developed with zs after more than 250 years of exposition 

323 to the environmental conditions. Therefore, it can be inferred that if the current 

324 environmental conditions (Hr (relative humidity) < 100% and no water infiltration) are 

325 maintained, the mechanical properties of the rock are supposed to remain constant in these 

326 cavities. 

327 The theoretical analysis (step #4) is carried out on the basis of the results of the experimental 

328 analysis performed (step #3). An elastic-perfectly plastic model with non-associated Mohr-Coulomb 

329 (MC) failure criterion and tension cut-off is chosen and consequently calibrated to reproduce the 

330 mechanical behaviour of the calcarenite. Despite the curvilinear yield locus generally observed 

331 (Ciantia et al. 2014, Figure 9a), at low stress levels the failure envelope of the Gravina calcarenite 

332 can be reasonably approximated as linear by using a Mohr-Coulomb yield criterion (Figure 9b). In 

333 this case, the main drawback of using perfect plasticity models is the impossibility of capturing the 

334 observed brittle behaviour of the calcarenite, so that a more rigorous approach should consider the 

335 application of sophisticated constitutive models able to cope with the mechanical and chemical 

336 softening process (Nova et al. 2003, Ciantia and di Prisco, 2016). 

337 In general, it should be point out that the soundness of the numerical analyses implementing simple 

338 constitutive models (MC and HB models) is conditioned by the two following assumptions:

339 1. all the stress points lie within the elastic domain, so that the distance from the failure 

340 envelope for each single point is a local indication of the safety margin;

341 2. when the stress point reaches the yield locus, the onset of a global failure mechanism could 

342 imply the overestimation of the strength capacity of the rock structure, since the real 

343 softening response is neglected. From this point of view, a numerical model providing only 

344 local plastic zones can instead be considered as acceptable. 
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345 Assuming the simplified approach discussed above, the MC failure envelopes (Figure 10) of the 

346 calcarenite for different saturation degree are calibrated using laboratory tests results. Since the 

347 caves studied are daily used as a car parking for Cave A and historical visit for Cave B (hence 

348 prolonged flooded conditions can be excluded) hazard assessment is performed only for the STD 

349 process. In particular, the weathering scenario considered is an initially dry material (fdry) that is 

350 gradually saturated (fSTD) until a state of complete saturation is attained (fwet). 

351 Once the constitutive model is calibrated and the simplifying assumptions are clearly stated, the the 

352 3D FEM numerical analysis required for the hazard assessment of the cavity-building system can be 

353 performed (step#5 in Figure 2). In Figure 11, 3D geometrical solids have been created from the laser-

354 scansions to describe the foundations system of the buildings and the volume of the cavities. A 

355 proper numerical domain has been considered in order to minimize the side effects on the 

356 numerical results considering an average distance of 10 m from the cave boundaries. The selected 

357 meshes (Figure 11b) is formed of 100000 and 400000-node-tetrahedric linear elements for Cave A 

358 and Cave B respectively. For the Cave B the major discontinuities retrieved in the survey have been 

359 explicitly taken into account by modelling a solid interface (made of solid elements) where the 

360 strength parameter was reduced with respect to the massive calcarenite (cohesion reduced to 20% 

361 of the intact one, friction angle to 70% and dilatancy set to 0). 

362 A preliminary series of analyses with quadratic elements (8 noded) with different mesh sizes are 

363 also performed to assess the influence of the mesh dependency of the numerical solution and define 

364 the best compromise in terms of computational time. 

365 The construction stage procedure is composed of four stages for both Cave A and B:

366 1) a geostatic stress initialization referred to a free field condition, i.e. before both cave 

367 excavation and building construction, is assumed; the set of parameters prescribed for the 

368 calcarenite at this stage is equal to that corresponding to dry conditions (see Figure 10) and 

369 a value of k0 equal to 0.5 is used following the in-situ investigations (step #2);

370 2) the numerical simulation of the excavation is carried out by removing the elements in 10 

371 load steps, following the actual excavation process based on historical reports. During such 

372 numerical stage, the development of plastic yielding in the rock mass surrounding the cave 

373 is carefully monitored to identify eventual failure mechanisms. This numerical analysis 
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374 corresponds to a-posteriori assessment of the stability conditions of the rock mass during 

375 the excavation process;

376 3) the simulation of the building construction at ground surface is performed considering the 

377 exact sequence of building construction. In particular, only the pressure transmitted to the 

378 foundation has been considered for B1 and B3 buildings, whereas the complete soil-

379 structure interaction system is simulated for B2. As for stage 2, the eventual development 

380 of plastic mechanisms is verified to assess the stability of the cave system during 

381 construction. 

382 4) the simulation of the in-situ weathering processes is finally performed by reducing the 

383 strength parameters of the calcarenite during saturation, as described in Figure 10. For this 

384 purpose, the strength and stiffness parameters of the rock domain are reduced from dry to 

385 wet (Figure 10), thus simulating the STD process. An overview of some stress components 

386 are shown in Figure 12b and Figure 12c in order to identify domain areas with a significant 

387 stress concentration, as well as plastic strains are monitored. Both for Cave A and B, the 

388 numerical results indicate that even for a completely saturated material (fwet) no failure 

389 mechanism develops, since only local plastic zones form at the base of some piles (see Figure 

390 12b for Cave A) or at the  corners of the cave system (see Figure 12d for Cave B). For cave B 

391 only, an additional reduction of the yield surface is considered to simulate also the long term 

392 debonding process (fLTD). During the LTD experimental test, a strength reduction of 5% in 8 

393 months was recorded. This process is simulated adopting the strength reduction method. 

394 After a strength reduction factor of 4, corresponding to 10 year of constant water flux, the 

395 cave system is still not affected by a global failure mechanism. In fact plastic zones are only 

396 located in the lateral wall of cave B and no critical failure of the roof is recorded (Figure 12d). 

397 Finally, as shown in Figure 12e, the calculated displacements in this critical scenario generate 

398 a surface subsidence of few millimetres (max value is 2.5mm) that does not induce any 

399 damage in the building B3. 

400 Based on the results of the whole numerical process, the cave systems can be classified as safe, both 

401 under dry and wet conditions (step  6, hazard assessment). Nevertheless, the cave system should 

402 be kept as dry as possible by means of air ventilation and by preventing water infiltration. 

403

404
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405 3.2. Case study #2: San Lazzaro cave (BO, Northern Italy) 

406 This case study is represented by an abandoned gypsum mine (Figure 13) in the village of San Lazzaro 

407 di Savena, close to Bologna (Italy). Here, mining was carried out until the end of the ‘80s following 

408 the “room and pillar” method and the final cave system ( 350.000 m3) is organized according to 

409 three floors (Figure 14). During the mining operations, a karst cave was intercepted and karst water 

410 flowed into the mine ( 80.000 m3). As a consequence, the lower mining level was completely 

411 flooded and this condition has lasted up to the present due to the cave abandonment. Moreover, 

412 water circulation and infiltration from ground surface produced critical conditions prone to 

413 instability in several portions of the mining levels. In this context, buildings and infrastructures were 

414 constructed above the first and second level of the cave in the ‘70s and nowadays a large urbanized 

415 area around the Savena river is located downstream of the cave area, being at risk of flooding of a 

416 large volume of water. 

417 Geomechanical properties of gypsum are known to change over time; in fact, water, or even air 

418 humidity, dissolve or weaken gypsum rock (Grgic et al. 2006). Therefore, the aim of the present 

419 study is the evaluation of the safety conditions of both the pillars and the cave roofs as well as the 

420 assessment of the effects of a possible collapse of the mine system on the buildings located at 

421 ground surface.

422 According to the methodology described in Section 2, a topographical survey by means of a total 

423 station, along with the analysis of existing maps, allowed to define the geo-referenced three-

424 dimensional system of the cave and the detailed geometry of the ground surface of the urbanized 

425 slope. Moreover, detailed geological surveys are carried out with the aim of identifying the major 

426 issues in place. In particular, the quarry is hosted in macrocristalline gypsum layers belonging to the 

427 Gessoso Solfifera Formation, overlaid by a silty clay layer, as shown in Figure 14b. The rock mass can 

428 be considered as massive, except for some areas, where some inclined joint sets, with large spacing, 

429 and the presence of karst phenomena are observed. A detailed geomechanical survey of the pillars 

430 is also carried out in order to acquire the parameters useful for the rock mass classification RMR 

431 (Bieniawski 1973), Q system (Barton et al. 1974) and GSI (Hoek 1977). The chemical analyses of the 

432 subsurface lake water indicate a conductivity of about 2100-2200 S, a concentration of sulfates of 

433 1350-1450 mg/l and an average temperature T of 9°C. A large part of the shallower cave level is 

434 affected by rainfall water infiltrating from the ground surface and from the karst system: these 

435 phenomena are believed to increase over time due to the strong solubility of gypsum rock. 

436
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437 As for the previous case, the conceptual model here adopted (Step #2) is defined based on the in-

438 situ surveys. In particular, a 3-D continuum model is chosen based on the massive aspect of the rock 

439 mass and a FE model has been developed accordingly, as described in detail afterwards. Following 

440 the equivalent continuum approach (e.g. Hoek and Brown, 1997) the presence of large-spaced joints 

441 and discontinuities is taken into account by treating the rock mass as a continuum with reduced 

442 geomechanical properties. 

443 First of all, a standard geomechanical characterization by UC, BT and TX tests on the fresh gypsum 

444 (Unweathered Rock – UR) was performed as shown in Figure 15. Then, in order to study the spatial 

445 effect of weathering, a series of UC and BT tests were performed on specimens taken at different 

446 drilling depths (70 m, Figure 14), at an average spacing of about 5 m, with the value of the in-situ 

447 water content. The tests were performed on 8-cm diameter specimens enabling to define the whole 

448 failure envelope of the material with depth. Due to the experimental test results, the gypsum rock 

449 was classified into three levels of weathering: the portion above the 1st level was indicated as fresh 

450 unweathered rock (UR), whereas the gypsum corresponding to the 1st and 2nd levels, since it was in 

451 prolonged contact with humid air, was named humid rock (HR). Finally, the gypsum surrounding the 

452 3rd level, being flooded by water, has been named as flooded rock (FR). UR gypsum is found to be 

453 characterized on average by a UCS strength of 12 MPa, a Young modulus E of 2.1 GPa and it can be 

454 classified as EL according to Deere and Miller (1966). Figure 14b shows the boreholes dedicated to 

455 evaluate the weathering process. Nevertheless, in the same area more than 25 boreholes were 

456 already present and a large number of on site and laboratory investigations were performed during 

457 and after the mining activity. This guaranties the homogeneity assumption here considered.  

458

459 In particular, Figure 16 summarizes the variation of UCS (c, Figure 16a), secant Young modulus (Es, 

460 Figure 16b) and tensile strength (t, Figure 16 c) as a function of depth. The UCS strengths of HR and 

461 FR are found to be respectively 20-30% and 50-60% less than the corresponding strength of UR. A 

462 similar trend is also found for the tensile strength reduction, whereas the same drop of stiffness ( 

463 65%) is observed for both the HR and the FR. The dispersion of the data in Figure 15 and especially 

464 in Figure 16 is due to the size of the gypsum crystals (about 1 cm), compared to the reduced 

465 diameter of the specimens (between 4 and 8 cm) necessary to reproduce weathering in laboratory 

466 time.
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467 To corroborate the reduction of strength as an effect of flooding (FR), an additional series of UC 

468 tests was performed on smaller specimens (D = 24 mm; H/D = 2) immersed in situ in the 3rd level 

469 water for different time lags. The results are reported in Figure 17a and show a marked reduction 

470 (up to 50% drop of the dry UCS) just after 15 days of immersion; after this initial reduction, no further 

471 drops are observed within one year of immersion. These results are consistent with the amount of 

472 strength reduction observed at the depth of the flooded level (Figure 16). Finally, a small-scale test 

473 showing the collapse of a pillar after 10 days in a water flux of 2 l/h is shown in Figure 17b; this test 

474 could be considered a further confirmation of the risk related to the pillar failure when an 

475 unsaturated water enters the cave system. 

476 An elastic-perfectly plastic model with an HB failure criterion is adopted for the gypsum rock mass 

477 Figure 18a). The laboratory scale (D = 80 mm) strength envelope for the intact rock (URLAB line in 

478 Figure 18b) is obtained by fitting the Mohr’s circles at failure derived from the UC, BT and TX tests 

479 (Figure 18a). Size effects are then accounted for by using a Weibull distribution: the in-situ mass size 

480 larger than the critical size of 1 m (Castellanza et al. 2010) is accounted for by reducing the 

481 laboratory UCS strength of about 35% (URsitu line in Figure 18b). To take the weathering process into 

482 account, a further strength reduction (equal to the UCS strength drop shown in Figure 16a) is used 

483 to comply with the HRsitu and FRsitu strength (see also Table 1 for the specific parameter of the HB 

484 failure loci referred to the in situ condition). Finally, the effect of the existence of a joint set in the 

485 rock mass (see step #1) is accounted for by applying a reduced value of GSI=82 according to the 

486 suggestions proposed by Cai et al. (2004). The final strength envelopes considering all the effects 

487 (size, weathering and in-situ jointed state) are represented in Figure 18b with the labels URsitu-jointed, 

488 HRsitu-jointed and FRsitu-jointed . The shallow silty clay layer is modelled using an elastic-perfectly plastic 

489 Mohr-Coulomb model.

490

491 At this point the 3D FE analyses are carried out in order to develop hazard assessment according to 

492 Step 5 in Figure 2. As shown in Figure 19, detailed 3D geometrical solids have been created for the 

493 entire hill incorporating the mine system and the overlying building; an optimized discretization 

494 mesh, highly refined in the area of the cave system, is adopted. As for the previous case, the impact 

495 of mesh dependency on the numerical results is preliminary assessed by performing a series of 

496 elastic analyses with different mesh refinements.  

497 As a preliminary assumption, the pillars are considered as the structures of the cave system most 

498 susceptible to failure and therefore hazard assessment is firstly focused on the evaluation of the 
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499 safety margin of each pillar with respect to collapse; in fact, according to the Authors, the collapse 

500 of a single pillar would induce a process of sequential collapse of the adjacent pillars (pin failure 

501 mechanism), which in turn is likely to generate consequent failures of the chamber roofs and 

502 eventually give rise to a proper sinkhole phenomenon. Therefore, concerning the assessment of the 

503 safety margin of each pillar, two different methodologies have been followed. In the first, a simple 

504 3D elastic analysis that does not require any construction stage is enough to evaluate the safety 

505 factor of each pillar with simplified approach; in the second, a fully non-linear analysis requiring a 

506 construction stage procedure is used to identify the most critical pillars.

507 Step 5 - Methodology 1: according to Obert and Duvall (1967) approach, the safety factor of the 

508 general pillar, i, is firstly calculated as the ratio between the in-situ UCS strength of the pillar at the 

509 actual scale (lim,i) and the mean value of the in-situ axial stress existing in the same pillar (situ,i). In 

510 particular, for the pillars located at the 1st and 2nd levels of the cave, the value of lim,i is considered 

511 equal to the UCS strength corresponding to HRsitu-jointed, whereas for the pillars at the 3rd level it is 

512 assumed equal to FRsitu-jointed. Differently from the conventional procedures usually accounting for 

513 the loading area acting on the single pillar, the in-situ stresses situ,i of each pillar is evaluated based 

514 on the results of a 3D FEM elastic analysis. Figure 20 shows the resulting contours of the vertical 

515 stress in the pillars. For this calculation, the values of the tangent elastic modulus at 50% of the 

516 compressive strength, E50, are assumed and the situ,i are evaluated by averaging the vertical stresses 

517 calculated in the Gauss points in the mid-height section of the pillar. The values of the calculated 

518 safety factors are reported in the hazard map shown in Figure 21. Based on this approach, a large 

519 number of pillars of 3rd level are in critical conditions (1 < Fs < 1.1) while pillars at the 2nd and 1st 

520 levels (L1 and L2) result to be in safe conditions (Fs > 1.6) except for a single pillar (P7-1 – red area 

521 in Figure 21), located at the 1st level (Fs =1.15). It is worthwhile stressing that while critical pillars at 

522 the 3rd level L3 have no buildings overlying at the ground surface, pillar P7-1 does. 

523 Step 5 - Methodology 2: in this case a series of non linear elasto-plastic 3D FEM analyses are carried 

524 out in order to simulate the actual conditions of the overall mine system. The above calibrated 

525 elastic-perfectly plastic constitutive model adopting the HB failure envelope for each class of 

526 weathered gypsum (UR, HR, FR; see step #3) is used. The numerical analyses are performed 

527 according to the following construction stage procedure: 

528 1) geostatic stress state is initialized before mine excavation and building construction, 

529 assuming homogeneous gypsum rock mass conditions, represented by URsitu-jointed;
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530 2) mine excavation is simulated by removing groups of elements in accordance with the 

531 historical sequence of cave exploitation; 

532 3) building construction is simulated by the application of equivalent pressure loads; 

533 4) in situ weathering process at present is simulated by means of the reduction of the HB model 

534 parameters from URsitu-jointed  to HRsitu-jointed for the gypsum of the 1st and 2nd levels  and to 

535 FRsitu-jointed for the gypsum of the 3rd level, as defined in Step 3. Plastic strains p developed 

536 only in some of the abandoned-mine pillars and contours of deviatoric plastic strains are 

537 shown in Figure 22. The numerical results in terms of the amount and distribution of 

538 deviatoric plastic strains confirms that: i) no global failure mechanism develops within the 

539 roofs as no p are recorded in such locations; ii) for the level L1, p are concentrated in the 

540 pillars, so that they can be considered as one of the weakest structures of the whole system; 

541 iii) an amount of p develops in pillar P7-1  of the 1st level. This result suggests that the elastic 

542 analyses obtained with the Obert and Duvall (1967) approach presented above are 

543 reasonable.

544 5) A long term worst-scenario process is simulated by progressively removing the most critical 

545 pillars, starting from the removal of critical pillars in the 3rd level L3, which is the one 

546 characterized by the minimum values of Fs, followed by progressively deactivating pillars and 

547 roofs, as shown in Figure 23. The worst-scenario concludes when a large number of pillars at 

548 the 3rd level, along with the roof and the overlying pillars at the 2nd level, are deactivated. 

549 The sequence of pillar removal is performed according to the following procedure: the pillar 

550 to be removed is the one closest to failure with relevant plastic strains and the minimum 

551 safety factor evaluated with Obert and Duvall (1967) approach; whenever a pillar is removed 

552 the load acting on the removed pillar is transferred to the surrounding pillars and therefore 

553 the values of the Fs for the active pillars are updated always with Obert and Duvall (1967) 

554 approach. According to this procedure, the implicit drawback represented by neglecting the 

555 brittle behaviour and the crack propagation associated with the observed post-failure fragile 

556 response of gypsum is reduced. As shown in Figure 23, this procedure allows to define a 

557 subsidence basin of 30000m2 at ground surface that do not significantly affect any building. 

558 In this perspective, the performed 3D numerical analysis is capable of describing a very 

559 critical scenario and should be considered as a tool for predicting the negative consequences 

560 in terms of subsidence. These results were used to design a currently ongoing monitoring 
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561 campaign and to decide not to undertake any remediation measure to prevent settlement 

562 damage to buildings (Ciantia et al. 2018).

563 6) An additional catastrophic scenario adopting 3D CFD analyses were used to evaluate the 

564 amount of water that could be eventually ejected outside the mine and eventually flooding 

565 the downstream village. It was decided to consider a further unfavourable condition which 

566 is the simultaneous collapse of the entire roof of Level 3 to maximize the impact of the falling 

567 down gypsum mass on the volume of water present in mine. The results are shown for 

568 different time intervals in Figure 24. It could be shown that the analyses revealed the internal 

569 buffering capacity of the intact portion of Level 2. Furthermore, the analyses allowed to 

570 assess the volume and the velocity of the water that can flood out from Level 1 towards the 

571 urbanized area. The estimated volume of the flooding water is about 2000 m3. It represents 

572 approximately the 2% of the water that flood the mine. This amount is compatible with small 

573 channelling works to bring this water in the Savena River located just outside the mine. The 

574 forecasting of flooding water revealed again a low risk for the urbanized area. The technical 

575 details can be found in Castellanza et al 2015.

576 As regards step 6 of the methodology (i.e. hazard assessment), some important considerations 

577 arise based on the previously described results for this specific case study: i) the most critical part 

578 of the cave system is represented by the 3rd level L3 where a large number of pillars result to be in 

579 critical conditions; ii) assuming a catastrophic scenario of sequential pillar collapse, the consequent 

580 subsidence basin and the amount of flooding water does not significantly affect the existing 

581 buildings; iii) to increase the safety conditions, some structural reinforcements of the existing most 

582 critical pillars should be considered. For flooded level 3, the proposed remediation measure consists 

583 of reducing the inflow of fresh water, avoiding further dissolution as the current concentration of 

584 the solute mass is at maximum. With respect to the initial idea to fill the entire level 3 with a fluidized 

585 cemented soil as in Castellanza et al. (2010), the final cost of the proposed countermeasures is less 

586 than one order of magnitude of the initial one. It means that a small investment in the proposed 

587 methodological approach including experiments and theoretical and numerical predictions produce 

588 a large amount of money saved. 

589 5. Conclusions

590 The paper describes a methodological approach for hazard assessment of underground caves within 

591 soft rock masses affected by weathering, based on a step-by-step procedure that includes in-situ 
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592 surveys, laboratory experimental studies, theoretical analyses and finally numerical investigations. 

593 The procedure aims to evaluate the physical variables on which depend the variation of strength 

594 and stiffness of the cave rock up to failure, so that efficient remediation measures can be adequately 

595 defined. When the primary cause of instability is rock mechanical weakening evolving with time, as 

596 triggered by water, humidity or chemical weathering, safety conditions of the underground cave are 

597 observed to reduce with time, even if loading conditions are maintained constant with time. To 

598 derive reliable assessments of the cave stability conditions, the methodological approach is applied 

599 to three complex case histories, two of which considering underground cave systems in calcarenite 

600 formations and one referring to an abandoned gypsum mine. The results suggest that:

601 - A detailed rock characterization, carried out through laboratory and field investigations, is 

602 fundamental in order to identify the susceptibility of the examined rock to environmental 

603 weathering, and hence should be planned as first.

604 - A three-dimensional elasto-plastic finite element model implementing the current state of 

605 the rock mass and the eventual interaction with overlying structures needs to be carried out 

606 in order to evaluate the initial safety condition of the considered system.

607 - To evaluate how safety conditions change in time due to weathering, the same numerical 

608 model should be framed in order to assess future scenarios of the cave stability based on 

609 the time evolution of weathering process. To do so, the rock characterization tests previously 

610 developed should include some sort of tests replicating possible weathering scenarios at 

611 laboratory scale.

612 - This methodological approach could be enriched by introducing the effect of rock brittleness 

613 in the acceleration of the rock failure process. This requires to improve the numerical code 

614 by including time-dependent coupled hydro-chemo-mechanical constitutive models, 

615 combined with crack propagation algorithms to describe joint behaviour.

616

617
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24 Figure 5: Step #3 - in situ drilling (left) and laboratory re-drilling for sample preparation (right)
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29 Figure 6: Step #3 – (a) micromechanical investigations: SEM analyses, thin section, and schematic 
30 reconstruction; (b) environmental weathering mechanism for calcarenite: short term weathering STD and 
31 long term weathering (LTD). 
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36 Figure 7: Step #3- Experimental results: STD laboratory weathering by uniaxial test (UCS) and indirect 
37 tensile test (BT): (a) axial stress – strain curves at different saturation degree; (b) UCS ad BT strength vs. 
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48 Figure 9: Step #4- (a) Advanced constitutive model: Yield surfaces at different saturation degree process 
49 (STD) and dissolved mass (LTD) process (Nova et al. 2003); (b) Simplified constitutive model: Failure loci 
50 for MC and HB model referred to the fwet .
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52 Figure 10: Step #4- Adopted constitutive model simulating the STD weathering process.
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57 Figure 11: Step #5- Geometrical and numerical model : a) Cave A; b) Cave B with an hidden part of the 
58 mesh
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73 Figure 12: Step #5-Numerical results (contours) - Cave A: (a) shear stresses; (b) plastic strains; Cave B: (c) 
74 maximum principal stresses (compression are negative) (d) plastic strains after a total saturation (fwet: Sr=1) 
75 and after a LTD process (fLTD) that correspond to a Strength Reduction Factor of 4,28; e) vertical 
76 displacement at Sr =1.
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82 Figure 14: Step #1- Planar view (a) and section (b) of the abandoned mine system interacting with 
83 buildings.
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86 Figure 15: Step #3- Experimental results for fresh gypsum (UR): UC (Uniaxial Compression), BT (Indirect 
87 Tensile Test) and TX test (multistage triaxial test).
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90 Figure 16: Step #3- Experimental results: in situ existing weathering profile of compression strength, 
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96 Figure 17: Step #3- Experimental results: (a) Decay resistance to uniaxial specimens immersed in situ (in 
97 the flooded quarry at Level L3); (b) Small-scale simulation of collapse of a pillar in a water flux.
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103 Figure 18: Step #4- Failure envelopes adopted for the gypsum: (a) fitting with HB and MC criterion; (b) 
104 Hoek and Brown failure loci for the in situ weathered gypsum;
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109 Figure 19: Step #5- Geometrical model and discretization mesh. a) Perspective view and top view of the 
110 solids; b) perspective view of the finite element mesh and detail of the mesh in the cave system.
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112 Figure 20: Step #5 – Metodology 1 – Elastic analysis : Contour of the in situ vertical stress state of pillars 
113 evaluated by 3D FEM analyses; in the right bottom corner an example of the vertical stress diagram used 
114 to evaluate the average value of situ is shown.
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116 Figure 21: Step #5 – Metodology 1 : Pillar safety factor evaluated by combining the in situ stress level and 
117 rock strength
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119 Figure 22: Step #5 – methodology 2 -Numerical results: plastic strains at the present conditions
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121 Figure 23: Step #5: Evaluation of subsidence basin after removing the critical pillar and roof of level L3: 
122 Contour of plastic strain at section AA (left), contour of superficial subsidence (right) 
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124 Figure 24: Step #5 Forecast of the outgoing volume of water from level 1 in case of quick collapse of the 
125 entire roof of level L3

Gypsum Rock URsitu HRsitu FRsitu

ci [MPa] 11.72 8.39 6.36
ti [MPa] -1.53 -0.97 -0.66

mb 7.65 6.17 5.16
s 1.00 0.51 0.29
a 0.50 0.50 0.50

D (Damage) 0.00 0.00 0.00
Em[GPa] 1.93 1.36 1.02

126 Table 1: Hoek and Brown (1997) failure criteria parameters for in situ condition without joints for the 
127 gypsum layers: URsitu (Unweathered Rock), HRsitu (Humid Rock), FRsitu (Flooded Rock)
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