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ABSTRACT: The folate pathway has been extensively studied in a
number of organisms, with its essentiality exploited by a number of
drugs. However, there has been little success in developing drugs
that target folate metabolism in the kinetoplastids. Despite
compounds being identified which show significant inhibition of
the parasite enzymes, this activity does not translate well into
cellular and animal models of disease. Understanding to which
enzymes antifolates bind under physiological conditions and how
this corresponds to the phenotypic response could provide insight
on how to target the folate pathway in these organisms. To
facilitate this, we have adopted a chemical proteomics approach to
study binding of compounds to enzymes of folate metabolism.
Clinical and literature antifolate compounds were immobilized
onto resins to allow for “pull down” of the proteins in the
“folateome”. Using competition studies, proteins, which bind the beads specifically and nonspecifically, were identified in
parasite lysate (Trypanosoma brucei and Leishmania major) for each antifolate compound. Proteins were identified through
tryptic digest, tandem mass tag (TMT) labeling of peptides followed by LC-MS/MS. This approach was further exploited by
creating a combined folate resin (folate beads). The resin could pull down up to 9 proteins from the folateome. This
information could be exploited in gaining a better understanding of folate metabolism in kinetoplastids and other organisms.

KEYWORDS: kinetoplastid, folate, chemical proteomics, pull down, Trypanosoma brucei, Leishmania

We and others are interested in gaining a better
understanding of folate metabolism within kinetoplas-

tids and using this information to identify potential drug
targets for disease areas such as human African Trypanoso-
miasis (HAT), Leishmaniasis, and Chagas’ disease. Folate
metabolism (Figure 1) has been exploited for the development
of drugs in a number of disease areas, including for the
treatment of cancer, bacterial infections, malaria, and
rheumatoid arthritis,1−6 but there has been little success in
the case of the kinetoplastids. It is known that folates are
essential for kinetoplastid parasites since they are key cofactors
in pyrimidine and purine biosynthesis and are also required for
the production of essential amino acids (e.g., methionine,
glycine, and serine).2 Bacteria and plant species synthesize
folates through condensation of pterins by dihydropteroate
synthase, an enzyme already demonstrated as druggable.
However, this process is absent in kinetoplastids and drug
discovery programs have focused on targeting enzymes
responsible for the subsequent metabolism of folic acid.
Although some compounds show significant inhibition of the

parasitic enzymes, there is little translation of potency against

the enzymes to cellular and animal models.7,8 Understanding

how the folate pathway operates in these organisms and which

inhibitors bind to which enzymes under physiological

conditions would be invaluable in identifying ways to both

understand why current analogues are not effective against the

parasites in vitro and to target this pathway for drug discovery.

In this study, we use chemical proteomics to identify

compounds capable of specifically binding to enzymes that

constitute the folate metabolism of Trypanosoma brucei and
Leishmania major, causative agents of HAT and cutaneous

leishmaniasis. It is hoped the learnings can be used to develop

more potent compounds capable of treating these devastating

parasitic diseases.
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■ BACKGROUND

In our (Cellzome) laboratories, we have developed powerful
methods to quantitatively analyze binding of compounds to
proteins in cell extracts. As previously reported, this approach
has been successfully used to interrogate target classes that
share conserved binding pockets, such as kinases9 and

dioxygenases.10 This approach used an affinity matrix
composed of nonselective inhibitors immobilized on beads
that could effectively “pull down” a large number of different
kinases or dioxygenases. Binding of cell extract proteins to
these beads was studied in the presence or absence of free
inhibitor. Following several washes to remove nonbinding

Figure 1. Diagrammatic view of folate metabolism. Steps shown in black are common in human, leishmania, and T. brucei. Steps shown in purple
are additional steps in human and leishmania. MTHFD (methylene tetrahydrofolate dehydrogenase), MTHCH (methenyl tetrahydrofolate
cyclohydrolase), MTR (methylene tetrahydrofolate reductase), FTHS (10-formyl THF synthase), MetS and MetE (methionine synthase), MTF
(methionyl-tRNA formyltransferase). NP, not present. NA, not applicable.
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proteins, specifically bound proteins were eluted from the
beads, digested by trypsin, and analyzed by mass spectrometry.
Quantification of the kinases binding to inhibitors was
performed by isobaric tagging with isotope-containing reagents
(TMT, tandem mass tags).
In this current study, we aimed to produce and develop an

affinity matrix for enzymes involved in the folate metabolism of
kinetoplastids, effectively the folateome of these parasites. This
information could then be used to determine the molecular
targets of compounds targeting folate metabolism and to
correlate this to phenotypic responses. To achieve this, a small
library of clinical and literature antifolate compounds was
immobilized onto resins and used in “pull-down” experiments
with and without test compound present, to ascertain proteins
binding specifically to particular resins.9,11,12 While the initial
focus of this project was to establish the kinetoplastid
folateome, the approach has the potential to be extended to
other organisms.

■ PREPARATION OF BEADS: SELECTION OF
COMPOUNDS FOR IMMOBILIZATION

In order to prepare beads for the “pull-down” experiments, a
number of compounds known to inhibit different enzymes in
folate metabolism were selected. The known enzymes involved
in folate metabolism are shown in Figure 1. It should be noted
that there are some differences between folate metabolism in
human, T. brucei, and L. major (Figure 1). Both clinically used

and experimental inhibitors of the following folate enzymes
were used to cover as large percentage of the folateome as
possible: DHFR, TS, PTR1, foly|polyglutamate synthase
(FPGS), and methylenetetrahydrofolate dehydrogenase/meth-
enyltetrahydrofolate cyclohydrolase (DHCH) inhibitors. In-
hibitors were selected from the literature, where possible where
there is literature data for inhibition of the kinetoplastid
enzymes (see the references in Table 1 and further information
in the Supporting Information).
Where appropriate, these inhibitors were modified for

attachment to the beads (Table 1 and Figure 2). In addition,
it was decided to include the substrate, folic acid, as it offered
the potential to bind to a wide variety of folate-metabolizing
enzymes. Folic acid should show good molecular recognition
with multiple enzymes in the folateome. The folate ligand
could of course undergo metabolism in some of the enzymes
or bind but with a very weak binding constant. A peculiarity of
folate metabolism in kinetoplastids is that dihydrofolate
reductase (DHFR) and thymidylate synthase (TS) are found
as a single bifunctional enzyme. In addition to the enzymes
involved in folate metabolism, the kinetoplastid enzyme
pteridine reductase 1 (PTR1) was included in this list, as it
is known to metabolize dihydrofolate to tetrahydrofolate.
Antifolate compounds were immobilized onto NHS-

activated sepharose beads/reverse sepharose beads through
amide coupling via either an amino or carboxyl group (see
Figure 3). The reaction was monitored by observing the
disappearance of test compound by LCMS, after which the

Table 1. Summary of Compounds Selected for Study and Their Hypothetical Target(s)a

aFPGS, folypolyglutamate synthase; GCS, glycine cleavage system; SHMT, serine hydroxyl methyltransferase; DHCH MTFT, methionyl-tRNA-
formyltransferase; MTX, methotrexate; RTX, raltiterxed; PTX, pemetrexed; LEU, leucovorin; NTX, nolatrexed; THF, tetrahydrofolate.
bCompounds with a folate pharmacophore possessing a diglutamate moiety that are proposed to bind to FPGS (although it is unknown if these
compounds are inhibitors of FPGS).18
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unreacted coupling sites were capped with NHS-acetate or
aminoethanol. Many “typical” antifolate analogues possess the
common glutamic acid tail (e.g., MTX, folic acid) that enables
these compounds to be directly coupled onto the beads.
However, other antifolates (e.g., NTX, 1, etc.) required
modification to facilitate their attachment (see Figure 4).
Folate metabolizing enzymes are not highly abundant

proteins,19,20 potentially making their identification by MS
difficult. Beads will not only pull down the low abundant high
affinity binders but also attract highly abundant, low affinity
binders or so-called nonspecific binders. Sometimes, the
nonspecific high abundant proteins can mask true binders.
The target identification approach used in this study
overcomes this issue by performing competition studies.
Various concentrations of the free unmodified inhibitor (test
compound) were preincubated with the lysate, prior to
addition of the beads derivatized with immobilized com-
pounds. Following washing of the bound proteins from the

beads and tryptic digest, the peptides were labeled using the
TMTs and then pooled. Differences in peptide abundance
were analyzed by fragmentation of the isotope-coded isobaric
tags in the MS/MS spectra (Figure 5).9,11,12,21 While the
competition experiments with test compound confirm specific
binding, it is also possible that some proteins will have a
stronger binding interaction with the derivatized beads than
the competing test compound, due to subtle differences in the
interactions between the immobilized compound and the test
compound with the target protein.

Identification of Protein Targets of Individual Beads.
Data from the pull-down and competition experiments is
summarized in Table 2. In addition to identifying folate
metabolizing proteins, these experiments also identified
additional unrelated proteins that bind to the immobilized
ligands, including proteins involved in ubiquitination and
proteins that have been identified as potential drug targets in
related parasites (T. cruzi) (see Supporting Information).
All clinically tested antifolates bound to their established

target(s) (Table 2). It was surprising that many of the
compounds tested here did not display binding to other
proteins of the folateome, outside the reductive enzymes
DHFR-TS and PTR1, given that the proteins in the folateome
all bind relatively similar substrates. In the case of DHFR-TS, it
is not known if the compounds bind to the DHFR or TS
moiety; an example is the known TS inhibitor RTX (see
Supporting Information for further discussion). Folic acid

Figure 2. Antifolate analogues under investigation. Areas highlighted in red/blue indicate where bead attachment occurs. In compounds where
both free acidic and basic groups are available, specific beads were chosen to differentiate the two possible coupling sites.

Figure 3. Antifolates possessing amine points of attachment are
coupled with NHS-activated sepharose beads.
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shares a common pharmacophore with many substrates of the
folate pathway, and we expected that it might be able to pull
down a large percentage of the folateome. Individual bead
testing revealed that folic acid-derivatized beads were only able
to bind to DHFR-TS (from both parasites) and PTR1 from
T. brucei (Table 2). There are slight differences in the active
sites of the T. brucei and L. major PTR1 enzymes that may
explain this difference.22 The fact that the folic acid-derivatized
beads did not specifically pull down more of the folateome
could be due to several scenarios: some of the enzymes may
have very specific binding pockets, the linker is in the wrong
place, the linker is too short, or there is a very weak binding of
the enzymes to folic acid. Another possibility is that the folic
acid attached to the beads is being metabolized by the enzymes
and the product (attached to the beads) has a relatively weak
binding affinity to the enzymes. Folic acid derivatized-beads
could therefore not be used solely as an affinity resin for
screening potential antifolates due to its poor protein coverage
of this pathway. Compound 4 was the only compound found

to pull down (when resin bound) and compete for the
bifunctional enzyme DHCH (dehydrogenase-cyclohydrolase)
from L. major lysates; however, T. brucei DHCH was not
detected. There are several binding pockets within this enzyme
complex, and it is uncertain which of these is interacting with
the compound.
The glycine cleavage system (GCS), a multiprotein

complex,23 was also identified with the DHFR-TS modified
compounds. Beads derivatized with compounds 10 or 11 were
found to bind to one of the proteins making up the GCS
(<50% inhibition, LMJF. 32.3310). This was also evident with
beads derivatized with compound 9 (a functionalized TS
inhibitor). There was only weak competition with the
competing ligands (see Table 2), implying that the derivatized
beads have a stronger interaction with the protein than the
competing free ligand. GCS pull down was only evident with
the above-mentioned beads. There could be a number of
explanations why this was the case, in addition to lack of
potency of the ligand for the enzyme.

Figure 4. Unmodified analogues MTX and folic acid both possess a glutamate tail which enables these compounds to be coupled to beads without
modification. In the case of NTX, it does not possess suitable points of attachment and therefore these have to be chemically engineered into its
synthesis. Where possible, crystallography was used to guide the synthetic design.

Figure 5. Proteomic work flow employed to identify binding proteins of antifolate derivatives using TMT to quantify the samples.
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• The immobilized derivatives, 10 and 11, bind more
strongly to the GCS than the free compounds 1 and 2.
This could be due to, for example, the amide in the
linker introducing potential polar interactions with the
protein and conformational changes of the ligand.

• Folate metabolizing enzymes require cofactors (i.e.,
NADP+ or NADPH) for reactions to occur and also for
substrate binding. Since the lysate was not enriched with
saturating amounts of cofactor, it is difficult to say how
much cofactor was present in the active site(s) of the
enzymes involved in folate metabolism. Therefore,
competition may not have been evident due to the
absence of key interactions between ligand and cofactor.

Other factors contributing to the lack of competition with
the test compound could be due to structure related issues of
both ligand and enzyme. Enzymes are often physiologically
found as oligomers. The number of active sites available for
competition is dependent on structure of the enzyme complex.
For example, the test compound may be able to bind to
DHFR, but as DHFR-TS is found as a bifunctional homodimer
(L. major24), there are multiple active sites that can bind to
ligand and or bead.
The majority of proteins that bound to beads belonged to

families associated with the folate metabolism and the
synthesis of its products (i.e., purine and pyrimidine
metabolism). This finding led to the possibility of creating

“folate−beads” to analyze the folateome. The bead set would
be comprised of beads that had the ability to pull down a large
percentage of the folateome, thereby enriching this low
abundant pathway in trypanosomatids.19 This is analogous to
kinobeads, a set of immobilized kinase inhibitors that display
little selectivity for particular protein kinases and interact with
kinases of different classes. Screening of compounds against
the kinobeads aids in determining their kinase-inhibition
profile.9

Individual bead testing revealed five folate metabolizing
enzymes (the bifunctional DHFR-TS, PTR1, DHCH, and
GCS) that could be captured by the beads. Work commenced
on the development of a mixed bead set that had the ability to
pull down a large percentage of the available folateome in the
kinetoplastid parasites. These beads should (i) compete with
test compound; (ii) not have a high background signal (i.e.,
clean binding profiles containing minimal nonspecific binding
proteins); (iii) ideally interact with several proteins from the
folateome.

Multitargeted Bead Mixture. A bead mixture was
generated which combined beads from MTX, folic acid, 4,
and 10 (3:11:11:11). In T. brucei, the bead mixture covered
DHFR-TS and PTR1, while in L. major, the beads covered a
wider area of the folateome, with the addition of GCS and
DHCH to the list of targeted proteins.
The beads were initially tested against T. brucei lysate using

as free ligands for competition, 3, NTX, 5,21 MTX, and RTX

Table 2. Summary Table of Individual Bead Pull Downs with Competing Free Ligand (100 μM) in Both T. brucei and
L. majora

aN.D. = not determined. (/) = no affinity was recorded for the chosen target. (^) for beads 10 and 12 in L. major, 1 and 2 were used as the
competing ligand, respectively. * designation in the table: protein was identified on bead but was not sufficiently bound by competing ligand for
target identification.
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(Table 3). Preliminary work on bead mixtures suggested
careful selection of the bead composition was required to
obtain the correct balance between “pull down” of the
folateome and competition with test compounds. For example,
too high a percentage of MTX−beads led to fewer known
DHFR inhibitors being identified (previously identified to bind
during individual bead testing), presumably due to very tight
binding of the MTX−beads to the enzyme. The new bead
mixture showed confirmed targets being pulled down and
outcompeted for. The only artifact was that the multitargeted
bead mixture did not show DHFR-TS as a target for RTX,
although experimentally we were able to show that RTX
inhibited (albeit weakly compared to MTX) the enzyme
biochemically (TbDHFR-TS IC50 5.1 μM) in a direct assay
(see Supporting Information). Chemical proteomics showed
that RTX was able to outcompete for PTR1 (83% inhibition of
binding) as were the other PTR1 compounds 3 and 5, while in
nonoptimized bead mixtures, less than 50% inhibition of PTR1
binding was observed. This previously unreported inhibition of
TbPTR1 by RTX was also confirmed in direct enzyme assays,
showing that RTX inhibited TbPTR1 (IC50 22 μM (Ki
TbPTR1 0.8 μM) (see Supporting Information). The multi-
target bead mixture was not only able to pull down and allow
competition of target proteins but also obtained cleaner
binding profiles than previous bead mixtures (better signal-to-
noise). However, this could in part be due to increased
concentration of competing ligand (100 μM) compared with
previous bead mixtures.
Competition studies were undertaken with 10 compounds

using lysates from T. brucei (Figure 6), L. major (Figure 7), and
HeLa cells (Figure 7). The 10 compounds were: MTX (DHFR
and PTR1 inhibitor); RTX (TS inhibitor, but also found to
inhibit T. brucei PTR1); 1 and 2 (parasite DHFR inhibitors); 3
(T. brucei PTR1 inhibitor); NTX (TS inhibitor); LEU
(reported to inhibit DHFR, SHMT, MTF, MTHFD, and
MTHCH);14,15 PTX (DHFR inhibitor); 6 and 7 (potential
FPGS inhibitors).
In T. brucei lysate (see Figure 6), only MTX was found to

compete for DHFR-TS; the other known DHFR inhibitors
investigated did not successfully compete for DHFR-TS. This
may be due to the tight binding of MTX−beads to the DHFR.

Other known DHFR inhibitors were not such strong binders in
direct enzyme assays, including 1,15 2.4 and PTX (TbDHFR Ki
290 ± 20 nM, TbTS Ki 20,500 ± 200 nM1,6). Likewise, the TS
inhibitors, RTX and NTX, did not compete for DHFR-TS.
MTX, RTX, PTX, and 3 competed for PTR1. Compound 3
was designed to be a highly selective T. brucei PTR1 inhibitor,
and this was born out of these studies.
In the case of L. major (Figure 8a), MTX, RTX, and 1

competed for DHFR-TS, with MTX also outcompeting for
PTR1. Interestingly, 1 competed for its hypothesized target
DHFR, despite its derivative bead not being able to pull down
this target. This suggested that the derivatized bead interfered
with DHFR recognition, and if repeated, a different linker
position would be used to link the inhibitor to the bead.
Compound 3 showed no inhibition of PTR1 in L. major;
however, this compound was designed for T. brucei PTR1
inhibition, and there are structural differences between the
L. major and T. brucei PTR1s. An interesting observation was
made with both 3 and PTX showing binding and competition
to phenylalanine-4-hydroxylase (PAH), showing an additional
target for PTX. PAH is a H4B dependent nonessential enzyme
found in Leishmania spp. and a target not known for these
compounds. None of the compounds from the screen showed
affinity toward DHCH, although it was pulled down by the
bead mixture, through inclusion of beads derivatized with
compound 4 in the mixture.
In both T. brucei and L. major data sets (Figures 6 and 8), a

number of enzymes were identified that appear to interact
specifically with our compounds of interest but that are not
known to directly interact with folates or pterins. For instance,
in T. brucei lysates, PTX appeared to bind to inosine-5′-
monophosphate dehydrogenase (Tb927.10.16120), involved
in purine biosynthesis but not known to require folate or pterin
cofactors. In addition, PTX also bound specifically to a dynein
associated protein (Tb09.211.4920) and the highly abundant
variant surface glycoprotein 221 (VSM2.TRYBB). Indeed,
MTX bound to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, Tb427.06.4300), also known to be one of the most
abundant proteins in the cell. In Leishmania lysates, PTX
strongly associated with glutamate 5′-kinase (LmjF.26.2710),
while compound 1 bound to methylthioadenosine phosphor-

Table 3. Multitargeted Bead Mixture Preliminary Experiments against a Small Subset of Compounds Whose Targets Are
Known Either from the Literature or Have Been Identified during Individual Bead Testinga

aTable has been displayed as a heatmap which indicates percentage of competition from bead binding.
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ylase (LmjF.05.0830), an enzyme involved in purine salvage.
This compound also interacted strongly with haloacid

dehalogenase-like hydrolase (LmjF.28.1370). Some of these
interactions may simply be explained by our compounds
interacting with highly abundant proteins within parasites,
while other associations are more difficult to explain and could
represent other molecular targets of the compounds, which
may or may not have a phenotypic effect.
In the HeLa cell extract (Figure 7b), the known DHFR

inhibitors MTX and 1 were found to bind DHFR. However,
PTX did not appear to bind DHFR, which may also be an
artifact of the strength of binding of the MTX-derivatized
beads. Interestingly, 1 targeted all subunits of the MTHF
complex (DHCH protein in humans) with >70% inhibition.
To the authors’ knowledge, the MTHF complex has not
previously been described as a target of the diaminopyrimidine
compound. MTX also bound methylene-THF-reductase (77%
inhibition), which is an unreported activity of MTX. NTX,
LEU, and PTX also bound MTHFS, the 5-formyl-THF-cyclo-
ligase. PTX, NTX, LEU, and RTX were all inhibitors of TS
(>56% inhibition); this was expected for NTX and RTX which
are designed TS inhibitors. However, it is not expected for
LEU and PTX.

Figure 6. Bead immobilized compounds MTX, folic acid, 4, and 10 were incubated with T. brucei lysate. To evaluate specific binding, the indicated
compounds were added to the extracts at a concentration of 100 μM. Target proteins would be expected to bind to the beads only in the absence of
excess competing compound. Proteins captured by the beads were quantified following tryptic digestion, isobaric peptide tagging, and LC-MS/MS
analysis. Heatmaps were created in the data visualization software Spotfire (TIBCO software). Proteins were clustered with the clustering method
UPGMA using the Euclidean distance measure as implemented in Spotfire. Shown are all proteins identified in 2 replicate experiments with at least
2 unique quantified peptides and with >30% inhibition by the indicated compounds.

Figure 7. Generation of IC50 value for PTR1/RTX. The capturing
experiment was performed as in Figure 6 but over a range of
concentrations of the competing free inhibitor RTX (90−1.1 μM).
Taking into account the depletion of PTR1 by the beads, the apparent
dissociation constant was determined as 8.4 μM in experiment 1 and
4.0 μM in experiment 2. Quantification determined using TMT
tagging.
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■ DISCUSSION

We have successfully derived a set of beads that pull down the

majority of enzymes in the folateome. This provides a very

important tool for understanding folate metabolism and the
effects of inhibitors on folate metabolism. In addition to
pulling down proteins in the folateome, these beads also pull
down a variety of other proteins. Included in these are proteins

Figure 8. (a, b) Bead immobilized compounds MTX, folic acid, 4, and 10 were incubated with the indicated protein extracts. Images were created
using data visualization software Spotfire (TIBCO software) in the same manner as Figure 6. In L. major, compounds 6 and 7 are not shown (no
protein inhibition >30%). MTHFD1/MTHFD2, methylenetetrahydrofolate dehydrogenase 1/2; MTHFR, methylenetetrahydrofolate reductase;
TYMS, thymidylate synthase.
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from pterin metabolism, which is important given the parallel
nature of the folate and pterin metabolic pathways.
There are potent inhibitors described in the literature for

some enzymes of the folateome (DHFR, TS, PTR1, DHCH),
that can be used to derivatize beads. However, in some cases,
attaching inhibitors to the beads may well have caused a loss in
their binding affinity. Potent inhibitors are not known for some
of the other enzymes in the folateome (e.g., the GCS, SHMT,
FPGS); even immobilized folic acid was poor at pulling down
these proteins. Nevertheless, the vast majority of the proteins
of the folateome were pulled down by our multibead panel.
A careful balance of affinity of the beads for the protein must

be achieved. If the affinity is too low, the protein will not bind
effectively to the bead (probably as observed with compound
11-derivatized beads in L. major extract). Conversely, if the
bound ligand has a very high affinity for the protein, then it
may be difficult for other ligands to prevent binding of the
protein to the beads. A particular case in point is that of MTX,
which has a very potent interaction with the protein. Reducing
the proportion of MTX−beads in the mixture allowed
detection of DHFR-TS and PTR1 binding by other
compounds. At higher proportions of MTX−beads, compound
3 did not compete successfully with the MTX−beads for
PTR1, although it did so successfully at lower proportions of
MTX−beads. The concentration of MTX−beads used in the
bead mixture is critical to allow for folate identification (see
Table 4), especially when the protein is not present in vast
quantities.

■ CONCLUSION
This approach has been successfully used to confirm the
molecular targets of clinically used and literature antifolates in
T. brucei and L. major. By using a mixture of antifolates
attached to beads, we were able to pull down the majority of
the folateome, despite the relatively low abundance of enzymes
in the folateome. Care was needed in the selection of the
composition and ratio of different beads, to obtain a good
coverage of the folateome and to ensure that proteins were not
too strongly bound to the immobilized ligands. There were
also some limitations caused by the lack of suitable inhibitors
of some proteins in the folateome. Nonetheless, the majority of
the folateome was successfully pulled down by the beads. In
addition to pulling down proteins of the folateome, additional
proteins were pulled down. It is clear from Figures 6 and 8 that
the folate compounds actually interact with multiple proteins
within the cell, both those involved in folate metabolism and
other enzymes with no involvement in folate metabolism.
Some of these may also be important in the activity of the
compounds, and the work described here may contribute to
understanding the mode of action of these compounds. It may
be that the key to antiparasite activity is getting the correct
profile of enzymes being inhibited. While we focused our study
on the trypanosomes, we expect our folateome beads are not

restricted to the organisms/species tested here but can be used
in a number of tissue/lysate extracts.

■ METHODS
Synthesis of Chemical Probes and Competing

Ligands. Chemicals and anhydrous solvents were purchased
from commercial sources and were used without further
purification. 1H NMR spectra were recorded on either a
Bruker Avance DPX 500 or a Bruker Avance 300 spectrometer.
Chemical shifts (δ) are expressed in ppm. Signal splitting
patterns are described as singlet (s), broad singlet (bs), doublet
(d), triplet (t), quartet (q), multiplet (m), or combinations
thereof. LC-MS analyses were performed with either an Agilent
HPLC 1100 series connected to a Bruker DaltonicsMicrOTOF
or an Agilent Technologies 1200 series HPLC connected to an
Agilent Technologies 6130 quadrupole LC/MS; both instru-
ments were connected to an Agilent diode array detector.
LCMS chromatographic separations were conducted with a
Phenomenex Gemini C18 column, 50 × 3.0 mm, 5 μm particle
size; mobile phase, water/acetonitrile +0.1% HCOOH 80:20
to 5:95 over 3.5 min and then held for 1.5 min; flow rate, 0.5
mL min−1. High resolution electrospray measurements were
performed on a Bruker Daltonics MicrOTOF mass spec-
trometer. TLC was performed on Kieselgel 60 F254 (Merck)
with detection under UV light and by charring with KMnO4 or
ninhydrin for visualization. Column chromatography was
performed using RediSep 4, 12, 24, 40, or 80 g silica
prepacked columns. Full experimental details in the Supporting
Information.

Preparation of Kinetoplastid Lysate. T. brucei brucei
variant 117 were purified from infected blood over DE52
cellulose as described previously.19 The cells were centrifuged
at 800g for 10 min at 4 °C, and the supernatant was discarded.
The pellet was resuspended at 1 × 109 cells/mL in ice-cold
Buffer I (water containing 0.1 μM 1-chloro-3-tosylamido-7-
amino-2-heptone (TLCK), 1 mM benzamidine, 1 mM phenyl-
methyl sulfonyl fluoride (PMSF), 1 μg/mL leupeptin, and 1
μg/mL aprotinin), and hypotonic lysis was allowed to proceed
for 10 min on ice (NB, T. brucei cells spontaneously lyse under
these conditions). An equal volume of ice-cold Buffer II (100
mM Tris pH 7.5, 10% glycerol, 300 mM NaCl, 50 mM NaF, 3
mM MgCl2, 0.2 mM Na3VO4, 1.6% NP40, 2 mM DTT, 0.1
mM TLCK) was added to the cell extract. The lysate was
centrifuged at 145 000g for 1 h at 4 °C (40 000 rpm, Beckman
Type 50.2 Ti rotor). The supernatant was aliquoted into 15
mL tubes, frozen in liquid nitrogen, and stored at −80 °C. The
BCA assay (Pierce) was used to determine the total protein
content (BSA standard). The final cell extracts are 0.5 × 109

cells/mL or 2 mg/mL total protein content (5 × 5 mL; 50
mg).
L. major (Friedlin) promastigotes were grown in M199

media (1) until they reached late log (cell density 4 × 107

cells/mL). Cells were centrifuged at 1200g for 10 min at 4.
The resulting pellet was washed in phosphate buffered saline,
centrifuged as above, and resuspended in ice-cold lysis buffer
(50 mM Tris-HCl pH 7.4, 1 mM DTT, 60 mM MgCl2, 0.2%
(v/v) NP40, complete EDTA-free protease inhibitor cocktail
(Roche), phosphatase Inhibitor Cocktail II (Calbiochem)).
Parasites were then biologically inactivated by three cycles of
freeze−thawing. The organisms were then lysed under pressure
(30 kpsi) using a one-shot cell disruptor (Constant Systems).
The lysate was centrifuged at 30 000g for 30 min at 4 °C, and
the resulting supernatant was collected. The BCA assay

Table 4. Comparison of the Potential Targets That Can Be
Screened for on MTX/Folic Acid and Multitargeted Beads
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(Pierce) was used to determine protein content, and lysates
were diluted with lysis buffer to a final concentration of 5 mg/
mL. The supernatant was aliquoted into 15 mL tubes, frozen in
liquid nitrogen, and stored at −80 °C.
Chemoproteomics. The chemoproteomic inhibition bind-

ing experiments were performed as previously described.11,25

These references include a detailed description of the LC-MS/
MS procedures (including instruments used, the method setup,
filter criteria, acceptance of peptides, and FDR rate). Briefly,
sepharose beads were derivatized with compounds MTX, folic
acid, 4, and 10. The four bead types were mixed, washed, and
equilibrated in lysis buffer (50 mM Tris-Cl pH 7.4, 0.4%
Igepal-CA630, 1.5 mM MgCl2, 5% glycerol, 150 mM NaCl, 25
mM NaF, 1 mM Na3VO4, 1 mM DTT, and 1 complete EDTA-
free protease inhibitor tablet (Roche) per 25 mL). They were
incubated at 4 °C for 1 h with L. major, T. brucei, or HeLa cell
extract, which was preincubated with compound or DMSO
(vehicle control). Beads were transferred either to Filter plates
(Durapore (PVDF membrane, Merck Millipore)) or to
disposable columns (MoBiTec), washed extensively with lysis
buffer, and eluted with SDS sample buffer. Proteins were
alkylated, separated on 4−12% Bis-Tris NuPAGE (Life
technologies), and stained with colloidal Coomassie.
Gel lanes were cut into three slices and subjected to in-gel

digest using trypsin for 4 h. Digestion, labeling with TMT
isobaric mass tags, peptide fractionation, and mass spectro-
metric analyses were performed. Proteins were quantified by
isobaric mass tagging and LC-MS/MS.11,25

For experiments generated with Leismania major extract, MS
spectra were searched using Mascot (Matrix Science) against a
sequence nonredundant database consisting of two species of
Leishmaina: L. infantum and L. major (Fredlin strain) which
were download from TriTrypDB release 4.1 (30 June 2012):
http://tritrypdb.org/common/downloads/release-4.1/
Linfantum/fasta/. The following files were utilized: Linfantu-
mAnnotatedProteins_TriTrypDB-4.1.fasta and LmajorFriedli-
nAnnotatedProteins_TriTrypDB-4.1.fasta.
To ensure as wide a coverage as possible, additional

Leishmania protein sequences from the NCBI nr (ftp://ftp.
ncbi.nlm.nih.gov/blast/db/) database were added, as well as
known contaminant sequences such as keratins and trypsin.
The resulting database consisted of 8312 sequences from
L. infantum and 8416 from L. major.
For experiments generated with Trypanosoma brucei extract,

MS spectra were searched using Mascot (Matrix Science)
against a nonredundant, in-house compiled database of
Trypanosoma brucei 927 and 427 strains obtained from
TriTrypDB 3.0 (9 February 2011): http://tritrypdb.org/
common/downloads/release-3.0/Tbrucei/fasta/. The follow-
ing files were utilized: Tbrucei427AnnotatedProteins_Tri-
TrypDB-3.0.fasta and TbruceiTreu927AnnotatedProteins_Tri-
TrypDB-3.0.fasta.
Additional T. brucei protein sequences from SwissProt

(www.uniprot.org) and RefSeq (http://www.ncbi.nlm.nih.
gov/refseq/) databases, as well as known contaminant
sequences such as keratins and trypsin, were added to ensure
greatest protein coverage. From these two strains, a total of
18 389 protein sequences were extracted. To assess the false
discovery rate (FDR), “decoy” proteins (reverse of the protein
sequence) were created and included in the databases.
Protein identification and quantification was performed.25

Proteins identified with >1 unique peptide matches were
considered for further data analysis. Raw data tables for the

chemoproteomics experiments can be found in the Tables S1
to 5. The protein identification numbers and descriptions on
these tables were updated to the version 33 of TryTripDB
using the TryTripDB database conversion tools.
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