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ABSTRACT  

The current study aims to computationally evaluate the effect of right upper arm 

position on the geometric and hemodynamic characteristics of the brachial artery (BA) and 

cephalic vein (CV). Furthermore, to present in detail the methodology to characterize 

morphological and hemodynamical healthy vessels. Ten healthy volunteers were analyzed in 

two configurations, the supine (S) and the prone (P) position. Lumen 3D surface models were 

constructed from images acquired from a non-contrast MRI sequence. Then, the models used 

to numerically compute the physiological range of geometric (n=10) and hemodynamic (n=3) 

parameters in the BA and CV. Geometric parameters such as curvature and tortuosity, and 

hemodynamic parameters based on wall shear stress (WSS) metrics were calculated with the 

use of computational fluid dynamics. Our results highlight that changes in arm position had a 

greater impact on WSS metrics of the BA by altering the mean and maximum blood flow rate 

of the vessel. Whereas, curvature and tortuosity were found not to be significantly different 

between positions. Inter-variability was associated with antegrade and retrograde flow in BA, 

and antegrade flow in CV. Shear stress was low and oscillatory shear forces were negligible. 

This data suggests that deviations from this state may contribute to the risk of accelerated 

intimal hyperplasia of the vein in arteriovenous fistulas. Therefore, preoperative conditions 

coupled with post-operative longitudinal data will aid the identification of such relationships. 

    

 

 

Index Terms—Hemodialysis, Vascular access, Imaged-based computational modeling, Non-

contrast MRI, Geometry  
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This study highlighted that changes in arm position had a greater impact on WSS metrics of 

the brachial artery by altering the mean and maximum blood flow rate. Whereas, curvature 

and tortuosity were found not to be significantly different between positions. Moreover, the 

image-based CFD analysis highlighted an inter-variability of shear stress metrics within a 

small sample of healthy subjects which lead to the postulation that deviations from 

homeostatic conditions will modulate remodelling rather than exceeding a global threshold. 

 

 

 

INTRODUCTION (700) 

A native arteriovenous fistula (AVF) is the preferred access route for end stage renal 

disease (ESRD) patients undergoing hemodialysis [1,2]. According to the guidelines of the 

National Kidney Foundation the site order for the surgical intervention of AVF for 

hemodialysis (HD) is the following: forearm (radio–cephalic or distal AVF), elbow (brachio–

cephalic or proximal AVF), arm (brachial–basilic AVF with transposition or proximal AVF) 

[3]. The brachio–cephalic fistula has the advantage of employing major caliber autologous 

material, which facilitates both the making up of the access and the subsequent venous 

cannulation for the use of access, as well as a higher patency rate compared with distal ones, 

but comes at a price of a higher rate of complications such as steal syndrome and arterial 

alterations in cardiac output [3]. Improved patency and lower infection rates are obtained 

compared to grafts and catheters. However, AVF primary patency rates are poor ranging 

from 44-60%  [4,5] due to inadequate dilation and stenosis at the access site [6].  

AVF creation offers a unique model of vascular adaption, it involves the direct 

anastomosis of an artery to a vein and results in immediate changes to both geometry and 

flow. It is widely perceived that the change in local hemodynamics beyond their normal 

physiological range stimulates remodelling in both the arterial and venous vasculature. This 
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remodelling aims to normalise forces towards homeostatic conditions [7]. The coupling 

between geometry and flow and the subsequent alteration of these parameters over time may 

shift areas within these vessels to an unfavourable state during the remodelling process. The 

precise conditions under which intimal hyperplasia (IH) and lumen loss are aggressively 

promoted during remodelling remains unclear. Despite this, a consensus is emerging that low 

or subnormal shear stress may induce severe stenotic lesions due to intimal thickening [8,9]. 

Some studies even rely on this theory for the assessment and optimisation of anastomotic 

configurations to aid surgical practice [10]. 

Previous studies in healthy adults have shown notable changes in geometry and 

hemodynamics in large peripheral and head arteries with posture change. More specifically, 

Glor et al. have first reported that head rotation may cause geometric changes to the right 

carotid bifurcation with leftward rotation of the head [11]. Then, other researchers cited 

alterations due to posture changes to the popliteal artery [12], vertebral arteries [13], right and 

left carotid bifurcation  [14]. The objective of this study was therefore to present a 

methodology to calculate geometric and hemodynamic parameters in healthy arm vessels, 

and to find their range of variation in two investigated positions. These postures are the 

normal supine similarly taking place during the hemodialysis session and the prone with the 

arm outstretched above the head, as an extreme posture to point out the outlier alterations. 

For MRI examinations of the arm, the described prone orientation is preferable since it is 

possible to maintain the anatomical area of interest centrally within the homogeneous region 

of the scanner magnetic field.  However patient compliance is generally better when the 

anatomical area of interest is scanned in the supine orientation - albeit at the expense of 

certain image quality features such as signal-to-noise and homogeneity.       
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It has been shown that the patient-based preoperative geometric and hemodynamic 

characteristics of the circulatory system with the use of computational fluid dynamics (CFD) 

can assist the physician during the treatment planning [15,16]. In this paper we initiate a 

study to ascertain the homeostatic shear level of the brachial artery (BA) and cephalic vein 

(CV). These vessels are commonly utilised and manipulated to some degree to form a fistula 

in the upper arm. Although a growing body of evidence exists describing the hemodynamic 

environment within AVFs, little to no data is available that defines the preoperative or 

homeostatic environment of brachial arteries and cephalic veins in relation to geometry and 

flow. It is postulated that preoperative flow conditions may impact maturation when an AVF 

is created and provide insight into the statistical variations in AVF patency observed in 

clinical practice. Identifying a deviation from the normal hemodynamic state, preoperatively, 

may be an additional factor which will contribute to AVF non-maturation and failure.  

 

MATERIALS AND METHODS 

A. Study Group 

The group of ten subjects (n=10) for the morphology studies consisted of six and four   

asymptomatic, male/female volunteers (mean age of 32 and 33 years, range from 28-45 and 

27-44 years, respectively). For the flow studies a subgroup of three subjects (n=3) was 

selected. Each subject was imaged in two different scanning sessions corresponding to the 

two investigated arm postures: 1) the supine arm position (S) and 2) the prone position with 

the arm outstretched above the head (P). The study was approved by the NHS Scotland 

Research Ethics Service (2014).  



 

This article is protected by copyright. All rights reserved. 

B. MR Imaging 

MR images were obtained with a 3T MR unit (MAGNETOM Trio MR, Siemens, 

Germany) using a surface coil (8 Channel, Siemens) which was wrapped around the 

participant‟s arm of interest to enable signal detection. A gradient echo sequence was used 

for initial anatomical localization, and this was followed by the application of a high spatial 

resolution MEDIC (Multi-Echo Data Image Combination) MR imaging sequence with fat 

suppression. The sequence was optimised with the following acquisition parameters as 

outlined in Table 1. A 2D phase contrast sequence (PCMRI) was used for velocity encoding 

(VENC) of the arterial and venous segments, with parameters outlined in Table 1. Scans were 

firstly acquired in the supine position with the participant‟s right arm relaxed and extended by 

their side, and then repeated in the prone position with their arm extended above their head 

Figure 1(a).    

C. Surface reconstruction and geometric quantification 

For each participant, semi-automated segmentation of the 3D MEDIC data was 

performed with Amira (FEI, Visualization Sciences Group, France and Zuse Institute Berlin, 

Germany) to obtain a 3D isosurface of the intra-luminal volume of the vessels. A grey-scale 

value threshold with manual adaption was combined to acquire the 3D lumen. The remeshed 

surfaces were imported into Blender 3D (Blender.org) and were truncated a set distance of 60 

mm from the confluence of the basilic vein and were extended distally and truncated before 

the next branch or vessel confluence. Meshlab (1.3.3, Visual Computing Lab, ISTI, Italy) was 

used to smooth the segmented surface data. A Taubin filter and a Laplacian surface 

preservation filter were applied to remove high curvature variations and smooth the surface 

without producing shrinkage. The vascular modelling toolkit (VMTK) was utilised to 

generate centrelines and corresponding geometrical data of the vessels [17].  
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The reproducibility of geometric reconstruction and the accuracy of the segmentation 

and reconstruction procedures was assessed with repetition of segmentation, smoothing and 

geometric characterization steps, for Case 1, for both investigated arm positions, by two 

users. The percentage difference in the calculations of the geometric parameters was found to 

be below 5%, which is acceptable (more details can be found in [18]).  

D. Computational Simulations 

The image-based computational modeling methodology employed in the present 

work, from MR images to CFD simulations [13,19] allows estimating hemodynamic 

parameters based on wall shear stress (WSS) metrics, which have been found to be important 

in the development of thrombosis arising from intimal hyperplasia [20]. The accuracy of CFD 

predictions investigated by Steinman et al. and concluded that the pressure drop was 

reasonable well predicted  [21]. 

 Blood flow time history was obtained by integrating the through-plane velocity over 

the lumen cross-sectional area at each cardiac phase using Segment (Medviso, Sweden) [22]. 

All semi-automated segmentation and flow segmentation was undertaken by the same user to 

eliminate operator inter-variability. 

The unsteady 3D incompressible Navier-Stokes equations were solved using a 

commercial CFD code (Star CCM+, CD-Adapco, USA). The discretisation scheme was 

second order in both space and time. A transient time step of 1ms was used and the flow was 

solved over four cycles, with the first cycle eliminated from the results analysis. Rigid 

boundaries and the no-slip condition were enforced at walls. Blood was modelled as an 

incompressible Newtonian fluid with a density of 1050 kg/m3 and a dynamic viscosity of 

0.0035 kg/m∙s. Time-dependent boundary conditions were prescribed at the arterial and 

venous inlets. Traction-free boundary conditions were applied at the outlet. A fully developed 

velocity profile was applied at the brachial artery inlet, whereas a flat profile was employed 
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for the cephalic vein. The assumption of Newtonian rheology and rigid walls was considered 

reasonable since these assumptions have been widely used in previous CFD studies [23–25].  

A structured hexahedral mesh was created with a mean of 0.595x10
6
 and 0.730x10

6
 

elements employed for the artery and vein cases respectively. Hexahedral meshes are 

preferred to tetrahedral or prismatic as they require less number of elements for a fixed level 

of accuracy. Specifically, as it was shown by De Santis et al. [26], the same accuracy can be 

achieved with six times fewer hexahedral elements compared to tetrahedral or prismatic 

meshes, and that hexahedral elements based simulations converged much faster requiring 14 

times less CPU hours. The impact of these assumptions in hemodynamic simulations has 

been discussed extensively in [27,28]. A grid convergence study has to be conducted for each 

model to ensure grid and time step convergence. Since, however, topology and flow features 

in all presented cases are expected to be roughly similar we conducted a study on a single 

case, and acquired results were applied to all cases. The grid convergence was determined as 

outlined per standards of the Journal of Fluids Engineering [29]. Simulations using steady 

inflow boundary conditions were conducted for a blood flow rate of 456 ml/min 

corresponding to values near systolic peak for the pulsatile analysis of case 2. Successive 

meshes with a refinement factor greater than 1.5 were used; these meshes consisted of 

176064, 595840 and 1997458 hexahedral elements respectively. WSS is a critical quantity 

with respect to grid convergence. Therefore, time-averaged WSS (TAWSS) magnitude was 

chosen as term of comparison of the grids. It was analysed by using the surface averaged 

value over an integration time of 3 seconds. The numerical uncertainty in the fine gird 

solution for surface averaged of the TAWSS is reported as 0.01%. Table 2 quantifies the 

relative error and grid convergence index (GCI).  
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E. Post processing 

A range of shear stress metrics outlined in Table 3 were extracted from the vascular 

surface. The TAWSS is calculated by integrating the WSS vector at each nodal point over the 

cardiac cycle. The cycle averaged wall shear stress gradient (TAWSSG) measures the spatial 

change in TAWSS over the cardiac cycle, the temporal wall shear stress gradient (TWSSG) 

which quantifies the rate of change of the shear stress vector was calculated and averaged 

over the cycle [30–32]. Directional changes in shear stress were quantified with the 

oscillating shear index (OSI) and Transverse WSS (TransWSS) [33,34]. The relative 

residence time (RRT) which indicates the residence time of particles near the vessel wall was 

also extracted [35]. Bulk flow features were assessed using a helicity based descriptor. The 

kinetic helicity density (Hk), is a measure of the alignment of the velocity vector (v) and the 

vorticity vector (ω). Both instantaneous and time averaged values were determined. 

Normalising Hk, with the velocity and vorticity magnitude results in a measure referred to as 

the Local Normalised Helicity (LNH) [36]. The LNH is a useful quantity to visualise 

complex flow patterns such as helical flow [37]. 

 Each vessel was segmented from its inlet at 20 mm intervals along the curvilinear 

abscissa of its centreline. Surface averages of shear stress parameters were taken for each 

interval. For each segment, curvature (k) at each point, aggregated curvature (AC) and 

tortuosity defined in equations (1) and (2) were determined to compare positional changes. 

Where L is an approximation of the curve length and D is the distance between its two end 

points of the segment. 

        

 

   

    
 

(1) 
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    (2) 

 

F. Statistical analysis 

 

Geometric data is presented as mean with standard deviation to assess the variation 

amongst the cases. The Wilcox rank sum test was utilised to assess the difference of 

geometric features between the supine and prone positions with significance established with 

a p <0.05. 

RESULTS 

 

All MR images were acquired successfully, although in some cases physical 

compression on the vessel was noted to prevent venous filling on the flow images when the 

patient was in the prone position.  For this reason, only the supine position was considered for 

analysis of the cephalic vein.  

A. Flow Data 

 The brachial artery waveforms of cases 1 and 2 exhibited antegrade flow in both 

supine and prone positions, whereas case 3 was retrograde in both. Figs. 2a, 3a and 4a show 

qualitatively the significant reduction in both mean and peak blood flow rates due to prone 

position and the quantitative results indicating the constant decrease ~50% are detailed in 

Table 4. The most notable change occurred in case 2 where the prone position significantly 

reduced the mean flow rate and the waveform changed from a high acceleration monophasic 

profile to low acceleration monophasic profile. The venous waveform had a monophasic 

profile with a low acceleration. 
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B. Geometric analysis 

 There was no significant difference between the curvature and tortuosity of the 

brachial artery between supine and prone positions for all cases (n=10), as illustrated in Table 

5. For cases 1, 2 and 3, it is clear from Figure 2, 3 and 4 that the proximal artery curves or 

arcs as it traverses distally toward the elbow. The cephalic vein follows a similar trend but in 

the opposite direction curving distally to proximally as highlighted in Figure 5. 

C.  Bulk flow descriptors  

The Localised normalised helicity (LNH) within the brachial arteries was low. For 

cases 1 and 2 in which the flow was antegrade, the bulk flow contained counter rotating 

vortical structures of low magnitude. However, a prominent right handed helical structure 

was evident within the fluid domain in the supine position for these cases. For the prone 

position, bi-helical patterns characterised the flow field and vortical structures occupied a 

relatively small portion of the domain, there was no dominant rotation direction. For case 3, 

in which there is retrograde flow, there was no dominant rotational direction and low 

magnitude bi-helical patterns characterised the flow field for both the supine and prone 

positions. For the venous cases, inter-individual variations can also be noticed. Visualisation 

of the Isosurfaces of LNH (± 0.1) revealed that helical flow was weak as low magnitude bi-

directional vortical structures characterised the bulk flow. 

D. Shear stress metrics 

 

 Brachial Artery: For case 1 and 2, TAWSS ranged from 1.01-2.85 Pa in the supine 

position and from 0.78-1.38 Pa in the prone position as shown in Table 6. TAWSS is reduced 

in the prone position due to the reduction in mean and peak flow rates in all cases, resulting 

in lower TAWSSG, TransWSS and Temporal gradients compared to the supine position. 

TAWSSG, TransWSS and Temporal gradients ranged from 160.82-601.23 Pa/m, 0.03-0.09 

Pa and 356.01-642.28 Pa/s in the supine position compared to 47.70-306.94 Pa/m, 0.01 to 
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0.03 Pa and 84.05-407.11Pa/s in the prone. OSI values were low and occupied a small area of 

the inner curvature of the brachial artery segments in these cases as illustrated in Figure 6, 

resulting in a low range of 0.01-0.03 in both positions. 

 For case 3, retrograde flow lead to a lower level of TAWSS within the brachial 

artery, which ranged from 0.38-0.44 Pa and from 0.20-0.31 Pa for the supine and prone 

positions (Table 6). Higher levels of flow reversal were recorded in the prone position as a 

larger volume of flow was reversed compared to the supine position as illustrated in Figure 

4(a). This is reflected by high levels in the range of TAWSSG, OSI, TransWSS and RRT 

(71.36-329.59 Pa/m, 0.26-0.28, 0.01-0.16 Pa and 3.65-4.68) in the prone compared to the 

supine position respectively (104.92-144.83 Pa/m, 0.12-0.22, 0.03 to 0.14 Pa, 1.77-2.46). 

Negative temporal gradients arise due directional change. 

Cephalic vein: For the cephalic vein, flow was antegrade in all cases. However, the 

range of TAWSS, TAWSSG and temporal gradients varied from case to case (Figure 7). The 

differences were attributable to differences in flow rate and cross sectional area of the 

vessels. The difference in cross sectional shape was most notable in case 2 as the vessels 

elliptical shape tapers in segments 2 and 3 increasing TAWSS, TAWSSG and temporal 

gradients. TAWSS, TAWSSG and temporal gradients ranged from 0.09-0.14 Pa, 9.10-34.64 

Pa/m and 3.06-4.43 Pa/s in case 1. These metrics ranged 0.68-0.75 Pa, 62.73-268.11 Pa/m 

and -99.17 to -60.71 Pa/s respectively in case 2. Finally in case 3, these metrics ranged from 

0.24-0.39 Pa, 0.24–0.39 Pa, 27.32-136.79 Pa/m and -125.93 to -78.85 Pa/s. The negative 

temporal gradients were associated with a longer or steeper deceleration phase of the flow 

waveforms as illustrated in Figure 5. In all cases, measures of OSI and TransWSS were 

negligible. 
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DISCUSSION 

This study has highlighted that the brachial artery and cephalic vein of the right upper 

arm exhibit inter-variability in terms of the range of shear stress metrics the endothelium is 

exposed to at rest in healthy subjects. The change in arm position had a greater impact on 

shear stress metrics of the brachial artery by altering the mean and maximum flow rate of the 

vessel rather than altering its curvature or tortuosity. 

 The deviations in flow rate lead to a variation in the level of TAWSS, TAWSSG and 

temporal gradients of the brachial artery. The retrograde flow of case 3 lead to a lower range 

of TAWSS, TAWSSG and temporal gradients in both supine and prone positions. Flow 

reversal augmented levels of OSI and TransWSS in this brachial artery compared to the 

previous cases for which low magnitudes of OSI and TransWSS were only found to occupy 

the inner curvature of the vessel.  The appearance of the retrograde flow is striking if focus is 

placed on the pattern of OSI. However, the shape of the venous waveform in this subject is 

sinusoidal and is similar in magnitude to the other participants. Although, the curvature and 

tortuosity of this vessel is similar to the other two participants and the cross sectional shape is 

less elliptical and more circular. To the best of our knowledge, this difference is not 

pathological and is within the normal range of healthy volunteers as all participants were free 

from cardiovascular disease and diabetes. Moreover, they had no history of diabetes or 

hypertension, hyperlipidemia, or malignancy which are traditional risk factors associated with 

Chronic kidney disease (CKD) and CKD progression to ESRD.  Therefore, we deemed the 

study population to be representative of a healthy population in the context of CKD.  

It is interesting to note, that the level of TAWSS in case 3 is below the 0.5 Pa 

threshold which is cited as stimulating intimal thickening [8]. Either this vascular segment is 

in a process of re-equilibration toward a global shear stress value or the vessel is in a stable 

physiological state. As the subject was at rest, with no external compression of the upper arm 
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it is difficult to debate that the acquisition is not the baseline or physiological condition of the 

vessel. This vessel is also exposed to high levels of reversed flow and oscillating forces 

which are often cited as risk factors of atherosclerosis [38–40]. 

The quiescent level of shear stress within a vascular segment is dependent on its 

location, cross sectional shape, curvature, tortuosity and branching. Coupled with the inter-

variability of flow rate, blood pressure and vessel compliance within a population it is 

unlikely that „a one fits all‟ threshold based on absolute high or low magnitudes of shear 

stress initiates responsive vascular remodelling. Rather, one would conjecture that deviations 

in the level of shear stress from its quiescent state would initiate vascular remodelling to 

return the vessel to its homeostatic state. 

A high amount of helicity has been shown to suppress flow disturbances within 

vasculature segments such as bifurcations, anastomoses and the aortic arch. This effect is 

believed to be moderated when one direction of rotation dominates [41]. For the antegrade 

cases a prominent right handed vortical structure emerged. This would suggest that the 

underlying brachial artery geometry contributes to the onset and development of helical flow 

with a dominant direction of rotation. However, the helical content of the vessels is 

remarkably low and deviations in position easily disrupted the bulk flow leading to bi-helical 

structures and a loss of a dominant rotating structure. For the retrograde case, the bulk flow is 

characterised by weak and low magnitude bi-helical structures in both positions. 

The helical content of the cephalic vein was also characterised by weak incoherent bi-

helical structures. Analysing the helical content of arterial flow as a diagnostic strategy to 

identify regions of disturbed flow and areas at risk of developing atherosclerotic lesions may 

be less robust and applicable than previously taught as low and bi-helical structures were 

found at rest in this healthy cohort. Whether, its efficacy is more suited to bifurcations and 
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anastomoses where deviations to aberrant changes in geometry and flow are more prominent 

requires further investigation. 

The prone position compressed the cephalic vein restricting flow, which prevented a 

complete analysis of positional change in this study. The cross-sectional shape of the cephalic 

vein is more elliptical in shape than that of arteries. This variation in cross sectional shape in 

conjunction with varying flow rates contributed to the varying range of shear stress metrics 

reported in this analysis. As the flow rate is significantly reduced compared to that of the 

brachial artery it was expected that TAWSS, TAWSSG and temporal gradients would be 

lower (Table 6). The waveform of the cephalic vein is sinusoidal in shape and can be 

attributed to elastic recoil associated with filling pressure and involuntary contraction of 

surrounding muscles. The absence of oscillatory shear forces in this analysis would suggest 

the venous endothelium is not commonly exposed to oscillating forces except at confluences 

and behind venous valves [42]. 

Both the brachial artery and cephalic vein are commonly manipulated and utilised for 

AVF creation. The anatomically localised patterns of aggressive intimal hyperplasia and 

stenosis within AVFs are predominately found to occur in the swing segment, which is the 

segment of the vein immediately downstream of the anastomosis [43]. This section can be 

highly curved and tortuous and can exhibit regions of oscillatory flow with large spatial and 

temporal gradients of shear stress which represent an abnormal deviation from the vessels 

physiological state [7,24,44]. The exposure of the venous endothelium to enhanced flow and 

shear stress is known to modulate an arterialisation of the vein [45,46]. Whether, regions 

exposed to levels of TAWSS below the subnormal arterial range or subnormal venous range 

modulate intimal thickening in this configuration has yet to be made clear. 
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Limitations: We acknowledge the small sample size of this study as a limitation. 

Larger sample sizes are needed to observe further hemodynamic and geometric trends and 

variability of population. Additionally, the age range of the selected volunteers (27-45) is also 

a limitation since direct observations may not be attributable to those candidates for AVF 

creation who are usually older. We chose to study younger individuals as they were better 

able to tolerate the more uncomfortable prone position (with the arm outstretched above the 

head) for the full duration of the scan within the MRI scanner.   

We acknowledge that the assumption of rigid walls for both the artery and vein is a 

major limitation of the numerical simulations presented, particularly for the venous segments 

which are known to be highly elastic and deformable. This oscillatory wall motion can have a 

notable effect on shear stress distribution. The non-contrast imaging technique utilised in this 

analysis relies on inflow effects and is dependent on blood flow velocities. The variations in 

blood flow velocities and asymmetry of vessels lead to spatial variations in image quality and 

intensity.  
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CONCLUSIONS 

 

This preliminary study shows that non-contrast MRI-based CFD can be utilised to 

noninvasively analyse geometric and hemodynamic parameters within upper arm vessels – 

sites commonly used for venous access creation. Here, we have presented a methodology to 

characterize the morphology and the hemodynamical field within large healthy vessels. This 

analysis highlighted that there is an inter-variability of shear stress metrics within a small 

sample of healthy subjects at rest which lead to the postulation that deviations from 

homeostatic conditions will modulate remodelling rather than exceeding a global threshold. 

Kroll et al. and Van Tricht et al. reported the normal WSS values, for large veins to be in the 

range of 0.076 to 0.76 Pa [47,48]. Here, the global threshold hypotheses for veins appear to 

remain valid as our data from Figure 7 indicates that the results fall in this range – except for 

the single value of 0.85 Pa. 

MR image acquisition in the supine position is recommended to provide quantifiable 

measures of upper arm vessels. Altering hand/arm position had no significant effect on 

curvature and tortuosity of the brachial artery, but positional change was found to notably 

alter the mean and peak blood flow rate and subsequent levels of shear metrics within the 

artery. Unsteady flow was documented in the cephalic vein and oscillatory shear forces were 

found to be negligible in this analysis. The current paradigm that intimal hyperplasia is 

induced by a low threshold of TAWSS fails to provide a mechanistic understanding of why 

severe stenotic lesions occur in the venous segments of AVFs especially as these levels are 

found to occur at rest in healthy subjects. Whether, deviations from its physiological state 

such as persistent flow reversal modulates aggressive intimal hyperplasia and lumen loss of 

the vein requires further investigation. 
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Figure 1: A volume render of the MEDIC DICOM data is shown in (a) along with an 

example of an Image slice. The fat suppression of the sequence allows for superficial vessels 

to be identified with ease. The position of a participant and surface coil is shown in (b) for the 

supine and prone positions respectively.  
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Figure 2: Flow waveform of the brachial artery of case 1 in the supine and prone position are 

shown in (a) Aggregated curvature and tortuosity measures are parented in (b) and (c). 

Isosurfaces of LNH visualising the low magnitude helical content of the bulk flow is 

presented in (d). 
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Figure 3: Flow waveform of the brachial artery of case 2 in the supine and prone position are 

shown in (a) Aggregated curvature and tortuosity measures are parented in (b) and (c). 

Isosurfaces of LNH visualising the low magnitude helical content of the bulk flow is 

presented in (d). 
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Figure 4: Flow waveform of the brachial artery of case 3 in the supine and prone position are 

shown in (a) Aggregated curvature and tortuosity measures are parented in (b) and (c). 

Isosurfaces of LNH visualising the low magnitude helical content of the bulk flow are 

presented in (d). 
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Figure 5: The curvature and tortuosity of the cephalic vein in the supine position for each 

case is show in (a) The inlet flow rate is presented in (b) The localised normalized helicity is 

shown in C and the time averaged wall shear stress and time averaged velocity for each cross 

section at 20 mm along the abscissa is shown in (d).  
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Figure 6: Time averaged wall shear stress, Oscillatory shear index and transverse wall shear 

stress are presented for the brachial artery in the supine and prone positions for each case. 

The prominent flow reversal in case 3 results in high values of OSI and lower shear stress 

levels compared to the other two cases.  
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Figure 7: Surface averaged wall shear stress metrics for the cephalic vein for cases1, 2 and 3 

in the supine position. 
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Table 1: Sequence acquisition parameters for MEDIC and 2D PCMRI to acquire vasculature and blood flow 

rates of the upper arm vasculatures. 

 Units MEDIC Arterial Venous 

VENC cm/s - 75 15 

TR ms 29 61.7 61.7 

TE ms 16 5.88 5.88 

Flip angle ° 8 30 30 

Number of averages - 1 3 3 

Voxel size mm 0.5 x 0.5 x 1.1 0.8 x 0.8 x 3.0 0.8 x 0.8 x 3.0 

Slice thickness mm 1.06 3 3 

Base resolution - 256 - - 

Phase resolution % 100 - - 

Pixel bandwidth Hz 161 260 260 

Percentage Sampling % 100 100 100 

Percentage phase Field of 

view 
% 100 75 75 

Percentage phase Field of 

view 
% - 75 75 

Number of time points - - 30 30 

Acquisition time min 5:17 1:52 1:35 
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Table 2: Discretisation error of the TAWSS over the vascular surface. 

 Φ=TAWSS 

N1, N2, N3 176064, 595840, 1997458 

r21 1.501 

r32 1.497 

Φ1 4.717 

Φ2 4.716 

Φ3 4.715 

P 2.432 

    
   4.718 

  
   0.01% 

    
   0.01% 

        
   0.01% 
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Table 3: Definitions of disturbed flow parameters and measures of helcial flow. Note:      represents the 

instantaneous WSS vector, t the time and T the period of the cardiac cycle. 

Parameter Abbreviation Definition 

Time average wall shear stress TAWSS 
 

 
        

 

 

 

Oscillating shear index OSI       
    

 

 
  

        
 

 

  

Relative Residence Time RRT 
 

                
 

Transverse Wall Shear Stress TransWSS 
 

 
             

    
 

 
  

     
 

 
    

  
 

 

   

Wall shear stress Gradient TAWSSG 
 

 
   

    
  

    
    
  

    
    
  

  
 

 

    

Temporal wall shear stress gradient TWSSG 
 

 
  

    
  

 
 

 

   

Helicity Density Hk               

Localised Normalised Helicity LNH 
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Table 4: Mean and peak blood flow rates of the brachial artery and cephalic vein are presented for each case. 

Mean (± SD) values amongst the subjects are also presented. 

Case# Brachial Artery (S) Brachial Artery (P) Cephalic Vein (S) 

 Flow Rate (ml/min) Flow Rate (ml/min) Flow Rate (ml/min) 

 Mean Peak Mean Peak Mean Peak 

1 135.6 421.2 75.6 270.2 11.5 13.6 

2 123.6 456.5 85.0 141.9 105.1 127.3 

3 100.8 504.6 41.8 325.2 92.6 143.7 

Mean ± SD 120.1±14.5 67.5±18.5 460.8±34.2 245.8±34.2 69.5±41.3 94.8±57.5 
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Table 5: Mean values (± SD) of curvature and tortuously of the brachial artery in the supine and prone position 

are presented with corresponding p values to determine any significant difference between the positions. Mean 

(± SD) values for curvature and tortuosity are also presented for the cephalic vein in the supine position. 
 Brachial Artery Cephalic Vein 
 Supine Prone P-value Supine 

Curvature 

(1/mm) 
0.014 ± 0.002 0.016 ± 0.006 0.38 0.026 ± 0.004 

Tortuosity 0.006 ± 0.007 0.007 ± 0.007 0.26 0.007 ± 0.002 
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Table 6: Surface averaged wall shear stress metrics for the brachial artery for the supine (S) and prone (P) 

positions of case 1, 2 and 3, respectively. 

 
Segment 

TAWSS 

 (Pa) 

TAWSSG 

 (Pa/m) 

TransWSS  

(Pa) 

OSI 

(-) 

RRT 

(1/Pa) 

Mean TWSSG  

(Pa/s) 

 S P S P S P S P S P S P 

C
as

e 
1

 

1 2.83 1.25 401.05 181.10 0.03 0.03 0.00 0.01 0.39 0.92 619.96 303.46 

2 1.90 0.96 160.82 82.57 0.03 0.02 0.01 0.03 0.57 1.10 413.26 197.74 

3 1.89 0.96 262.28 121.09 0.05 0.02 0.01 0.02 0.60 1.07 363.17 237.02 

4 2.10 0.97 287.68 154.08 0.04 0.02 0.01 0.01 0.52 1.04 435.83 268.02 

5 2.85 1.38 601.23 306.94 0.06 0.03 0.00 0.00 0.39 0.76 642.28 407.11 

C
as

e 
2

 

1 1.20 0.78 236.07 82.94 0.09 0.01 0.02 0.00 0.97 1.29 461.90 84.05 

2 1.01 0.81 147.26 47.70 0.06 0.01 0.03 0.00 1.07 1.20 356.01 95.28 

3 1.31 0.88 212.27 57.52 0.07 0.01 0.02 0.00 0.82 1.11 522.70 100.91 

4 1.09 0.91 226.26 86.61 0.07 0.01 0.03 0.00 1.02 1.08 369.75 102.82 

C
as

e 
3

 

1 0.43 0.20 144.83 76.05 0.07 0.01 0.16 0.28 2.02 4.68 -197.15 -353.68 

2 0.44 0.24 117.19 71.36 0.03 0.02 0.19 0.27 1.77 3.65 -353.79 -393.62 

3 0.38 0.22 104.92 98.15 0.04 0.03 0.22 0.28 2.03 4.35 -474.70 -404.78 

4 0.43 0.31 126.78 329.59 0.14 0.16 0.21 0.26 2.46 3.82 -585.43 -555.82 

 

 

 


