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a b s t r a c t 

Extensions to auto-context segmentation are proposed and applied to segmentation of multiple organs 

in porcine offal as a component of an envisaged system for post-mortem inspection at abbatoir. In com- 

mon with multi-part segmentation of many biological objects, challenges include variations in configura- 

tion, orientation, shape, and appearance, as well as inter-part occlusion and missing parts. Auto-context 

uses context information about inferred class labels and can be effective in such settings. Whereas auto- 

context uses a fixed prior atlas, we describe an adaptive atlas method better suited to represent the 

multimodal distribution of segmentation maps. We also design integral context features to enhance con- 

text representation. These methods are evaluated on a dataset captured at abbatoir and compared to a 

method based on conditional random fields. Results demonstrate the appropriateness of auto-context and 

the beneficial effects of the proposed extensions for this application. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

Segmentation of non-rigid biological objects into their con-

stituent parts presents various challenges. Here we address a seg-

mentation task in which parts are organs in body images captured

at abbatoir. This constitutes one stage in an envisaged on-site sys-

tem for screening of pathologies; these are characteristically organ-

specific. The spatial arrangement of organs in an image is only

weakly constrained and their shape is variable. Furthermore their

appearance changes due to factors including cause of pathology,

surface contaminants, and specular reflections. There can be lim-

ited control over orientation, severe occlusions between parts, and

parts may be missing altogether. In this paper we describe adapta-

tions to the auto-context (AC) segmentation algorithm to address

such a task. We apply these to segment heart, lungs, diaphragm

and liver in porcine offal. The groups of inter-connected organs are

called plucks , examples of which are shown in Figs. 2 and 3 . 

Auto-context [3] is an iterative technique that combines contex-

tual classification information with local image features. AC is rela-

tively flexible and easy to implement, and has been applied to var-
∗ Corresponding author. 
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ous biomedical imaging problems [3,4] . The context features used

y AC to inform class label inference at a pixel location are poste-

ior class probabilities produced by the previous iteration. These

robabilty values are typically sampled at a fixed set of locations

elative to the pixel in question. Additionally we design integral

ontext features obtained by summing probability values over sets

f locations. In the application considered here we argue that sums

ver rows and sums over the entire foreground are appropriate. 

One attractive feature of AC is that a prior atlas can be used as a

ource of contextual data for the initial iteration. Such an atlas can

e obtained by averaging rigidly registered manual segmentation

aps. However, a single averaged map does not provide a good

epresentation of the multi-modal map distribution that arises as

 result of the variations mentioned above, such as occlusions and

issing parts. We describe weighted atlas auto-context (WAAC), a

ethod that adapts an atlas representation to be relevant to the

urrent image. This improved atlas is used at the next iteration as

n additional source of information together with the label proba-

ility maps. 

In this paper we combine integrated context and WAAC into

ne system, extending work reported in conference papers on in-

egral context [1] and WAAC [2] . We report a direct comparison of

ll of these methods applied to segmentation of multiple organs

n pig offal, and we also compare with a conditional random field

https://doi.org/10.1016/j.patrec.2018.07.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.07.031&domain=pdf
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CRF) method. We evaluate performance in terms of Dice coeffi-

ient distributions, pixel-wise classification and quadratic scores. 

. Background 

Post-mortem inspection is an important means of ensuring the

afety and quality of meat products, enabling the detection of pub-

ic health hazards and pathologies, and providing useful feedback

o farmers. There are moves towards visual-only inspection of pig

arcasses and offal without palpation, in order to minimise risk of

ross contamination [5,6] . This along with the potential to detect a

reater number of pathologies with improved reproducibility than

urrently possible with manual inspection [7] motivates develop-

ent of automated visual inspection. Reliable segmentation of or-

ans would constitute an important step towards this goal. In this

ontext even modest improvements in organ segmentation could

e significant as regions assigned to the wrong organ may ulti-

ately lead to missed or falsely detected pathologies. 

Applications to meat production deal mostly with estimation

f proportions of muscle, fat and bone either in vivo and post-

ortem, sometimes involving segmentation of organs without dis-

inguishing them individually [8,9] . Tao et al. [10] segmented

oultry spleen from surrounding viscera as an aid to detection

f splenomegaly. Jørgensen et al. [11] segmented gallbladders in

hicken livers from images acquired at two visible wavelengths.

tommel et al. [12] envisaged a system for robotic sorting of ovine

ffal that would involve recognition of multiple organs. 

Most literature on segmentation of multiple organs deals with

uman abdominal organs in CT or MR imaging through techniques

ncluding level set optimisation [13] , statistical shape models [14] ,

nd atlas-based methods [15,16] . 

Segmentation methods that incorporate spatial context infor-

ation include those combining inference algorithms based on

elief propagation (BP) [17] with models like conditional random

elds (CRFs) [18] . Disadvantages common to many such techniques

hat aim to capture context information include their reliance on

xed spatial configurations with confined neighbourhood relations

nd complex training procedures. 

There is extensive literature dealing with the construction of

nbiased atlases for multi-modal data, especially in brain magnetic

esonance (MR) image analysis, as in the work of Blezek and Miller

19] and Zikic et al. [20] . Some related work makes use of AC. Kim

t al. [21] , for example, employed an approach similar to that of

ikic et al. [20] , training multiple models, each based on an indi-

idual annotated image, so that the probability map of a new im-

ge was obtained by averaging maps predicted by individual mod-

ls. Zhang et al. [22] proposed a hierarchy of AC models whose

ottom level is similar to the set of models used by Zikic et al.

20] and Kim et al. [21] . Given a new image, only the best models

n the hierarchy are selected to contribute to the final probability

ap. Model training via these techniques can be computationally

xpensive. 

. Methods 

.1. Auto-context (AC) 

We perform segmentation using methods built around the

uto-context (AC) algorithm of Tu and Bai [3] . AC learns to map

n input image to a multi-class segmentation map consisting of

osterior probabilities over class labels. It iteratively refines the

egmentation map by using the label probabilities in a given it-

ration as a source of contextual data for the following iteration.

abel probabilities at a set of locations relative to the location to

e classified are concatenated with local image features to form a

ombined feature vector for training the next classifier. 
Let S be a set of m training images X j together with their label

aps Y j , i.e. S = { (Y j , X j ) , j = 1 ..m } . At each iteration t we want to

rain a classifier that outputs the probability distribution p (t) 
ji 

over

abels y ji ∈ { 1 ..K} for pixel i in image X j , given the image patch

 j ( N i ) from which local features are computed, and label proba-

ility map P (t−1) 
j 

(i ) (see Eq. (1) ). 

p (t) 
ji 

= p(y ji | X j (N i ) , P 
(t−1) 
j 

(i )) (1)

n X j ( N i ), N i denotes all pixels in the image patch, and P (t−1) 
j 

(i ) is

ap P (t−1) 
j 

output for image X j at the previous iteration t − 1 , but

ow centred on pixel i . 

AC produces a sequence of classifiers, one per iteration. Before

he first iteration, all probability maps P (0) 
j 

can be initialised using

 prior atlas Q 

(0) , obtained by averaging m training label maps: 

 

(0) = 

1 

m 

∑ 

j 

Y j . (2) 

t each iteration, given pixel i in image X j , the actual feature vec-

or input to the classifier is composed of local image features ex-

racted from patch X j ( N i ) concatenated with context features ex-

racted from the re-centered label probability map P (t−1) 
j 

(i ) . Con-

ext features are the probabilities extracted from selected locations

n map P (t−1) 
j 

(i ) , including the central location that corresponds to

he current image pixel i . Selected locations are typically defined

y a sparse star-shaped “stencil”. 

In our implementation of AC, context probabilities for a location

re extracted at 90 surrounding stencil points as well as at the lo-

ation itself. At the first iteration, context consists of the 5 class

abel probabilities provided by the prior atlas at each of the 91 as-

ociated context points; at subsequent iterations, it consists of the

abel probabilities output by the classifier at the previous iteration,

t the same context points. This gives 91 × 5 = 455 context features

er image point. We use multi-layer perceptron classifiers (MLPs);

hese can be trained to directly estimate posterior probability dis-

ributions over the class labels. 

.2. Integral context (IC) 

Context data can be enhanced by including integral features, i.e.

ums of class label probabilities. We augment the context features

escribed above with two types of integral context features suit-

ble for our application. 

The relative positions of organs along the vertical direction vary

ittle from image to image, given that each pluck hangs from a

ook and the part of the pluck that is attached to the hook is

ery consistent across plucks. Thus, given a point on an image,

lass probabilities averaged over the row to which the point be-

ongs provide the classifier on the next iteration with useful in-

ormation as to which organs are likely to occur at that particular

eight. For example, a row containing heart is likely to contain also

ungs, but very unlikely to contain liver. 

In contrast, relative positions of organs along the horizontal di-

ection vary considerably from image to image, given lack of con-

rol over the orientation of the pluck around the vertical axis. The

eart, in particular, is sometimes fully occluded. Nevertheless, or-

ans are fairly consistent in volume from pig to pig. Thus, class

robabilities averaged over the whole image reflect the proportions

f the pluck covered by each visible organ, and provide the next

lassifier with useful information on which organs are likely to be

isible and how visible they are. For example, a small proportion

f visible diaphragm is consistent with a hidden heart and a large

roportion of lung. 
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Fig. 1. Use of a WAAC model (shown for 3 iterations) on a test image X . Red and 

green arrows correspond to the use of a classifier at each iteration to classify a pixel 

(represented by the small black square), whereas blue arrows correspond to use of 

Eq. (3) at each iteration to obtain a weighted atlas. The large red square represents 

an image patch centred on the pixel being classified, used for the extraction of local 

appearance features. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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We use IC to refer to methods in which these integral context

features are included, i.e. the sum of the label probabilities in the

row and the sum of label probabilities in the entire image. 

3.3. Weighted atlas auto-context (WAAC) 

At the end of each training iteration t , for each image X j we

can select the training annotations Y k closest to probability map

P (t) 
j 

output by the classifier, assign a weight to each selected anno-

tation, and combine them to obtain a weighted atlas Q 

(t) 
j 

, 

Q 

(t) 
j 

= 

1 ∑ 

k � = j s 
(t) 
k j 

w 

(t) 
k j 

∑ 

k � = j 
s (t) 

k j 
w 

(t) 
k j 

Y k . (3)

In Eq. (3) , weight w 

(t) 
k j 

is a measure of similarity between label map

Y k and probability map P (t) 
j 

, and s (t) 
k j 

is a selection variable defined

as: 

s ( 
t ) 

kj 
= 

{
1 if k ∈ K 

( t ) 
j 

0 otherwise 
(4)

where K 

(t) 
j 

denotes the set of indices of the m w 

largest weights in

{ w 

(t) 
lj 

| l = 1 ..m } . We refer to this method as WAAC. For the similar-

ity measure w 

(t) 
k j 

we chose to use the mean class F 1 -score between

label map Y k and probability map P (t) 
j 

. The F 1 -score for a given

class is defined as the harmonic mean of precision p and recall r

for that class, that is, 2 pr / (p + r ) . For each class, a high precision

means that most of the predicted region is contained in the true

region, whereas a high recall means that the predicted region con-

tains most of the true region. Thus, a high F 1 -score will normally

correspond to predicted regions whose boundaries closely match

those of the true regions. This is particularly important when seg-

menting multiple adjacent parts belonging to different classes. 

Algorithm 1 summarises WAAC training; parts that differ from

Algorithm 1 WAAC training. Highlights are WAAC-specific. 

Data: labeled images S = { (X j , Y j ) , j = 1 ..m } . 
Initialisation: compute atlas Q 

(0) from Y j , and maps P (0) 
j 

. 

For t = 1 to T : 

1. Build t th training set: S (t) = { (y ji , (X j (N i ) , P 
(t−1) 
j 

(i ) , Q 

(t−1) 
j 

(i ) ) , j

1 ..m, i = 1 ..n ) } 
2. Train a classifier on image features extracted from X j (N i ) and

context features from P (t−1) 
j 

(i ) and Q 

(t−1) 
j 

(i ) . 

3. Use this classifier to obtain new probability maps P (t) 
j 

(i ) . 

4. Obtain updated atlases Q 

(t) 
j 

(i ) from new probability maps

P (t) 
j 

(i ) and label maps Y j . 

conventional AC are highlighted. At the start of a WAAC training

iteration, features are extracted from the weighted atlas computed

at the end of the previous iteration, in addition to conventional AC

features. The first iteration can in principle be run as conventional

AC, to avoid providing duplicate features to the classifier. (Note

that, for any given image X j , both P (0) 
j 

and Q 

(0) 
j 

would merely be

copies of prior atlas Q 

(0) .) The schematic in Fig. 1 shows use of a

trained WAAC model on a test image. 

WAAC uses the same number and spatial arrangement of con-

text points as AC; in other words, there is no additional spatial

context. At each iteration, WAAC combines information from two

sources that are very different in nature: the probability maps out-

put by the classifier (as in AC); and a weighted atlas obtained from

the ground-truth component of training data. 
. Dataset 

The dataset consisted of 350 annotated colour images of plucks

n an abattoir production line. The images were acquired under

ED illumination using a single-lens, tripod-mounted, reflex digital

amera. Each image had a resolution of 3646 × 1256 pixels. Four

rgan classes were manually annotated in each image: the heart,

ungs, diaphragm and liver . A fifth class, upper , was used to mark

he portion of the pluck located above the heart and lungs usually

onsisting of the trachea and tongue. Fig. 2 shows some pluck im-

ges along with annotations showing the regions occupied by each

rgan class. 

. Validation and implementation details 

The 350 available images were randomly divided into 10 sub-

ets of 35 images. Those subsets were used to carry out 10-fold

ross validation experiments comparing the performance of CRFs,

onventional AC, and the proposed WAAC method. 

We used local appearance features based on a multi-level Haar

avelet decomposition [23] . Each image was converted to the

IELUV colour space [24] . For each component (L ∗, u 

∗, and v ∗),

he approximation wavelet coefficients, as well as the horizontal,

ertical, and diagonal squared detail coefficients, were obtained at

hree levels of decomposition. This resulted in 36 feature maps (3

mage components × 4 wavelet coefficients × 3 levels of decom-

osition), all rescaled to match the original dimensions of the im-

ge. We then sub-sampled each feature map and each label map

y a factor of 20 along both dimensions. This resulted in 180 × 60

oints per map, which was found to provide sufficient detail for

ur purposes. 

Each pluck had already been segmented from the background

sing a relatively trivial segmentation step based on focus and hue

nformation. Auto-context methods were trained at foreground lo-

ations on a rectilinear grid. There were approximately 2 m such

ocations in the dataset (5.7k per image). At each cross-validation

old, a balanced training set was obtained by stratified sampling of

0 0 0 locations (1600 per class). Each training pair consisted of a

ector of local and context features and the corresponding class

abel. When training auto-context methods, performance tended

o saturate after five iterations [2] . Therefore we set T = 5 . When

raining WAAC models, 32 annotations (10% of a fold’s training

ool) were used to compute each weighted atlas ( m w 

= 32 ). As re-
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Fig. 2. Three examples showing input image, ground-truth and output obtained using CRF, AC, and WAAC. The organ-specific components of the weighted atlas obtained 

at the final iteration of WAAC are also shown. The upper, heart, lungs, diaphragm and liver classes are shown in yellow, blue, green, cyan and red, respectively. The upper 

class denotes the portion of the pluck located above the heart and lungs usually consisting of the trachea and tongue. In (b) the heart is occluded, whereas in (c) the liver is 

missing from the pluck. (Best viewed in colour.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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orted previously, pixel classification accuracy was stable when m w 

as varied over an order of magnitude [2] . 

MLPs had a softmax output and a hidden layer of 20 neurons

ith logistic activation functions. They were trained with an L 2 -

egularised cross-entropy loss using scaled conjugate gradients op-

imisation in the Netlab implementation [25] . The CRF model used

or comparison [26] was implemented with the toolbox for Mat-

ab / C++ made available by Domke [27] . A 180 × 60 pairwise 4-

onnected grid was created to match the dimensions of our fea-

ure and label maps. CRF models were trained for five iterations

f tree-reweighted belief propagation to fit the clique logistic loss,

sing a truncated fitting strategy. 
a  

t  
. Results 

.1. Qualitative results 

We first discuss some example results obtained using AC, WAAC

nd CRF. Fig. 2 shows pixel labellings obtained, by assigning la-

els with highest probabilities, from three pluck images. The CRF

ethod produced smooth inter-organ boundaries but made gross

abeling errors; some regions were labeled in implausible locations,

or example small regions of heart and diaphragm near the top

f the upper segment in Fig. 2 (a), and upper regions below the

ungs in Fig. 2 (b). When the highest probabilistic outputs from AC

nd WAAC were used to obtain class labels, high frequency class

ransitions occured. The use of the adaptive atlas in WAAC tended
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Fig. 3. Two examples showing input image, ground-truth labels, and output ob- 

tained using AC with and without use of integral context (IC) features. (Best viewed 

in colour.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Median Dice coefficients. 

CRF AC AC + IC WAAC WAAC + IC 

Upper 0.820 0.936 0.946 0.944 0.947 

Heart 0.475 0.792 0.810 0.812 0.816 

Lungs 0.730 0.868 0.881 0.883 0.894 

Diaph. 0.740 0.849 0.857 0.859 0.862 

Liver 0.973 0.962 0.968 0.965 0.966 

Avg. 0.748 0.875 0.888 0.886 0.891 

Fig. 4. Dice scores for (a) the conditional random field model (CRF), (b) weighted 

atlas auto-context with integral context features (WAAC+IC). 

s  

t  

t

6

 

u  

p  

t  

i  

g  

A  

i  

t  

g  

p  

o  

p  

o  

6

 

W  

a  

i  

A

 

o  

g  

f  

c  

t  

p  

l  

g  

o

 

r  

s  

g  
to improve spatial coherence compared to AC. Note that these re-

sults are presented without any attempt to apply post-processing

to smooth the labellings. 

The organ-specific atlas components obtained at the final it-

eration of WAAC are also shown in Fig. 2 . The atlas has clearly

adapted differently to the different spatial configurations in the in-

put images. In Fig. 2 (b) it has adapted to exclude the heart which

is indeed occluded in that example. Fig. 2 (c) shows a difficult ex-

ample for which all the methods failed. In this unusual case the

liver, which is nearly always present, is missing entirely. This even-

tuality was not well represented in the training data. The methods

did manage to exclude liver from their results but the mismatch

resulted in poor localisation of other organs in the image. 

For a further two test images, Fig. 3 shows results obtained

without and with integral context. Note that a simple denoising

post-processing step would have improved the quality of segmen-

tation results, but we left that step out to more clearly show the

effect of adding integral context. The importance of integral fea-

tures is most visible in cases like that of Fig. 3 (a), in which stan-

dard (stencil based) context was not enough to yield a confident

segmentation of the heart. Fig. 3 (b) illustrates the reverse situa-

tion, where integral features helped to dissipate a mistakenly seg-

mented heart. In this case, the integral features representing class

probabilities averaged over the whole image will have reflected the
mall area occupied by the diaphragm and large area covered by

he liver, thus helping to identify a pluck whose dorsal aspect faced

he camera, hiding the heart. 

.2. Organ-level evaluation 

For each test image, a Dice score was computed for each organ

sing the formula 2 | X ∩ Y | / (| X| + | Y | ) , where | X | is the number of

ixels that belong to the organ in the ground-truth image, | Y | is

he number of pixels that belong to the organ in the predicted

mage, and | X ∩ Y | is the number of pixels that belong to the or-

an both in the ground-truth image and in the predicted image.

ny scores where the organ was not present in the ground truth

mage were left out. Table 1 gives median Dice scores for each of

he five methods for each of the five object classes. The final row

ives the average of the five class-specific values. Box and whisker

lots in Fig. 4 show how Dice scores were distributed in the case

f CRF and WAAC+IC. The auto-context segmentation methods out-

erformed the CRF method. Integral context features and the use

f a weighted atlas both had a beneficial effect on Dice coefficients.

.3. Pixel-level evaluation 

Table 2 gives confusion matrices obtained from CRF and

AAC+IC when used to perform classification at the pixel level by

ssigning each pixel to the class with the highest probability. After

ts 5th iteration, the CRF method performed at a similar level to

C before context iterations. 

The largest improvement apparent in the WAAC+IC result was

bserved for the heart. Being relatively small, the heart is the or-

an whose two-dimensional projection on each image is most af-

ected by the orientation of the pluck around its vertical axis: it

an be fully visible near the centre, partially or fully visible on ei-

her side of the pluck, or completely hidden. Thus, it is not sur-

rising that the ability of WAAC to deal with multi-modality had a

arger impact on the segmentation associated with this organ. Inte-

ral context features also helped to deal with the unpredictability

f the heart’s presence and position in the image. 

Various proper scoring rules can be used to measure the accu-

acy of probabilistic predictions [28] . We computed the quadratic

core Q(r , i ) = 2 r i − r · r where r i is the probability assigned to the

round-truth class. For each image, the average quadratic score
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Table 2 

Confusion matrices: (a) CRF (b) WAAC+IC. 

(a) 

Ground truth Predicted 

Upper Heart Lungs Diaph. Liver 

Upper 401,130 11,019 58,100 15,322 484 

Heart 25,864 81,715 58,974 14,565 1340 

Lungs 58,549 26,213 421,258 23,428 4884 

Diaph. 19,761 8664 39,894 191,760 15,964 

Liver 1285 1086 5476 8160 523,815 

(b) 

Ground truth Predicted 

Upper Heart Lungs Diaph. Liver 

Upper 445,393 22,387 15,842 1964 469 

Heart 10,471 158,131 11,853 1980 23 

Lungs 18,757 32,910 454,525 27,552 588 

Diaph. 1634 3460 12,491 244,946 13,512 

Liver 1212 2787 886 25,091 509,846 

Table 3 

Median of images’ quadratic scores. 

CRF AC AC + IC WAAC WAAC + IC 

0.732 0.829 0.845 0.845 0.854 
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as computed. Table 3 reports the median of this; auto-context

ethods again outperformed the CRF. Integral context features and

he use of a weighted atlas both had a beneficial effect on pixel-

evel performance. 

.4. Computational cost 

Execution times were measured running on a regular desktop

achine, using only the CPU (an Intel Core i7-870). Processing an

mage at test time was dominated by feature extraction which took

.2 s . One iteration of AC took 0.14 s whereas an iteration of WAAC

ook 0.73 s due to the extra computation needed to compute the

eighted atlas. The feature extraction and atlas computation rou-

ines were implemented in Matlab. The computation of weighted

tlases would be easily adapted for faster execution on a GPU. 

. Conclusion 

We introduced the problem of multiple organ segmentation

t abattoir and proposed solutions based on an auto-context

pproach. Specifically, we described two modifications of auto-

ontext for multi-part segmentation. Firstly, the stencil-based con-

ext features were augmented with integral features. Secondly, a

eighted atlas was iteratively adapted and made available for the

xtraction of features to complement those used in the conven-

ional approach. Experiments on the task of segmenting multiple

rgans in images of pig offal acquired at abattoir demonstrated the

ffectiveness of this approach. It outperformed an alternative CRF

ethod and was able to deal with parts whose spatial arrange-

ent, appearance and form varied widely across images, most no-

iceably when segmenting the heart which was often severely oc-

luded. Taking advantage of the iterative nature of AC, WAAC is

ble to identify the training label maps that are most relevant for

 given test image and use that knowledge to steer the segmen-

ation process, thus helping to avoid the erroneous localisation of

arts within conflicting contexts. Future work could include the

omputation of weighted atlases in a class-wise fashion, the use of

lternative similarity measures in the computation of the atlases,

nd the use of other types of classifier within the WAAC algorithm

hich is not restricted to MLPs. 
We used auto-context to obtain a sequence of relatively shallow

lassifiers incorporating label context to achieve semantic segmen-

ation of organs. In recent years, deep neural networks have been

esigned for semantic segmentation, achieving impressive results

n a range of applications albeit on datasets with greater numbers

f annotated images [29–31] . It will be interesting to compare this

pproach on our inspection task in future work with more anno-

ated images. 

The segmentation task evaluated here constitutes a component

n an envisaged automated post-mortem inspection application.

e describe elsewhere a method for detection of porcine patholo-

ies (specifically pericarditis and liver milk spots) in masked im-

ges of pre-segmented organs [32] . This could be integrated with

he segmentation methods described in this paper. These meth-

ds should also be applicable to other problems involving the seg-

entation of non-rigid objects into their constituent parts, such as

natomical structures in medical images of various modalities, or

ub-cellular compartments in microscopy images. 
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