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Summary
An expression Quantitative Trait Locus or eQTL is a chromosomal region that

accounts for a proportion of the variation in abundance of a mRNA transcript

observed between individuals in a genetic mapping population. A single gene can

have one or multiple eQTLs. Large scale mRNA profiling technologies advanced

genome-wide eQTL mapping in a diverse range of organisms allowing thousands of

eQTLs to be detected in a single experiment. When combined with classical or trait

QTLs, correlation analyses can directly suggest candidates for genes underlying these

traits. Furthermore, eQTL mapping data enables genetic regulatory networks to be

modelled and potentially provide a better understanding of the underlying phenoty-

pic variation. The mRNA profiling data sets can also be used to infer the chromoso-

mal positions of thousands of genes, an outcome that is particularly valuable for

species with unsequenced genomes where the chromosomal location of the majority

of genes remains unknown. In this review we focus on eQTL studies in plants,

addressing conceptual and technical aspects that include experimental design,

genetic polymorphism prediction and candidate gene identification.

Introduction

Phenotypic differences among individuals are partly the

result of sequence polymorphisms that produce altered (or

absent) proteins and partly the result of qualitative and

quantitative differences in gene expression that generate

varying amounts of protein in a cell or tissue. While varia-

tion within coding sequences is largely immune to environ-

mental stimuli, gene expression at the transcriptional level

is frequently considered the opposite, providing variation

in the location, timing and ⁄ or abundance of individual

mRNA. However, such variation in mRNA abundance is

not solely determined by environment—a large number of

studies have shown that genotypic variation in regulatory

sequences can have a profound effect on comparative lev-

els of gene expression among alleles. In the majority of

cases, levels of gene expression are equated with the

steady-state abundance of individual mRNA transcripts

that have been determined in a specific sample at a given

point in time. Abundance information can be captured

using a variety of techniques and at a range of scales

ranging from quantitative reverse transcription polymerase

chain reaction (RT-PCR) (Czechowski et al., 2004), through

DNA microarrays (Schena et al., 1995) to massively parallel

signature sequencing (MPSS) (Brenner et al., 2000) cur-

rently facilitated by next generation sequencing (NGS)

(Wall et al., 2009). If transcript levels are measured across

a population of plants, the recorded variation in mRNA

transcript abundance for each gene may be treated as a

heritable trait that can be subjected to statistical genetic

analyses. This can, in turn, locate and identify the underly-

ing genetic factors that control the observed variation. The

terms genetical genomics (GG) or expression quantitative

trait loci (eQTLs) (Jansen and Nap, 2001) have been coined

to describe this type of analysis.

The first published large scale eQTL mapping experi-

ments (in yeast and mouse) involved small experimental

populations and mostly described the results of genetic

mapping (Brem et al., 2002; Schadt et al., 2003). These

were soon followed by more focused studies on specific
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complex traits and aimed at a better understanding of the

molecular networks underlying the trait QTLs and experi-

mental validation of inferred candidate genes (Mehrabian

et al., 2005; Yang et al., 2009). Recently the eQTL

approach has been extended to genome-wide association

studies in humans, mostly addressing complex disease-

related traits (e.g. Emilsson et al., 2008, for the recent

review see Cookson et al., 2009), and to traits in Droso-

phila such as aggressive behaviour (Edwards et al., 2009).

In this review we attempt to summarize the work that

has been published surrounding eQTL analysis, with a

focus on plant species. Published studies have been con-

ducted in Arabidopsis (DeCook et al., 2006; Keurentjes

et al., 2007; West et al., 2007), eucalyptus (Kirst et al.,

2004, 2005), maize (Schadt et al., 2003; Shi et al., 2007),

wheat (Jordan et al., 2007) and poplar (Street et al.,

2006), but because of familiarity we have chosen to focus

our discussion around barley, a large genome (5300 Mbp)

(Bennett and Smith, 1976) true diploid (2n = 2x = 7) crop

plant. For more than 100 years barley has been a model

plant for genetics research. It has benefited from world-

wide collaborations of barley researchers leading to the

early development of extensive Expressed Sequence Tag

(EST) collections (Zhang et al., 2004), community Bacterial

Artificial Chromosome libraries (Yu et al., 2000), high-

throughput single nucleotide polymorphism (SNP) mapping

platforms and the first publicly available Affymetrix Gene-

Chip (Barley1: Close et al., 2004) for a plant species. The

fact that barley also has well established and widely dis-

tributed reference populations (Kleinhofs et al., 1993;

Wenzl et al., 2006) that have been subject to extensive

phenotypic and genotypic characterization (and sub-

sequent genetic analysis) makes it particularly valuable for

studies aimed at exploring the potential of eQTL analyses.

The eQTL studies are gaining popularity in plant genetics

because they represent a potential mechanism to short-cut

the tedious process of positional cloning, especially for

genes underlying quantitative characters (Hansen et al.,

2008). The data generated from eQTL experiments can be

partitioned into two essential components of genomic

analysis. Firstly, they can be used to generate the informa-

tion required to construct a robust and comprehensive

sequence-based genetic framework map (West et al.,

2006; Luo et al., 2007; Potokina et al., 2008b) and, sec-

ondly, they provide data for eQTL analysis itself which is

directly coupled to candidate gene identification (Shi et al.,

2007; Druka et al., 2008a). Furthermore, the potential to

exploit highly complex eQTL datasets using ‘systems analy-

ses’ is significant and beginning to generate genome-wide

appraisals of specific biological phenomena (Jansen et al.,

2009). As our investigations are beginning to facilitate the

identification of genes underlying biological traits, we have

been actively addressing the strengths and the weaknesses

of adopting an eQTL approach. Consequently, we attempt

here to provide a balanced perspective on where and

when eQTL analysis may be an appropriate strategy and

guidelines for effective experimental design and execution.

What exactly are eQTLs?

Expression QTLs are those genetic regions identified by

applying QTL analysis methods to data on the abundance

of transcripts of particular genes in samples taken from

different individuals (genotypes) in a segregating popula-

tion, or populations with other genetic structures. Tran-

script abundance is used as a measure of the level of that

gene’s expression in each individual and can be analysed

as a trait (an ‘eTrait’) just like other phenotypes (pTraits)

such as plant height or yield. Expression is normally mea-

sured for many thousands of genes simultaneously and

hence there are thousands of eTraits recorded.

As with pQTL analyses, eQTL analysis requires genetic

markers which can be genotyped in all individuals in the

population and used to form a framework genetic map of

the whole genome. These markers and their map locations

may have been developed in the population before the

eQTL study or may be developed de novo entirely or in

part from the expression data itself. A high quality genetic

linkage map is a critical component of such experiments,

because the map resolution, marker density and polymor-

phism will condition the quality of pQTL and eQTL analy-

ses, and how we interpret the impact of allelic variation

on physiological processes through transcriptional and

other molecular networks (Sieberts and Schadt, 2007).

The outcome of this analysis is a statistical association

between genetic markers located at specific regions of the

genome and the ‘transcript abundance’ of the assayed

gene. The significance of the association can be recorded

as the Logarithm Of Odds (LOD) score or Likelihood Ratio

Statistic (LRS), and plotted relative to each test position

covered by the genetic markers across the genome. The

values of the test statistic (LOD or LRS) needed to achieve

significance depend on the population size, population

type and the proportion of non-genetic variation for the

trait. The resulting eQTL plot indicates the likely genetic

location(s) of DNA sequence variation (i.e. eQTL) that

causes the observed variation in transcript abundance

across this population.
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Expression QTLs are empirically divided into two classes

cis and trans (Figure 1). In the former, the sequence varia-

tion controlling transcript levels is assumed to be deter-

mined by the sequence variation that lies within or in the

close proximity of the gene. In terms of classical mole-

cular genetics such DNA sequence variants are called

cis-elements; hence a cis-eQTL coincides with the location

of the underlying gene. In case of trans-eQTL, the

observed location of the eQTL does not coincide with the

location of the gene. This implies that the observed eQTL

represents the position of a locus that controls the expres-

sion of the target gene. Genes underlying trans-eQTLs are

assumed to encode trans-acting factors—typically proteins

that by binding to cis-elements of other genes, that con-

trol their mRNA expression. Thus a trans-eQTL could, for

example, represent the location of a transcription factor

that controls the expression of the target either alone or,

potentially, the correlated expression of several function-

ally related genes. In reality, target gene expression can be

controlled by a combination of both cis- and trans-acting

elements (Figure 1).

It must be emphasized that all QTL studies rely on natu-

ral genetical variation in the population under study. Thus,

different populations may reveal different QTLs while the

absence of QTL for a trait in one population is not evi-

dence that QTL variation for that trait does not exist in

other populations.

Technologies for eQTL mapping

Instead of looking at a single gene, a typical eQTL experi-

ment involves large scale mRNA profiling of thousands of

genes (Jansen and Nap, 2001). Several platforms are suit-

able for eQTL analysis. In barley, the Affymetrix Barley1

GeneChip (Close et al., 2004) and custom Agilent micro-

arrays have been used, but other options are summarized

in the Table 1. The technologies differ in the way the

microarrays are fabricated and this can offer advantages

for specific applications. For example, the basic building

blocks of Affymetrix’ GeneChip microarrays are 25-base

long oligodeoxynucleotide probes that are synthesized at

specific locations on a coated quartz surface by photoli-

thography (see http://www.affymetrix.com/about_affy-

metrix/outreach/educator/microarray_curricula.affx#1_1).

Each 25-mer is called a feature. Over a million features

per microarray are usually available for synthesis, allowing

multiple (typically 22) probes per gene (the probe-set). The

Barley1 GeneChip has c. 23 000 probe sets corresponding

to assembled EST unigenes.

In contrast, the basic building blocks of Agilent micro-

arrays are 60-base long oligodeoxyribonuclotides that are

printed on glass slides using Agilent’s proprietary Sure-

Print� technology. Currently, the slides generally contain

either 1 · 244K, 2 · 105K, 4 · 44K or 8 · 15K probes.

The Agilent gene expression platform is fully customizable;

ready-to-go probes can be ordered to be synthesized on

the slide, or alternatively custom sequences can be used

to design probes by ‘eArray’, an online probe design tool

(http://www.chem.agilent.com/en-US/products/instruments/

dnamicroarrays/pages/gp50660.aspx). An extensive pool of

pre-designed probes is also available from the eArray

depository. Experimental design using Agilent microarrays

can incorporate either a two-dye labelling protocol or sin-

gle-dye labelling. Currently, two barley custom Agilent
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Figure 1 The mode of regulation of gene exp-

ression inferred by expression quantitative trait

loci (eQTL) analysis. Panel (a): cis-regulation is

considered the likely cause of observed geno-

type-dependent mRNA accumulation if the

positions of the eQTL and the gene coincide.

Panel (b): If they do not, a trans-factor enco-

ded by an eQTL locus (chromosome 2H) is the

most likely cause of the observed differences.

Panel (c): if multiple eQTL are observed, with

one coinciding with the location of the gene,

combined cis- and trans-regulation can be

inferred.
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arrays, 15K and 44K have been designed by ourselves,

and a 44K array has been designed by Agilent. Based on

various assumptions we estimate that the Agilent 44K

microarray contains approximately 38 000 barley genes,

the Barley1 GeneChip around 18 000, and the 15K micro-

array 15 000 barley genes. Because all platforms are

gene-based, data integration from different experiments is

relatively straight forward.

When choosing an expression platform, genome repre-

sentation, microarray performance and costs all have to

be considered. By design, Affymetrix arrays provide data

with more ideal statistical properties than the Agilent plat-

form because individual mRNA signal detection is based

on multiple probes and in many cases multiple probe sets

per gene. However, relatively low gene content and high

price tag can outweigh its design advantage. Agilent’s

flexible customization could also, of course, be used to

design a cheap multi-probe array. Microarray platforms

are currently available for most major plant species or can

be easily developed for any plant with available EST collec-

tions using a specific vendor’s array design approach.

Next generation sequencing methodologies, such as

that provided by Illumina’s Solexa platform, offer an

increasingly attractive alternative for tag-based transcript

abundance studies (Wall et al., 2009). Despite the relative

expense (at the moment) these platforms offer the oppor-

tunity to analyse any species—with or without a genome

sequence—using an open platform that is capable of

recording the abundance of all mRNAs in a given sample.

We are unaware of any example of eQTL analysis pub-

lished to date using this approach but suggest it is likely in

the near future that NGS will be utilized for this purpose.

Experimental design

Factors influencing the design of eQTL experiments are

essentially those that are important in all QTL studies. They

fall into three main categories; type of population, popula-

tion size and the organization of replication and randomi-

zation. All QTL studies require some level of appropriate

replication and this implies that individual genotypes can

be replicated. Plant geneticists typically use populations of

homozygous lines derived from the F1 generation of

bi-parental crosses which are either inbred directly from

the F1s or via backcrossing to one (or both) of the parents.

An individual from a natural or artificial outbreeding popu-

lation can be used as a surrogate for the biparental F1.

Homozygosity may be achieved by inbreeding, typically by

single seed descent (SSD) to produce recombinant inbred

lines (RIL) or by production of doubled haploid lines (DHL).

Such populations can only provide information about the

additive effects of QTL because every genotype is homoz-

ygous. However, many inbred lines from a RIL or DH pop-

ulation can be crossed inter se to create a pseudo F2

population in which every genotype is replicated as

opposed to being unique as in a true F2. Alternatively they

can be crossed to testers. Such crosses produce reproduc-

ible and hence replicable F2’s from which the dominance

effects of QTL can also be studied (Dupuis and Siegmund,

1999; Liu and Zeng, 2000).

The accuracy of locating eQTL in such populations

depends directly on the amount of recombination that has

occurred in the production of the inbred lines. At present

there is no environmental treatment that can increase the

rate of recombination easily. At meiosis each bivalent

chromosomes typically has around two chiasmata and

hence there is a high probability that a chromosome

derived from any individual meiosis has one or no cross-

overs with most genes failing to recombine at all. Using

microspore culture to produce DHL from an F1 involves

just a single round of meioses in the F1 and hence recom-

bination is minimized. Inbreeding to produce RIL from an

F2 by SSD effectively doubles the amount of recombina-

tion because crossing over can occur in several genera-

tions, although the effects of crossing over in generating

recombinants are considerably reduced as homozygosity

increases. If it is possible to randomly mate the F2 for one

or two generations before inbreeding, then the amount of

Table 1 Commercially available parallel, high-throughput gene expression analysis platforms

Company Detection method No. probes per gene Probe length (mer) No. channels No. genes detected simultaneously

Affymetrix Fluorescence; hybridization to array Multiple (10–20 pairs) 25 1 10 000–100 000

Agilent Fluorescence; hybridization to array Single 60 1 or 2 15 000–244 000

Nimblegen Fluorescence; hybridization to array Multiple (up to 20) 45–60 1 or 2 10 000–100 000

Illumina Fluorescence; tags on beads Single 50 1 10 000+

ABI Fluorescence; gel electrophoresis Single 60 1 10 000+

Sequenom Mass spectrometry Single 60–90 2 Up to 1000
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recombination is considerably increased but such a proce-

dure may be technically difficult and time consuming

particularly with some inbreeding species.

Population sizes should be as large as possible because

size affects the number of recombinants that can be sam-

pled for QTL location as well as increasing the statistical

power of the analysis. Increasing population size has cor-

responding increases in costs which are particularly signifi-

cant for gene expression analysis. It has been suggested

that no QTL study should involve less than 200 lines and

several recent publications have used many more (Schön

et al., 2004; West et al., 2007). However, there is no con-

vincing statistical justification why much smaller popula-

tions cannot be used and many studies have successfully

used 100 lines or less. Gene expression traits typically have

high heritabilities which ensure a high level of power

for detecting their underlying genetic variants. Providing

significance levels are set such that the genome wide

false-positive detection rates are low (typically £5%) for

that population, then one simply fails to detect more

eQTLs in small populations. However, 95% of those actu-

ally detected are real; but these should always be individu-

ally confirmed by other means such as by use of different

samples of RIL ⁄ DHL or near isogenic lines from the same

population.

In all experiments, and those involving eQTL are no

exception, it is essential to have an appropriate measure

of replicate error variation to prove that genetic variation

exists. If considering a DH or RIL populations for example,

one would expect that, for a given segregating marker,

half the population of lines (n ⁄ 2) would consist of the one

homozygote and the other half the second homozygote.

Given the availability of expression data for a gene on all

lines one could test for any marker whether the two

homozygotes differ in expression for a particular gene by

a t-test with n ) 2 df. However, the error mean squared

(the denominator) in such a t-test will include variation

from environmental and genetical sources from all other

marker loci, so it provides a very conservative test. In case

of a single cis- or trans-acting eQTL this may not be an

issue because one marker will extract all or most of the

genetic variation, but for multiple eQTLs the residual

genetical variation of other QTL will result in a weaker

test. Ideally, therefore it is important to have replicates of

individual genotypes, i.e. the DH lines or RIL because they

will allow the estimation of the true within line variation.

Within a given budget, replication reduces the total num-

bers of lines that can be studied, with a concomitant

reduction in power and precision. Thus, although it is

important to have an appropriate measure of environmen-

tal error, it is not necessary to replicate all lines; providing

that the error is determined for a randomly chosen sample

of lines it is possible to perform a test of significance.

Obviously the power of this test increases with the num-

ber of lines replicated but beyond c. 30 replicated lines

(error df = 30) power increases very little.

It is also essential that care is taken to ensure that the

replicates of all genotypes are unbiased i.e. they incorpo-

rate all of the non-genetic factors that could cause lines to

differ. Such differences may include effects such as: tech-

nical variation in sampling, preparing, assaying and record-

ing material on a slide; true biological environmental

variation such as is found among genetically identical full-

sibs from a parent within a line; environmental or mater-

nal (or epigenetic) effects attributable to different parents

within a line (whether it is sensible to consider generations

beyond the parents is debatable but even under rigorously

controlled conditions, maternal effects can be very consid-

erable). Unfortunately, these factors are often ignored in

the experimental design resulting in serious underestima-

tion of the non-genetic variation and inflation of the

genetic components. It is generally agreed that the focus

of the design should be on biological rather than technical

variation (Kerr and Churchill, 2001; Churchill, 2002;

Kendziorski et al., 2003).

To avoid unnecessary replication of slides it is possible

to pool samples from different parents and individuals on

a single slide as long as the replicate slide involves a pool

from different parents and individuals (Churchill, 2002;

Kendziorski et al., 2003; Simon and Dobbin, 2003). Alter-

natively, a distant-pair design has been proposed for two-

colour microarrays by Fu and Jansen (2006). The design

uses genetic marker information to identify pairs of indi-

viduals with maximum dissimilarity across the mapping

population and improves the efficiency of eQTL studies.

This approach has recently been adopted in studying the

interaction between barley and leaf rust (X. Chen, pers.

Commun.).

Tissue sampling

As individual mRNA abundances are dynamic traits that

are subject to developmental, environmental and physical

cues, to minimize the contribution of non-genetic factors,

tissue sampling for RNA extraction should, ideally, attempt

to avoid these sources of variation. For example, the pres-

ence of highly pleiotropic major developmental genes (e.g.

a major dwarfing gene) segregating in a population may
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be expected to partition a significant portion of observed

eQTL variation according to the dwarfing allele present in

individuals in the population. While it is possible to sample

developmentally ‘equivalent’ material across a period of

time (DeCook et al., 2006; Jordan et al., 2007) and obtain

what appears to be meaningful eQTL data, our recom-

mendation would be to attempt to minimize this variation

as much as is possible. For example, Druka et al. (2008b)

harvested seed from the reference barley Steptoe · Morex

(St ⁄ Mx) population grown in the same environment,

sieved seed to obtain equivalent size fractions, pre-condi-

tioned all seed in parallel, germinated three replicates of c.

30 seed and chose only three germinating seed from each

replication that they considered by eye to be developmen-

tally and physiologically equivalent for pooling and RNA

isolation. They subsequently combined equal quantities of

RNA from each of three biological replicates prior to

analysis by Affymetrix chip hybridization. As a result they

minimized the potential sources of non-genetic variation

and obtained a robust and reproducible dataset that was

considered fit for eQTL analysis.

A framework genetic map

A high quality genetic map is required for interrogation of

the transcript abundance data. It can have three origins as

follows: (i) a legacy map constructed prior to the experi-

ment, (ii) a de novo map inferred from the expression data

itself (see below), (iii) an independently generated map

using genetic markers derived from a subset of the genes

used for mRNA profiling (e.g. SNPs). Because of the way

they were derived (e.g. using restriction fragment length

polymorphisms, amplified fragment length polymorphism

or single sequence repeat), legacy maps (while temptingly

convenient) frequently suffer from the anonymity of the

majority of the markers that were used in their construc-

tion, from high levels of inherent type 1 error and from

missing data. These compromise the accurate association

of eQTL and their underlying genes. In contrast, bi-allelic

markers derived from the expression dataset itself [i.e. sin-

gle feature polymorphism (SFP), gene expression markers

(GEM) or transcript-derived marker (TDM)—see below] can

represent a highly efficient gene-based marker system

(Rostoks et al., 2005; West et al., 2006; Luo et al., 2007;

Potokina et al., 2008b). Maps based on these marker

types optimize the use of the transcript abundance data

and minimize type 1 error, as the same dataset is used for

both map construction and eQTL analysis. Finally, current

advances in high-throughput SNP-based DNA genotyping

technologies enable quick and efficient generation of high

quality, robust, transferable and saturated genetic linkage

maps (T. Close, unpublished results). Our experience indi-

cates a preference for either of the latter two approaches.

Methods for eQTL analysis

The major challenges in modelling and analysis of experi-

mental data for mapping regulators of genome-wide gene

expression lie in the high-dimensionality and complex cor-

relation structure of the source microarray data. Otherwise

eQTL analysis shares virtually the same statistical principles

and approaches as conventional pQTL (Lan et al., 2003).

As noted, microarray experiments provide two sources of

information essential for eQTL analysis: genome-wide

genetic markers and the transcript abundance phenotype

of every gene that corresponds to a probe or probe-set on

the array (Figure 2). Data modelling and analysis therefore

play fundamental roles in extracting statistically manage-

able information from the raw hybridization signals and in

integrating the information into eQTL.

Prediction of genetic polymorphisms from microarray

data

The ability to identify sequence polymorphisms from gene

expression microarray data has useful implications in at

least two aspects. Firstly, it improves both accuracy and

precision in calculating gene expression indices by exclud-

ing probes containing genetic polymorphisms, while in

turn, improving the statistical power of eQTL analysis

(Alberts et al., 2007). Secondly, it enables the concomitant

generation of an abundant collection of reliable genetic

markers that can be used as the framework for sub-

sequent eQTL genetic analysis (Luo et al., 2007). The

markers derived from microarray experiments fall into

three classes as follows: (i) single feature polymorphism

(Borevitz et al., 2003), (ii) GEM (West et al., 2006), (iii)

TDM (Potokina et al., 2008b).

Single feature polymorphism SFP (Borevitz et al., 2003):

to distinguish hybridization signals associated with any

molecular alteration from background, the signals gener-

ally need to be collected from the sequences where muta-

tion occurs. The probe-set design of Affymetrix

microarrays perfectly meets this need. Statistical methods

have been developed to detect polymorphisms between

target sequences and probes by testing for non-uniformity

of hybridization intensity among every feature in a probe-

set for a given gene. The principle for RNA-based tem-
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plates is an extension of that described by Winzeler et al.

(1998) who pioneered the development of a high-

throughput genotyping platform by hybridization of

labelled total genomic DNA to oligonucleotide arrays. In

yeast, this approach has proved useful in linkage analysis,

the dissection of QTL, and in assessing species population

structure (Hazen and Kay, 2003). Recently, it has been

applied to organisms with more complex genomes, such

as Arabidopsis thaliana (Borevitz et al., 2003), to assess

the molecular basis of natural phenotypic variation. This

type of sequence variation detected by a single probe in

an oligonucleotide array was termed as SFP (Borevitz

et al., 2003) (Figure 2).

By attempting to integrate genetic polymorphism

screening and gene expression analysis, Ronald et al.

(2005) proposed the concept of simultaneous genotyping

and gene expression analysis with microarray data. They

hybridized cRNA from two parental yeast strains and their

segregants onto yeast Affymetrix GeneChip arrays, and

developed a method for identifying SFP and consequently

genotyping the yeast strains (essentially by combining a

k-means clustering and a mixture model analysis). The

approach was based on the proposition that the presence

of polymorphism in a perfect-match (PM) probe sequence

on Affymetrix arrays between parental strains, one of

which was assumed to have the same sequence as the

probe, would lead to a detectable difference between the

observed PM value of the probe and its predicted value.

The predicted value comes from the ‘positional-depen-

dent-nearest-neighbour’ model (Zhang et al., 2003). This

idea has been modified and implemented to predict SFP

using gene expression data profiled by Affymetrix Gene-

Chip arrays in more complicated species such as Arabidop-

sis (West et al., 2006) and barley (Cui et al., 2005;

Rostoks et al., 2005). However, it is much more challeng-

ing statistically to predict SFP from gene expression data

than from genomic DNA microarray data. This is because

the effect of genetic polymorphism within a transcript

molecule on the hybridization signal is compounded by

the abundance of the transcripts from the gene repre-

sented by the probe. Luo et al. (2007) tested the perfor-

mance of various methods by implementing them to

predict SFP from expression data of 22 801 open reading

frame, which were profiled using Affymetrix microarrays

on two barley cultivars and their double haploid offspring.

They found that a large proportion of the predicted SFP
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from these methods were more a reflection of variation in

gene expression than genuine sequence polymorphisms.

The use of these GEM may however result in a serious

bias in eQTL analysis because autocorrelation between

markers (i.e. GEM) and trait phenotypes (i.e. gene expres-

sion level) may lead to the false prediction of cis-regula-

tors. Thus, a statistical method that enables robust

prediction of probes bearing genuine sequence polymor-

phisms from gene expression data is clearly desirable.

Wang et al. (2009) proposed a Bayesian statistical

approach for detecting SFP’s in transcript sequences and

for predicting SFP genotypes when tested in a segregating

population derived from genetically divergent parental

lines. This was achieved by modelling a PM value from

Affymetrix cRNA hybridization experiments as a product of

the binding affinity between the transcript and probe

sequences and the abundance of the transcript. They

analysed two independent microarray datasets (RNA hybrid-

izations from barley and yeast) and demonstrated that their

method provided significantly improved robustness and

accuracy for predicting SFP reflecting genuine sequence

polymorphism, when compared with five other statistical

methods. Their method was appropriate for predicting SFP

from expression microarray data and from genomic DNA

microarray data. By comparing predicted SFP with those

where sequence information was available, they showed

that all the methods applied stringent selection criteria to

SFP and thus only a small fraction of probes on arrays

recorded SFP. The approach effectively maintained both

false-positive and false-negative rates at a low level.

Gene expression markers (West et al., 2006): these are

based on the clear-cut difference in the level of transcript

abundance between two genotypes. Using Arabidopsis

RIL, West et al. (2006) showed that a subset of 324 (from

1431) genes exhibiting a >2-fold difference in a level of

gene expression observed between the two parental geno-

types had non-overlapping expression levels among the

progenies of the mapping population: i.e. for each of the

offspring the inherited parental allele can be unequivocally

predicted by the mRNA transcript level. Accordingly, they

proposed that a GEM can be used as a genetic marker

that identifies the location of the DNA sequences that reg-

ulate the expression of its corresponding gene. Luo et al.

(2007) used a weighted average for all features per probe-

set on Affymetrix arrays to determine comparative eQTL

‘levels’. The same principle operates for all other array

types. Clearly, an important question is whether the

mapped GEM (i.e. regulating locus) coincides with the

position of the gene itself, because only GEM that reflect

polymorphism in local regulatory sequences (perhaps, a

promoter) will place the gene at the ‘correct’ place on the

genetic map (i.e. regulation in cis).

Potokina et al. (2008b, 2009) observed that 95% of

GEM in barley were the result of cis-regulatory polymor-

phisms. Thus, in this case, GEM reflect polymorphic sites

in or near a gene that trigger dramatic changes in the lev-

els of gene expression and are detected indirectly as

extreme differences in transcript abundance. GEM sepa-

rate both the parents and progeny of a bi-parental cross

into two distinct groups each containing one of the

parental alleles. This has an important consequence: to

map a gene by transcript profiling of a segregating popu-

lation requires no prior information on whether the

expression marker represents a nucleotide polymorphism

in the probe itself (i.e. SFP) or simply indicates a regula-

tory polymorphism. In case of Agilent arrays that typically

comprise one probe per gene, regulatory polymorphisms

will be the dominant source of the observed variation

because the long oligonucleotide probes used are rela-

tively insensitive to single nucleotide changes (Hughes

et al., 2001).

Transcript-derived markers (Potokina et al., 2008b):

these are a catch-all class where the hybridization signal

reported by a probe is used alone as a gene-specific mar-

ker i.e. not distinguishing between SFP and GEM (Fig-

ure 2). These authors identified 1596 barley TDM that

were successfully employed to construct a robust genetic

map of the St ⁄ Mx population that was subsequently used

for eQTL analysis. The barley results support previous

reports that eQTL with the highest LOD scores are gener-

ally attributable to cis-eQTL (Figure 3.) (Gibson and Weir,

2005; Hubner et al., 2005; Yamashita et al., 2005; West

et al., 2007; Druka et al., 2008a).

The importance of gene-based linkage maps

In species with large and ⁄ or unsequenced genomes, gene-

base linkage maps have considerable added value over tra-

ditional marker-based maps. This is because conservation

of synteny between these species and fully sequenced

model genomes can help validate predicted gene locations

based on eQTL analysis. For example, using the latest bar-

ley EST assembly (Harvest 35; http://www.harvest-web.org/

hweb/bin/wc.dll?hwebProcess~hmain~&versid=5assembly)

the total number of reciprocal barley EST-rice genome-

barley EST hits is just under 18 000. This translates into

c. 43% of rice genes having good barley homologues, or

39% of the predicted total number of barley genes having

ª 2009 The Authors
Journal compilation ª 2009 Blackwell Publishing Ltd, Plant Biotechnology Journal, 8, 10–27

eQTL analysis in plants 17



good rice homologues. Aligning the location and order of

genes on the rice genome sequence to the genetic order

of the corresponding cis-eQTL on the barley map reveals

the same synteny blocks as observed in barley SNP-based

maps (Figure 3) (Druka et al., 2008a; T. Close, unpub-

lished results), supporting the validity of predicting gene

positions based on cis-eQTL.

Assessing gene expression from microarray data

An important question surrounds how consistently gene

expression can be evaluated by different technical plat-

forms. It has been documented that commercial micro-

arrays are more technically consistent than non-commercial

microarrays (Coughlan et al., 2004; Chen et al., 2007) and

that one-dye platforms are typically more consistent than

two-dye platforms (Kuo et al., 2006). We compared the

expression of 15 208 barley ‘unigenes’ profiled using

Agilent one-dye and two-dye microarrays with that of

the same group of genes from Affymetrix microarrays

(N. Jiang, unpublished results). We observed a significant

discrepancy between the expression levels evaluated from

the two types of microarray. Correlation coefficients in

estimated expression indices were as low as 65%

between the platforms with the one-dye system gener-

ating a higher level of concordance than the two-dye

system. Despite this observation, using a different algo-

rithm, X. Chen (unpublished results) very effectively used

normalized ratios derived from 72 distant-pair hybridiza-

tions (Fu and Jansen 2006) to map eQTL related to the

interaction between barley and Puccinia hordei Otth.,

suggesting that the analytical approach used for inter-

pretation of the data may be key to the degree of

correspondence observed.

Is this surprising? Not especially. Jiang et al. (2008)

explored seven main stream methods developed for

extracting gene expression levels from Affymetrix micro-

array datasets in both yeast and barley and found that

these methods can be divided into two clusters. The

methods within each cluster reveal correlation coefficients

of ‡95%, but the correlation is reduced to c. 70%

between the two clusters. In addition, the number of

genes called to be ‘significantly differentially expressed’

between the same set of genotypes varies substantially

among the different data extraction methods when

subject to the same rate of false-positives (Storey and

Tibshirani, 2003).

Genome-wide eQTL analysis

Regulatory polymorphisms revealed as eQTLs in GG studies

are major determinants of quantitative phenotypic traits

(Stamatoyannopoulos, 2004). But how complex should we

expect these traits to be?

Analysis of the barley St ⁄ Mx eQTL data from ‘germinat-

ing embryo’ and ‘first true leaf’ provides several useful

numerical insights. Of the 22 840 probe sets on the

Affymetrix GeneChip, 70% (15 967) showed significant

expression in embryo tissue based on the ‘Present’ call by

the Affymetrix’ MAS 5.0 algorithm. Of these genes, 81%
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had one or more eQTL that could be detected by compos-

ite interval mapping at a genome wide False Discovery

Rate of 5%, resulting in a total of 23 738 eQTL. Among

the 36% (5764) of genes with just one significant eQTL,

2291 (40%) had expression differences that fell into two

clear, non-overlapping expression classes among the par-

ents and DHL. SNP data indicated that in the majority

(95%) of cases, these two classes matched the SNP geno-

type of the target gene used as probe. These were

assumed to represent cis-acting expression regulators and

this was supported by their high LOD scores, a recognized

indicator of cis-regulation (Druka et al., 2008a). The

remaining 5% were candidates for trans-regulators. How-

ever, in two cases the putative eQTL mapped to locations

occupied by known duplicates of the target gene so it is

possible that others may also represent the location of

duplicated genes.

When comparing the location of the eQTL to that of

the gene itself in barley, slightly <30% of the observed

eQTL were in cis and the rest in trans. A global transcript

profiling study in Arabidopsis using the Bay · Sha RIL

population correspondingly reported that approximately

one-third of the eTraits were cis-eQTL (West et al., 2007)

whereas in another Arabidopsis study employing the

Ler · Cvi RIL population, 50% trans-eQTL and 50% cis-

eQTL were detected (Keurentjes et al., 2007). However,

the number of eQTL detected in each study also varied

dramatically (over 36 000 in one study and 4000 in the

other). In a more focused study in eucalyptus, 1067 of

2608 genes revealed 1655 eQTL in a backcross progeny

of 91 individuals (Kirst et al., 2004) of which 821 were

single eQTL (49%). A quarter of the detected eQTL were

single eQTL in a study focused on cell wall digestibility in

maize (Shi et al., 2007) (Table 2). Overall, the proportion

and number of cis- and trans-eQTL identified in an experi-

ment depends on many factors, such as the number of

lines used, the degrees of replication and the inherent

genetic architecture of the population under study (Han-

sen et al., 2008). These factors influence the statistical

power (higher power allows the robust detection of

more trans-eQTL) and the number and ratio of cis- vs.

trans-eQTL detected in a population. Indeed, trans-eQTL

may themselves be the elaboration of divergent cis-regu-

lation at a polymorphic regulatory locus (Kliebenstein,

2009). Differential regulation may also be tissue and ⁄ or

pathway-specific.

Mapping pQTL often requires the selection of parental

lines that contrast for the phenotype of interest. While this

is also true for eQTL mapping, if parental transcript varia-

tion is used exclusively to select differentially expressed

genes for use in subsequent studies, many informative

genes would end up being be overlooked. This is because

transcript-level variation between two homozygous inbred

parents does not accurately predict transcript variation in

their progeny and is usually significantly underestimated

(West et al., 2007). Keurentjes et al. (2007) calculated the

heritability values from parental data and a RIL population

to be 28.6% and 74.7% respectively. Similar findings

were observed in barley by X. Chen (unpublished results)

who identified 1037 significant differentially expressed

genes between St and Mx, but were able to genetically

map 9557 genes using the St ⁄ Mx population. These

observations illustrate quite clearly how genome-wide

eQTL studies can provide significantly more information on

the biological activity of genes than expression studies on

the parental lines alone.

Table 2 Summary of eQTL studies performed on different plant species

Plant species

Population

Tissue used for array

No. genes ⁄ eQTL

Parental lines

No.

progeny Type

Genes

analysed

Genes

mapped

Single

eQTL cis-eQTL

cis-eQTL

(%)

Barley St · Mx 139 DH Germinating embryos 15967 12933 5764 29–39

Maize Stiff stalk · lancaster 76 F3 Ear leaf tissue 18805 6481 NA NA NA

Flint · Flint (AS18 · AS07) 40 RIL 5-week old stems 439 89 23 NA NA

Eucalptus (tree G50 · E. globulus)x

tree 678.2.1

91 Pseudo-backcross 20-month old xylem 2608 1067 821 NA NA

Arabidopsis Bay-0 · Sha 211 RIL 6-week old plants 22746 15664 5127 32%

Ler · Cvi 160 RIL Aerial parts of seedlings 24065 4066 1875 46%

Source: barley: Potokina et al. (2008a,b); maize: Schadt et al. (2003) and Shi et al. (2007); eucalyptus: Kirst et al. (2006), Arabidopsis: West et al. (2007) and

Keurentjes et al., (2007).

eQTL, expression quantitative trait loci; RIL, recombinant inbred lines; DHL, doubled haploid lines. NA, not available.
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The eQTL analyses summarized above (in barley) have

used inbred lines. The genetic structure of these lines

greatly eases the challenges in theoretical modelling and

statistical analysis of the experimental data and, at the

same time, limits predictability of the analysis. For exam-

ple, the significance of dominance effects were neither

considered nor explored. By using more genetically com-

plex populations such as F2’s, pedigrees or even sporadic

samples from natural populations, these questions may be

tackled. However, microarray data collected from such

population types can also raise new issues. For example,

statistical power for detecting linkage between markers

and expression data may be lowered because of a reduced

contrast in the phenotypic effect (expression level)

between marker genotype classes. Moreover, more com-

plicated statistical approaches need to be developed to

cope with new patterns of variation (e.g. from multiple

alleles) embedded in the corresponding microarray

datasets.

Hotspots

Almost all studies conducted to date reveal that eQTLs are

not evenly distributed across genetic maps. When eQTL

cluster in a specific region more than expected by chance,

the region is frequently declared ‘an eQTL hotspot’. eQTL

hotspots may be a reflection of regions that are either

gene-rich or recombine infrequently (such as genetic cen-

tromeres). This type of hotspot is generally of little func-

tional interest. A biologically meaningful eQTL hotspot

would represent, for example, the location of a master

transcriptional regulator that controls the expression of a

suite of genes that act in the same biological process or

pathway. To differentiate between these two possibilities,

gene ontology and enrichment analysis can facilitate to

identify any underlying biological links. When significant

enrichment of a ‘functional category’ is observed, the

potential biological pathways relevant to the functional

category can be inferred and relevant experiments

designed for further investigation.

When eQTL studies are performed in different popula-

tions using similar tissues or treatments, the expectation is

that consistent eQTL hotspots would represent the same

biological pathways. eQTL studies performed in the same

population but using different tissues or treatments should

however yield complementary results, that reflect the

dynamic nature of the transcriptome. Using mRNA from

germinating embryos, Potokina et al. (2008b) observed

several regions on chromosomes 2H, 5H and 7H which

had many more eQTL than expected by chance alone

based on a uniform distribution of genes per cM. Interest-

ingly, in the same population using Puccinia hordei

infected seedling leaves 18 h post-infection, eQTL hotspots

on two different linkage groups, 1H and 3H, were

observed (X. Chen, pers. commun.). While the eQTL hot-

spots in the barley embryo experiment appeared to be

biased towards genomic regions that exhibit little recombi-

nation and hence have more genes per cM, in the patho-

gen challenged tissues this did not appear to be the case

(X. Chen, pers. commun.). In the former, some eQTL hot-

spots did however correlate with the known location of

‘malting quality’ QTL (a trait expressed and measured in

this tissue), while in pathogen challenged tissues at least

two of the three hotspots were enriched for mRNA related

to general ‘pathogen responsive genes’. eQTL hotspots

have also been recorded in Arabidopsis and while the bio-

logical pathways represented at all hotspots have not been

identified (Keurentjes et al., 2007; West et al., 2007), one

co-located with the well known ERECTA locus which is

responsible for pleiotropic effects on many traits including

morphological differences (Koornneef et al., 2004). While

such observations provide a potential opportunity to unra-

vel the genetic control of important phenotypic traits, in

general, these types of study are currently at a very early

stage.

Limited pleiotropy

The number and distribution of detected eQTLs, as illus-

trated in the previous comparison, may vary between spe-

cific tissues or stages of development. Potokina et al.

(2008a) compared eQTL data derived from two different

tissues using the same segregating population: germinat-

ing embryos and seedling leaves. After conducting a

highly selective comparison between the two datasets the

experiments yielded 1498 and 1134 robust eQTLs, in

embryos and leaves respectively. Five hundred and fifty-

one of the eQTLs were common to both tissues (Potokina

et al., 2008a). They suggested that the cause of the

observed tissue-specific cis-eQTLs lay in the phenomenon

known as limited pleiotropy of cis-regulatory mutations.

Limited pleiotropy describes a situation where the effect

of cis-regulatory variation is spatially or temporally limited.

For example, in the barley dataset, 34 genes were

detected that revealed a reciprocal change in the parent

that contributes the allele with the most abundant tran-

script in the two tissues sampled. Limited pleiotropy

deserves more attention because it may be relevant to
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some age-related disorders and ⁄ or tissue-specific syn-

dromes. In plants, limited pleiotropy may be important in

adaptive traits such as floral organ pigmentation or quanti-

tative age-related plant resistance to various foliar patho-

gens. Limited pleiotropy may reflect the occurrence of

transcription factors whose influence on gene expression

is either tissue or stage specific and modulated by poly-

morphism in the transcription factor binding sites of their

target genes.

Candidate gene identification using eQTL data sets

An eQTL study can provide useful data for the identifica-

tion of candidate genes for pQTLs, particularly, but not

necessarily, when eQTL data is generated from the same

population under similar conditions as the pQTL data. Of

most interest are cis-eQTLs underlying pQTLs because they

fulfil two important criteria that are required for them to

be considered candidates: they co-locate with the pQTL

and they are differentially expressed. They are therefore

candidates with respect to both position and transcrip-

tional regulation.

A straightforward approach to identifying candidate

genes for a trait of interest is to correlate phenotypic trait

measurements with mRNA abundance values of all of the

genes present on the microarray assay platform. The mini-

mal experimental constraint is that the same genetically

fixed population has been used to obtain both the trait

and mRNA abundance values. Correlation analysis returns

a list of correlates (probes or probe sets) and their respec-

tive correlation coefficients. Correlates with the highest

absolute correlation coefficient can be considered poten-

tial candidate genes for the trait. Logically, most highly

correlated eQTL should fall into the region containing the

pQTL. However, only one, if any, would be causal, with

the correlation observed from other genes almost certainly

the result of their physical linkage and regulation in cis.

The correlation approach was used to simulate identifi-

cation of Rpg1, a gene that confers resistance in barley to

the wheat stem rust pathogen Puccinia graminis f. sp.

Tritici (Druka et al., 2008b). In that study, the abundance

of the recently cloned Rpg1 mRNA was represented by a

specific probe-set on the array and was one of the top

correlates with stem rust resistance. Both Rpg1 mRNA

abundance and stem rust resistance had single, strong

and coinciding QTL. While this was a good and testable

example, the correlation approach also appeared to be

informative for traits that had multiple QTL. In the same

study Druka et al. (2008b) partitioned the original, quanti-

tative resistance data into four principal components

(PC1–PC4) then used the individual PC data for correlation

analysis. They identified Hsp25 as a candidate for the PC3

stem rust response trait. Both PC3 and Hsp25 had three

significant correlated QTL mapping to chromosomes 3H,

5H and 7H. Recently, in an independent yeast 2-hybrid

screen, another small heat-shock protein, HSP17 was iden-

tified as an interacting partner with RPG1 (Kleinhofs et al.,

2009), supporting the original mRNA-trait correlation-

based hypothesis that suggested the involvement of small

heat-shock proteins in the barley–Puccinia graminis f. sp.

Tritici interaction.

To infer candidate genes based on correlation, direction-

ality has to be taken into account with transcript abun-

dance data considered in the context of the underlying

trait biology. The reason for selecting positively correlated

mRNA as candidates for Rpg1 was based on the assump-

tion that increased resistance should positively correlate

with the amount of mRNA from the resistance gene. In

this particular case, prior information was available—Rpg1

is a dominant race-specific resistance gene. In reality,

directionality is not always intuitive, especially when deal-

ing with quantitative traits. Despite this, attempts should

be made to consider correlations in the context of the tar-

get biological process. Directionality plays a central role in

the interpretation of observed associations and subse-

quently for the systems-based assembly of gene regulatory

networks. In the Rpg1 example, differential transcript

abundance per se is unlikely to be the root cause of the

observed phenotypic variation because a stop codon in

the susceptibility allele results in the production of a non-

functional protein. The stop codon may, however, also

result in a reduction in steady-state mRNA abundance

through the non-sense mediated mRNA decay mechanism

(Brogna and Wen, 2009). The message is that care should

be taken when interpreting mRNA abundance as the

cause of phenotypic variation.

Correlation analysis provides an overview of potential

genes associated with a trait. Further analysis involves the

putative function of the correlated genes and whether

there are multiple coinciding eQTLs, or hotspots, that may

indicate that the causal gene is a trans-acting ‘master reg-

ulator’ which may not be represented on the array. If such

eQTL hotspots predominantly consists of trans-eQTLs that

have annotations from previous studies suggesting some

form of functional relatedness (e.g. mainly genes involved

in pathogen response), then a master regulatory locus

may be inferred. Such loci are exemplified by the sub1

locus in rice which controls the activity of an ethylene
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response factor that has significant trans effects (Fukao

et al., 2006; Xu et al., 2006) and the ERECTA locus, men-

tioned previously, that exerts secondary effects on many

developmental processes (Keurentjes et al., 2007). Simi-

larly, a locus on barley chromosome 2H containing a puta-

tive regulatory ‘master locus’ affecting the expression of

other genes associated with programmed cell death has

been proposed (Druka et al., 2008b). If making such infer-

ences, particularly in small populations, it is important to

exclude the possibility that chance co-segregation is

responsible for the correlation.

When characterizing a ‘master regulatory’ locus to iden-

tify the underlying gene, it is important to realize that this

gene may not be represented on the array. However, if

the expression level of a reliably identified trans-eQTL is

essentially bi-allelic (i.e. it is a single strong eQTL) then it is

a powerful surrogate that can be used to characterize and

refine the location of the target locus. It may be exploited

to effectively reduce the number of positional candidate

genes that can feasibly be used for functional validation.

As in traditional positional cloning projects, increasing the

size of the experimental population and integrating other

sources of information is essential.

Allelic imbalance

Individual transcript abundance measurements cannot dis-

tinguish the relative contribution of each allele in a hetero-

zygous individual (e.g. when assessing heterosis in maize

hybrids, Swanson-Wagner et al., 2006). Assignment is

generally based on genetic segregation of transcript abun-

dance by quantitative genetics analysis and requires exten-

sive genotypic and phenotypic (transcript abundance)

information across the population. However, an indepen-

dent test of cis- or trans-regulation that directly assays the

level of allele expression in F1 hybrids is the allele imbal-

ance assay (Cowles et al., 2002; Yan et al., 2002;

Wittkopp et al., 2004). The rationale is that in an F1

hybrid, alleles at a given locus will be in an otherwise

identical genetic, transcriptional and environmental back-

ground which should in principle remove almost all non-

genetic effects (Figure 4). Allele imbalance assays exploit

SNP between the coding sequence of the target alleles

in heterozygous individuals combined with quantitative

RT-PCR, single base extension and capiliary electrophoresis

(or pyrosequencing) to obtain an accurate measure of the

levels of expression of each allele (by comparison to a

titration curve constructed from mixed parental DNA). This

approach has been used to identify novel alleles and quan-

tify transcriptional variation for alleles of genes involved in

biotic and abiotic stress tolerance in barley (von Korff

et al., 2009). There, nineteen of the 30 genes assayed

revealed allelic expression level differences of up to

19-fold because of cis-regulatory variation. Imbalance

assays have also been used in polyploids to quantify rela-

tive expression levels of homoeologous transcripts from

the A, B and D genomes of wheat (Stamati et al., 2009).

Of course, NGS of whole transcriptomes can also quantify

allele-specific expression and will no doubt have great

potential in gaining understanding in areas of biology that

include epigenetics and the molecular basis of heterosis

(Guo et al., 2006, 2008).

Prospects

Increasing interest in eQTL studies is largely because of the

prospect of reducing the time and effort required to iden-

tify genes underlying quantitative traits. However, simple

questions such as ‘what is a cis- (or a trans-) eQTL?’

remain unanswered. We can assay how they are elabo-

rated—but not the cause. We would argue that under-

standing the basis of allelic imbalances in gene expression

is academically interesting, but not core to the practical

application of the approach. So what issues must be con-

sidered carefully prior to undertaking an eQTL experiment

and what outcomes should be expected?

First, most published studies have used existing

bi-parental populations, existing molecular marker-based

linkage maps and potentially valuable phenotypic datasets.

Given a likely ‘error-rate’ of c. 5%–15% in legacy molecu-

lar marker data (see Luo et al., 2007) we consider this a

dangerous strategy that may lead to erroneous interpreta-

tion of what is after all an expensive dataset to collect.

Given the established principles of using the same tran-

script abundance dataset to generate a more than suffi-

cient quantity of reliable bi-allelic marker information we

would recommend using de novo TDM for map construc-

tion. In most species, residual error can frequently be spot-

ted as single marker double recombinants and

subsequently corrected in the dataset. This clean and con-

sistent map can then be used as a framework for eQTL

and phenotypic analysis. Of course, rigour must be applied

when establishing the thresholds for assigning an eQTL as

a TDM, but the statistical framework for extracting robust

data are freely available.

Second, greater equivalence of the sampled tissues will

reduce noise in the system. Non-equivalence, for example

the result of physiological, developmental or tissue com-
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plexity differences segregating in a population will influ-

ence the general usefulness of the dataset. For example,

segregation of a major pleiotropic developmental gene—-

such as a dwarfing gene—may influence the value of a

dataset for its intended application. Our recommendation

would be to take all possible steps towards maintaining

‘equivalence’ of the sampled tissue. In practice, this may,

for example, start the generation before the eQTL experi-

ment is conducted to minimize the impact of ‘maternal

effects’.

Third, eQTL analysis in crop plants with unsequenced

genomes has relied on the use of microarray platforms

developed from EST-based gene discovery programs.

Because EST collections do not contain all genes in a gen-
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ome, any information derived from these platforms will be

partial. Furthermore, EST discovery will bias gene discovery

towards mRNA that are ‘relatively abundant’ within the

tissues sampled. We do not consider this too much of an

impediment. Many genes that are ‘causal’ to a given phe-

notype are likely to be of a class that initiate a series of

subsequent effects (e.g. trans-eQTL or transcription

factors) elaborated through the expression of a cascade of

downstream events. Being able to monitor the expression

of genes in the cascade provides information both on the

likely genetic location of the causal gene (that does not

need to be on the assay platform) and information on

the network of genes that respond to it. Thus, while the

information will never be complete, for many applications

the richness of the derived datasets is such that positional

information will provide a platform for causal gene identi-

fication. In addition, given the information is gene based,

it is particularly powerful for species—e.g. the large gen-

ome small grain cereals—where genomic models exist and

can be exploited directly through conservation of synteny.

Establishing the predicted gene content of any region thus

becomes both easy and powerful. This issue may soon dis-

appear through the use of NGS for transcript profiling,

which in addition to being an open system, has brought

the potential to conduct comprehensive eQTL studies in

any species.

Once a robust eQTL dataset is obtained on a given popu-

lation, its use can extend to traits not generally assayed in

the tissue that has been sampled. A clear example of this is

the data referred to above relating to Rpg1 (Druka et al.,

2008b). There, the eQTL dataset used for analysis was from

uninfected germinating embryo. The resistance phenotype

would not normally have been assayed in that tissue but

despite this the most highly correlated sequences made

clear biological sense. Consequently, we use this dataset

widely in our laboratory as a quick point of reference for

any new phenotypic trait subject to investigation. This is

important because eQTL experiments can be expensive and

only a small fraction of the information is generally utilized

by the originating laboratory. To provide broader commu-

nity access, the barley GG data set has been integrated into

the GeneNetwork (http://www.genenetwork.org). This

enables straightforward testing of multiple genetic hypothe-

ses using pre-compiled higher-order phenotypic trait infor-

mation, mRNA abundance, genotype or custom data sets

(Druka et al., 2008a). Currently eQTL data and a limited

number of barley tissue types are represented in the Gene-

Network. Our intention is to extend the data set by generat-

ing and integrating novel phenotypic, mRNA abundance

and genotype data using different recombinant line popula-

tions and tissue types.

Despite the progress reported above, eQTL analysis in

plants remains in its infancy. The studies conducted to date

have nevertheless been sufficiently encouraging to stimulate

interest and activity across the plant genetics community.

Robust statistical algorithms now exist and are accessible to

the research community for marker discovery and general

eQTL analyses. However, the real promise of these highly

dimensional datasets most likely lies in systems genetic

interpretation of biological processes or phenomena (Jansen

et al., 2009). As the ultimate outcome of such analyses will

be ‘candidate genes’ that are supported by various lines of

evidence, the need for efficient strategies for validating their

role, often in polygenic processes, remains pressing.
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