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Highlight 

Algae with low intracellular osmolarities and high specific growth rates have lower 

metabolite concentrations than are modelled to occur for these growth rates. The paper 

suggests possible explanations for this. 

Abstract 

Some freshwater algae have lower (< 130 osmol m-3) intracellular osmolarities than 

most others (> 180 osmol m-3). Low osmolarities are related to the presence of flagella 

and low energy cost of active water efflux following downhill water influx unconstrained 

by cell walls covering the plasmalemma, and low resource cost of cell-wall synthesis 

with the same mechanical degree of safety. One consequence of low intracellular 

osmolarity is limitation on the concentration of metabolites, i.e. substrates and products 

of enzyme activity. Models of the flux through metabolic pathways, and hence specific 

growth rate, using steady-state concentration of enzymes and metabolites, have 

involved organisms with intracellular metabolites > 280 osmol m-3 where the metabolite 

concentrations are much greater than the total osmolarity of some freshwater algae. 

Since the protein concentration (mol m-3) in the cells and the specific growth rates of 
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freshwater cells with low and with higher intracellular osmolarity are closely similar, 

the models of tradeoffs between enzyme and metabolite concentrations for cells with 

high intracellular osmolarity needs modification for cells with low intracellular 

osmolarity. The soluble free radical scavenger ascorbate can be as little as 0.2% of the 

low intracellular metabolite concentration (mol m-3) of low intracellular osmolarity 

cells. 

Keywords: active water transport; ascorbate; enzyme concentration; metabolite 

concentration; osmolarity; trade-offs; UV screens 

Introduction 

There is a wide range of intracellular osmolarities of photosynthetic organisms. The 

highest values are found in organisms living in seawater or, especially, hypersaline 

habitats, e.g., Dunaliella (Chlorophyceae) (Borowitzka and Brown 1974, Ehrenfeld and 

Cousins 1982, Katz and Avron 1985) and other algae (and certain terrestrial flowering 

plants (Kirst 1977,1989; Munns and Tester 1982). The lowest values (< 130 osmol m-3) 

are found for four (three chlorophycean and one chrysophycean) freshwater flagellates 

and a freshwater giant-celled (chlorophycean) alga (Raven 1982, 1984, 1995; Komsic-

Buchman et al. 2014; Raven and Doblin 2014). Much more emphasis has been given to 

the upper end and the middle than to the lower end of the range of osmolarities. After 

discussing the derived nature, and the rationale(s), of low intracellular osmolarities, this 

paper discusses possible constraints of a low intracellular osmolarity, and particularly 

the proposed trade-offs of metabolite (enzyme substrate) and protein (enzyme) 

concentrations in achieving the observed metabolic fluxes (Veneklaas et al. 2012; 

Tepper et al. 2013; Mettler et al. 2014; Lambers et al. 2015; Barenholz et al. 2016; Davidi 

et al. 2016; Noor et al. 2016; Park et al. 2016; Davidi and Milo 2017), with implications 

for RNA content (Flynn et al. 2010; Loladze and Elser 2011; Veneklaas et al. 2012; Raven 

2013a; Raven 2013b; Lambers et al. 2015) and hence specific growth rate (Flynn and 

Raven 2017). Further contributors to ‘metabolite load’ are the terminal metabolic 

products that act as OH radical scavengers and as soluble intracellular UV screens 

(Raven 1995); these are also discussed. 
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Occurrence of, and possible rationale for, low intracellular osmolarity. 

Some freshwater  algae , and other organisms have very low intracellular osmolarity 

relative to other freshwater, and marine, cells (Raven 1982, 1984, 1995; Komsic-

Buchmann et al. 2014; Raven and Doblin 2014). The low intracellular osmolarity algae 

(with values rounded to two significant figures) are the chlorophycean algae 

Chlamydomonas reinhardtii (62-130 osmol m-3), Scherffelia dubia (93 osmol m-3) and 

Hydrodictyon africanum (59 - ≥79 osmol m-3), the charophycean Mesostigma viride (85 

osmol m-3) and the chrysophycean Poteriochromonas malhamensis (75 osmol m-3) 

(Raven 1982, 1995; Komsic-Buchmann et al. 2014). Some components of the osmolarity 

are relatively well known for Hydrodictyon africanum, since the higher value (≥79 osmol 

m-3) for osmolarity is derived from the content of major inorganic ions (Raven and

DeMichelis 1979; Raven 1995). It therefore is a lower limit; the lower, directly 

determined, value for intracellular osmolarity for Hydrodictyon africanum was obtained 

under different growth conditions.  

Other freshwater algae, e.g., the multicellular Charales (Charophyceae) that are  largely 

made up of giant coenocytic cells, have osmolarities of at least 190 – 320 osmol m-3, 

based on the measured vacuolar ion concentration (Table 8.2. of Raven 1984) and an 

osmotic coefficient (osmol m-3 for a given mol m-3 solution) of 0.9 (Appendix 10 of 

Milburn  1979).  More comparable to the four low intracellular osmolarity algal 

flagellates in terms of cell size and the absence of a large central vacuole (Table 8.1 of 

Raven 1984) is the walled non-flagellate alga Chlorella pyrenoidosa (Treboxiophyceae) 

(Scott 1943; Schaedle and Jacobson 1965; Barber and Shieh 1972). Based on the 

intracellular cations that were measured, the intracellular osmolarity of Chlorella 

pyrenoidosa is at least 150-330 osmol m-3 (Supplementary Information 1).  

Taking ‘average’ seawater as a typical high-osmolarity environment (1100 osmol m-3), a 

number of organisms living in seawater have lower osmolarity than does seawater, e.g., 

teleost fishes (toadfish 400 osmol m-3) as do their freshwater (210-250 osmol-3) and 
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terrestrial (310-330 osmol-3) descendants (Takei 2000). The lower osmolarity of these 

extant marine organisms than that of surrounding seawater has been attributed to the 

origin of life in seawater more than 3.5 billion years ago when seawater had a salinity 

less than half of the present value (Takei 2000). However, more recent approaches 

suggest that Archaean seawater had an osmolarity 1.5 – 2.0 times the present value 

(Knauth 2005), so some other explanation is needed for the lower than extant seawater 

osmolarity of some extant marine organisms. Regardless of the osmolarity, the inorganic 

ion concentration in the cytosol and (in eukaryotes) mitochondrial matrix and plastid 

stroma of organisms other than certain archaeans is only about half or less that of 

seawater (e.g., Raven 2017). Recent evidence is consistent with a freshwater origin of 

photosynthetic eukaryotes (Blank 2013; Brasier 2013; Sánchez-Baracaldo et al. 2017a, 

2017b), although it is not clear how this relates to intracellular osmolarity of the earliest 

photosynthetic eukaryotes. 

The null hypothesis for freshwater algae with low intracellular osmolarities is that the 

contribution to osmolarity of the cytosol, mitochondrial matrix and chloroplast stroma 

of the bulk of metabolites is similar to that of cells with higher intracellular osmolarity, 

and the decreased intracellular osmolarity comes from decreased concentrations of the 

major solutes such as K+ and glutamate-. For K+, the dominant cation in concentration 

and charge terms, in compartments of high protein diversity, with osmolarity can be 

made for Chlamydomonas reinhardtii, although with different growth conditions and 

algal strains for the different measurements. There are data on the K+  (and Na+) 

concentration in Chlamydomonas reinhardtii: Ronkin and Buretz (1960) found 20 mol K+ 

m-3 (and 1.4 mol Na+ m-3), while Malhotra and Glass (1995a,b) found 65 mol K+ m-3 in the

cytosol and 64 mol m-3 in the chloroplast for cells grown in 0.1 mol K+ m-3. The 

difficulties of measuring osmolarity and ion concentration in Chlamydomonas 

reinhardtii, and possibly strain differences, are shown by the concentration of K+ of 20 – 

65 mol m-3 (uncorrected for the osmotic coefficient, and requiring inorganic or organic 

counter-ions) compared with the osmolarity of 62-130 osmol m-3). A large number of 

enzymes require K+ to activation of catalysis; in a few cases (none from algae) full 

activation of the enzyme needs more than 100 mol K+ m-3   (Evans and Sorger 1966; 

Evans and Wildes 1971). There seem to be no data on the K+ affinity for enzyme 

activation in algae with low intracellular osmolarities (Raven 1995). Other contributors 

to intracellular osmolarity are low molecular mass organic compounds, including 
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metabolic intermediates as well as end-products such as UV-screening and reactive 

oxygen-scavenging compounds (Raven 1982, 1984, 1987, 1995,1997).  

A rationale for the low intracellular osmolarity of the freshwater flagellates 

Chlamydomonas reinhardtii, Mesostigma viride,  Poteriochromonas malhamensis and 

Scherffelia dubia is that there is plasmalemma area not surrounded by a rigid cell wall, 

and the resulting osmotic water entry requires active water efflux to prevent bursting of 

the protoplast (Raven 1982, 1984,1995; Komsic-Buchmann et al. 2014; Raven and 

Doblin 2014). The osmotic water entry is directly proportional to the water potential 

difference across the plasmalemma, and the energy cost of active water efflux is also 

directly proportional to the water potential difference (Raven 1982, 1984, 1995, Raven 

and Doblin 2014). For the walled vegetative cells such as those of Hydrodictyon 

africanum, the thickness of the cell wall needed to confine turgor with a defined safety 

margin, a given wall composition and cell shape and dimensions, is directly proportional 

to the osmolarity difference across the plasmalemma (Raven 1987, 1997). The low 

intracellular osmolarity of all five algae can therefore be rationalised in terms of 

decreasing resource costs of cell volume regulation. 

Not considered previously in the context of low intracellular osmolarities are the 

constraints imposed on intracellular osmolarities by the requirements of the 

intracellular metabolite concentrations, acting as substrates for enzymes. These are now 

considered, with updates on the previously considered roles of metabolites as 

intracellular OH radical scavengers and soluble UV screens.  

Constraints on metabolite concentrations: effects of concentration of enzymes and 

other proteinaceous catalysts 

The specific growth rate of a cell at a given temperature is directly related to the 

metabolic flux, which in turn depends on the concentration of proteins (mol m-3 cell 

volume). For each enzyme protein, the in vivo specific reaction rate depends on the 

maximum, substrate-saturated, specific reaction rate in vivo, the substrate concentration 

dependence (= substrate affinity) of the enzyme activity in vivo, and the steady-state 
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substrate concentration at the enzyme active site in vivo. Chlamydomonas reinhardtii has 

similar maximum specific growth rates to non-flagellate freshwater green algae of 

similar size and at the same temperature but with a higher intracellular osmolarity 

(Table 1).  

While the concentration of proteins is not directly related to enzyme activity, it is worth 

considering the protein concentration in low and high osmolarity green microalgae. 

There is a paucity of relevant data on the protein concentration in cells with low 

intracellular osmolarity. Kliphuis et al. (2012) showed that there is 0.376 – 0.425 g 

protein per g dry matter in chemostats with growth rates in the range 0.018 – 0.064 h-1 

in Chlamydomonas reinhardtii CC1690. Zuñiga et al. (2018) found that there is 0.48 g 

protein per g dry matter in N-replete cultures which decreases to 0.14 g protein per g 

dry matter in N-depleted cultures in Chlorella vulgaris UTEX 395. Other data are for 

protein per cell. Schmollinger et al. (2014) found 3 pg protein per Chlamydomonas 

reinhardtii cell, while John et al. (1982) found 8 pg protein per Chlorella strain 211-8p. 

Before concluding that the higher-osmolarity Chlorella than the lower-osmolarity 

Chlamydomonas has higher protein per unit dry matter, it must be remembered that a 

spherical cell only needs to have a diameter 1.34 times greater and hence a 8/3 greater 

volume, and a similar dry matter per unit volume, to have the same protein per unit dry 

matter as in the smaller cell. Figure 6A of Hsieh et al. (2013) gives the quantities, in zmol 

(10-21 mol) per cell of a very large range of proteins in Chlamydomonas reinhardtii: 

however, since some proteins may not have been measured, the sum of these values, 

after conversion from mol to mass for each individual protein would under-estimate the 

mass of total protein per cell or per unit dry mass. In the absence of measurements of 

cell size the data of Hsieh et al. (2013) cannot be used to calculate the intracellular 

concentrations of proteins.  

Mettler et al. (2014) determined the content of 644 proteins, including photosynthesis-

related enzymes, in Chlamydomonas reinhardtii  growing at a limiting photon flux 

density (41 μmol m-2 s-1, 400-700 nm) and in cells transferred to a higher photon flux 

density (145 μmol m-2 s-1, 400-700 nm). As discussed below for metabolite 

concentrations, most enzymes of the Calvin-Benson cycle are substrate-limited in vivo, 

although for three, ribulose bisphosphate carboxylase/oxygenase (Rubisco), fructose-

1,6-bisphosphate-1-phosphatase and sedoheptulose-1,7-bisphosphate-1-phosphatase, 
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were close to substrate  saturation in vivo (Mettler et al. 2014). Interestingly, these 

three enzymes have the greatest control strength in the Calvin-Benson cycle of 

terrestrial C3 plants (Raines 2003; Zhu et al. 2007). It is also clear that the affinity of 

most enzymes are lower in vivo than in vitro, and that enzymes involved in 

photosynthesis and downstream reactions of growth are present in excess of the 

requirements for growth under light-limited conditions since increased light increased 

photosynthetic rate and then growth rate before there was an increased rate of protein 

synthesis (Mettler et al. 2014).  

While the number of proteins encoded in the nuclear genome cannot be related to the 

protein number in, or the mass in the proteome, it is of interest that the flagellate 

Chlamydomonas  has significantly more encoded proteins than the similarly sized non-

flagellate green algae Chlorella  and Coccomyxa (Table 2). 

Constraints on metabolite concentrations: intermediary metabolites 

For metabolite concentrations, the detailed analyses are for cells with relatively high 

intracellular osmolarities (≥ 280 osmol m-3: Martinez de Mařanon et al. 1996; Table 3 of 

Cayley et al. 2000; Takei 2000). Park et al. (2016) determined the total intracellular 

concentration of measured metabolites in three cell cultures: Escherichia coli (240 mol 

m-3), Saccharomyces cerevisiae (240 mol m-3) and mammalian iBMK cells (180 mol m-3);

see also Bennett et al. (2009), Bar-Even et al (2011), Tepper et al. (2013) and Yang et al. 

(2017) for additional data and analyses on Escherichia coli and Saccharomyces 

cereviseae. These values are clearly in excess of what can be accommodated in any of the 

five freshwater algae with low osmolarities (59-130 osmol m-3, especially granted the 

fraction of osmolarity occupied by just one of the inorganic ions, K, in Chlamydomonas 

reinhardtii considered above.  

Despite the large body of metabolomic data available for Chlamydomonas reinhardtii  

(Bölling and Fiehn 2005; Lee and Fiehn 2008; Timmins et al. 2009; Renberg et al. 2010; 

Lee and Fiehn 2013; Kleessen et al. 2015; Park et al. 2015; Williamme et al. 2015; Lee et 

al. 2016) , the only measurements of intermediary metabolites that are in units of the 
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intracellular concentrations of metabolites are those of Mettler et al. (2014).  This paper 

compares cells growing at a limiting photon flux density (41 μmol m-2 s-1, 400-700 nm) 

with cells transferred to a higher photon flux density (145 μmol m-2 s-1, 400-700 nm). 

While120 intermediary metabolites were measured, concentration values are only given 

for 16. For these 16 intermediary metabolites the combined intracellular concentration 

is 6.2 mmol m-3 for the low light controls, and 12.4 mmol m-3 for cells transferred to the 

higher irradiance. While these values are readily accommodated in the range of 

measured intracellular osmolarities of  Chlamydomonas reinhardtii, there are hundreds 

(at least) more intermediary metabolites in the cell. The concentration of metabolites is 

usually lower than that of the corresponding enzyme active site in Chlamydomonas 

reinhardtii (Mettler et al. 2014). 

Since the total metabolite concentrations must be low enough to be accommodated by 

the low measured intracellular osmolarity in the four flagellate algae considered, with a 

similar enzyme concentration and in vivo enzyme kinetics the lower metabolite 

concentration would result in a lower active site occupancy, and hence a lower enzyme 

activity. This lower metabolic flux would result in a slower growth rate. However, this is 

not borne out by the specific growth rates shown in Table 1, i.e. there is not a positive 

correlation between the total intermediary metabolite concentration and growth rate. 

For the best-investigated organisms with high concentrations of intermediary 

metabolites, i.e. Escherichia coli and Saccharomyces cerevisae, there is a negative 

correlation between the concentration of some metabolites and growth rate, although 

other metabolites show a positive correlation (Somsen et al. 2000; Park et al. 2011). 

This is also the case for Arabidopsis thaliana (Sulpice et al. 2009; Pyl et al. 2012). The 

data of Mettler et al. (2014) show no such negative correlation beween growth rate and 

(a) metabolite(s) in Chlamydomonas reinhardtii.

One possibility for the high growth rate of Chlamydomonas reinhardtii despite the low 

total metabolite concentration is changes in the properties (increased substrate-

saturated specific reaction rate, increased substrate increased substrate and activator 

affinity, decreased inhibitor affinity), or environment (decreased inhibitor 

concentration, including feedback inhibitors in metabolic sequence) of enzymes and 

other proteinaceous catalysts. The only demonstrated example of these possibilities is 

the enzyme glutamine synthetase, where the affinity for glutamate of the enzyme from 
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Chlamydomonas reinhardtii is greater than that of the enzyme from other species 

(Cullimore and Sims 1981); however, the substrate-saturated enzyme activity was not 

reported. 

A further possibility for maintaining a high growth rate is increased 

microcompartmentation in cells with low intracellular osmolarity. Maintaining the 

substrate concentration at the enzyme active site despite higher enzyme specific 

reaction requires a larger diffusive flux of substrate from the producer enzyme to the 

consumer enzyme. The diffusion coefficient of metabolites in high-protein 

compartments is less than that in water (Ellis 2001; Verkman 2002; Brangwynne et al. 

2008; Novack et al. 2009); for organic compounds with Mr 170-324 Dalton the diffusion 

coefficient in mammalian cytosol is 1.9 – 2.6 times that in water (Mastro et al. 1984). 

With a given diffusion coefficient and diffusion distance, this requires a higher mean 

concentration of the metabolite. With a completely mixed cytosol (or chloroplast stroma 

or mitochondrial matrix) the diffusion path increases with compartment size. However, 

there is evidence of metabolic microcompartmentation within a membrane-delimited 

compartment such as the cytosol, the mitochondrial matrix and the plastid stroma, thus 

decreasing diffusion distance for metabolites in a given pathway (Conrado et al. 2008; 

Sweetlove and Fernie, 2013; Angeles-Martinez and Theodoropoulos 2015). 

Constraints on metabolite concentrations: terminal metabolites and their roles as 

UV screens and free radical scavengers  

Some terminal, rather than intermediate, soluble metabolites are concerned with 

damage limitation by screening UV-B radiation and scavenging the very damaging OH 

radical (Raven 1995). These functions depend on the concentration of the metabolites. 

For UV screening, the prediction is that, for a given screening compound and degree of 

protection of the nucleus in a given external UV radiation field, there is an inverse 

relation between effective cell diameter and the required concentration (Garcia-Pichel 

1994; Raven, Finkel and Irwin 2005). For water-soluble intracellular UV screening 

compounds, e.g. mycosporine-like amino acids (MAAs), evenly distributed among cell 
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compartments of spherical cells, the modelling of Garcia-Pichel (1994) shows that 

‘powerful’ screening (i.e. decreasing the UV flux at a centrally located nucleus to 10% or 

less of that in the medium) by MAAs comprising 1% of the dry biomass is only possible 

for cells with a radius in excess of 200 μm.  This size restriction excludes the four 

flagellates considered here, as well as the multinucleate Hydrodictyon africanum giant 

cells where the nucleii are within 10-30 μm of the cell surface (Raven 1987, 1997). With 

the wet weight:dry weight ratio given by  Raven (1982) and a mean Mr of MAAs of 250 

Dalton, the MAA concentration corresponding to 1% of the dry matter would be 5.2 mol 

m-3 or about 4-9% of the total intracellular osmolarity of the low-osmolarity cells,

despite their failure to meet Garcia-Pichel’s (1994) criterion of ‘powerful’ screening. 

Further detail on UV screening in cells with low intracellular osmolarity and comparison 

with cells of higher osmolarity is given in Supplementary Information 2. 

. By contrast, free radical scavenger concentrations in compartments where free radicals 

are most damaging (cytosol, nucleoplasm, stroma, matrix) is predicted to be 

independent of cell size, other things being equal (see Halliwell and Gutteridge 2007).  

Data in Supplementary Information 3 show that  the OH radical scavenger ascorbate 

accounts for 0.2-7% of the total intracellular osmolarity of freshwater flagellate algae 

with almost all the cell volume occupied by compartments prone to free radical damage 

(i.e. not the aqueous phase of vacuoles). These data do not show what, if any, other OH 

scavengers occur, or the residual damage by OH that must be repaired.  

Conclusions and future work 

There is a conflict among available data on the low intracellular osmolarity (< 130 osmol 

m-3) of flagellate and certain large-celled freshwater algae and the high concentration of

metabolites required for the enzyme specific reaction rates needed to account for the 

growth rate, based on data from cells with osmolarities > 280 osmol m-3. Despite this 

apparent shortfall in metabolite concentrations in cells with low intracellular 

osmolarity, their specific growth rates are similar to those of cells of higher osmolarity 

and a similar protein concentration. Further work is needed on the concentration of 

metabolites (and proteins) in the algae with low intracellular osmolarity, and how the 

low metabolite concentrations can maintain the metabolic and specific growth rates.  
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Table 1 

Highest reported specific growth rate of flagellate and non-flagellate chlorophycean and trebouxiohycean green algae in 

the temperature range 25o C and 28o C.  . 

Organism Specific growth rate  

at 25o C 

Specific growth rate  

at 28o C 

Reference 

Chlorella pyrenoidosa1,3 

(van Niel) 

2.1 d-1 Sorokin & 

Krauss (1958) 

Chlorella pyrenoidosa1,3 

7-11-05 

2.1 f-1 Sorokin & 

Krauss (1958) 

Chlorella pyrenoidoa1,3 2.4 d-1 Yang & Gao 

(2003) 

Chlorella vulgaris1,3 

Emerson 

1.8 d-1 Sorokin &  

Krauss (1958) 

Chlamydomonas 

reinhardtii2,4 

2.6 d-1 Sorokin & 

Krauss (1958) 

Chlamydomonas 

reinhardtii2,4 

2.0 d-1 Yang & Gao 

(2003) 

Scenedesmus 

obliquus2,3 WH 650 

1.5 d-1 Sorokin &  

Krauss (1958) 

Scenedesmus  

obliquus2,3 

1.6 d-1 Yang & Gao 

(2003) 

Footnotes 

1Trebouxiophyceae 

2Chlorophyceae 

3Non-flagellate 

4Flagellate 

 Variations in growth rate of microalgae with abiotic environmental conditions are best considered in the context of the 

definition of stress by Grime (1974) as any abiotic environmental condition that decreases the specific growth rate of 

which that organism is capable.  Stressful conditions include high or low temperatures, high or low photosynthetic 

photon flux densities, high or low nutrient concentrations, and UV-B. 
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Table 2

Organism Genome

size

Chromosome

number

Protein coding

genes

Reference

Chlamydomonas

reinhardtii

(Chlorophyceae)1 

131 Mbp 17 15,143 Merchant

et al. 2007

Chlorella vulgaris

NC 64A

(Trebouxiophyceae)2 

46 Mbp 12 9, 791 Blanc

et al. 2010

Coccomyxa

subellipsoidea C-169

(Trebouxiophyceae)3 

49 Mbp 20 9,831 Blanc

et al. 2012

1Free-living flagellate; freshwater’ cell wall  

2Free-living or endosymbiotic (in ciliates) non-flagellate; freshwater; cell wall 

3Free- living non-flagellate freshwater (other species of the genus are symbiotic); cell wall 




