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Abstract 39 

Background: We sought to determine subtypes of patients with heart failure (HF) with a distinct 40 

clinical profile and treatment response, using a wide range of biomarkers from various 41 

pathophysiological domains. 42 

Method and results: We performed unsupervised cluster analysis using 92 established 43 

cardiovascular biomarkers to identify mutually exclusive subgroups (endotypes) of 1802 patients 44 

with HF and reduced ejection fraction (HFrEF) from the BIOSTAT-CHF project. We validated 45 

our findings in an independent cohort of 813 patients.   46 

Based on their biomarker profile, six endotypes were identified. Patients with endotype 1 47 

were youngest, less symptomatic, had the lowest NT-proBNP levels and lowest risk for all-cause 48 

mortality or hospitalization for HF. Patients with endotype 4 had more severe symptoms and signs 49 

of HF, higher NT-proBNP levels and were at highest risk for all-cause mortality or hospitalization 50 

for HF (HR 1.4; 95%CI 1.1-1.8). Patients with endotypes 2, 3 and 5 were better up-titrated to target 51 

doses of beta-blockers (p<0.02 for all). In contrast to other endotypes, patients with endotype 5 52 

derived no potential survival benefit from uptitration of ACEi/ARB and beta-blockers (Pinteraction 53 

<0.001). Patients with endotype 2 (HR 1.29; 95%CI 1.10-1.42) experienced possible harm from 54 

uptitration of beta-blockers in contrast to patients with endotype 4 and 6 that experienced benefit 55 

(Pinteraction for all <0.001). Results were strikingly similar in the independent validation cohort. 56 

Conclusion: Using unsupervised cluster analysis, solely based on biomarker profiles, six distinct 57 

endotypes were identified with remarkable differences in characteristics, clinical outcome, and 58 

response to uptitration of guideline directed medical therapy. 59 
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Abbreviations. 60 

HF: Heart failure 61 

ACEi: ACE-Inhibitor 62 

ARB: Angiotensin receptor blockers 63 

CKD: Chronic kidney disease 64 

LVEF: Left ventricular ejection fraction 65 

BNP: B-type natriuretic peptide 66 

NT-proBNP: N-terminal pro-B-type natriuretic peptide 67 

68 
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Introduction 75 

Heart failure (HF) is associated with considerably high rates of mortality and morbidity1,2. The 76 

etiology and pathophysiology of HF show substantial interindividual heterogeneity3-5. 77 

Nevertheless, patients with HF are uniformly treated according to guidelines with ACE-inhibitors 78 

(ACEi) and beta-blockers6,7. Distinguishing relevant disease subtypes within the spectrum of 79 

patients with HF is imperative to create a better understanding of the underlying pathophysiology 80 

as well as to identify subgroups of patients not benefiting from available treatment options. 81 

Clustering algorithms are frequently used to identify subgroups. Clustering methods try to identify 82 

mutually exclusive subgroups based on a set of variables. Recently, Ahmad et al. showed distinct 83 

disease phenotypes with differing outcomes by using a cluster-based approach4. However, the use 84 

of clinical characteristics as the basis for subgroup determination has been  criticized, since this 85 

will yield naturally occurring clusters of signs and symptoms and not distinct disease subtypes8. 86 

The advantage of using biomarker profiles over clinical characteristics to determine cluster 87 

membership, is that it enables us to possibly identify patients who phenotypically look the same, 88 

yet might respond differently to guideline directed medication based on their underlying biomarker 89 

profile. 90 

Therefore, we aimed to identify mutually exclusive subtypes of HF patients based on 91 

biomarker profiles using a wide range of cardiovascular biomarkers, which can provide new 92 

insights into the heterogeneity of HF. These endotypes are then compared with regards to their 93 

characteristics, clinical outcome, and their benefit/harm to uptitration of ACEi/angiotensin 94 

receptor blockers (ARBs) and/or beta-blockers.  95 

96 
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Methods. 97 

Patient population. 98 

This study utilized patients from the BIOSTAT-CHF project, which is described elsewhere9. In 99 

short, the BIOSTAT-CHF study includes two cohorts of patients with HF. The index cohort 100 

consists of 2516 patients with HF from 69 centers in 11 European countries. Inclusion criteria for 101 

the index cohort include: patients with >18 years of age, having symptoms of new-onset or 102 

worsening HF, confirmed either by a left ventricular ejection fraction (LVEF) of ≤40% or B-type 103 

natriuretic peptide (BNP) and/or N-terminal pro-B-type natriuretic peptide (NT-proBNP) plasma 104 

levels >400 pg/ml or >2,000 pg/ml, respectively. Patients had not been previously treated with an 105 

ACEi/ARBs and/or beta-blocker or they received ≤50% of ACEi/ARB and/or beta-blockers at the 106 

time of inclusion and anticipated initiation/up-titration of ACEi/ARBs and beta-blockers.  107 

The validation cohort includes 1738 patients from 6 centers in Scotland, UK. Patients were 108 

required to be ≥18 years of age, diagnosed with HF and were previously admitted with HF 109 

requiring diuretic treatment. They were sub-optimally treated with ACEi/ARBs and/or beta-110 

blockers, and anticipated initiation or uptitration of ACEi/ARBs and beta-blockers. Patients in both 111 

cohorts could be enrolled as in-patients or from out-patient clinics9. 112 

Of the 2,516 patients included in the index cohort, we excluded 151 patients who died and 113 

23 patients who were censored before 3 months follow-up. Additionally, we excluded 242 patients 114 

with LVEF>40%. Of the remaining 2,100 patients, there were 298 patients with missing values on 115 

the biomarkers. Subsequent analyses were done with data from the remaining 1,802 patients10. 116 
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Findings were validated in 813 patients with LVEF ≤40% and biomarker measurements available 117 

in the validation cohort.  118 

119 

Clinical measurements and definitions. 120 

Medical history, medication use and physical examination were recorded at baseline. Changes in 121 

ACEi/ARBs and beta-blockers were recorded. Investigators were expected to optimize treatment 122 

within the first 3 months. Patients were considered successfully up-titrated when recommended 123 

dose for either ACEi/ARB or beta-blocker was achieved after 3 months of uptitration according to 124 

current ESC guidelines6. The achieved dose was defined as the highest dose achieved within the 125 

uptitration period in percentage of the recommended treatment dose for either ACEi/ARB or beta-126 

blocker.  127 

128 

Outcome analyses 129 

To investigate possible differences between endotypes and outcome, we used a combined the 130 

combined outcome of all-cause mortality and HF hospitalizations at 2 years. Hospitalizations due 131 

to HF were determined by the investigator. We investigated whether a difference in treatment 132 

response could be observed between endotypes. Treatment response is defined as the survival 133 

benefit of successful uptitration to guideline directed target dosages for the combined outcome. 134 

135 

Biomarker measurements. 136 
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An overview of biomarkers and their pathophysiological function are presented in supplementary 137 

table 1. Biomarkers were measured using the Olink Proseek® Multiplex CVD III96x96 kit. The138 

kit uses a proximity extension assay (PEA) technology, where 92 oligonucleotide-labeled antibody 139 

probe pairs bind to their respective targets. When bound, antibodies with DNA reported molecules 140 

give rise to new DNA amplicons each ID-barcoding their respective antigens. These amplicons 141 

are quantified using a Fluidigm BioMark™ HD real-time PCR platform. The platform provides 142 

normalized protein expression (NPX, log2-normalized), but not an absolute quantification. In total, 143 

98.4% of measurements were within range, 1.6% of measurements were below the lower limit of 144 

detection (LOD). These were replaced by the LOD, which was found reasonable when having less 145 

than 10% of measurements below the LOD11,12. Characteristics of the biomarker assay are 146 

presented in supplementary table 2.  147 

148 

Statistical analysis. 149 

We have provided a comprehensive explanation of the statistical methods used in the 150 

supplementary material. In brief, the primary analytical goal of this study is to identify mutually 151 

exclusive subgroups of patients (clusters) based on their biomarker profile using 92 biomarkers, 152 

which we have called endotypes. Biomarker dimensions were reduced by performing principal 153 

component analysis (PCA). The optimal number of clusters in our analyses was determined using 154 

the package NBclust in R. The package NBclust uses a wide array of different measures to select 155 

the optimal number of clusters in a given dataset. Following, the number of cluster most often 156 

selected throughout is then selected as the optimal number of clusters for the analyses13. We have 157 

used k-nearest neighbors to validate our findings3,14-16. Cluster membership in the validation cohort 158 
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was determined by first projecting the results of the PCA on the biomarker in the validation cohort, 159 

followed by the calculation of the nearest cluster, using k-nearest neighbors in the index cohort, 160 

for each patient in the validation cohort14-16.   161 

Differences between clinical characteristics of endotypes were compared using one-way 162 

analysis of covariance (ANOVA), the Kruskal-Wallis test or the chi2-test where appropriate. 163 

Differences of biomarkers means between endotypes were plotted using a heatmap after z-164 

standardization of biomarker means to make them comparable. The C-index for the 3 biomarkers 165 

with the lowest p-value for association with individual clusters were assessed.  166 

The association with the primary outcome was investigated using Kaplan-Meier curves and 167 

the log-rank test. For multivariable analyses, Cox regression analysis was performed, correcting 168 

for relevant clinical confounders and the BIOSTAT risk model, which was previously published17. 169 

The BIOSTAT risk model for predicting mortality included, age, blood urea nitrogen (BUN), N-170 

terminal NT-proBNP, hemoglobin and the use of a beta-blocker at time of inclusion. The 171 

BIOSTAT risk model for predicting mortality or HF hospitalization included age, NT-proBNP, 172 

hemoglobin, the use of a beta-blocker at time of inclusion, a HF-hospitalization in year before 173 

inclusion, peripheral edema, systolic blood pressure, high-density lipoprotein cholesterol and 174 

sodium.  175 

The association between endotypes and uptitration rates of ACEi/ARBs and beta-blockers 176 

to recommended target doses was investigated using logistic regression and corrected for the 177 

previously published uptitration models from the BIOSTAT cohort18. For ACEi/ARB this model 178 

includes sex, BMI, eGFR, alkaline phosphate and country. For beta-blockers, this model included 179 

age, country of origin, diastolic blood pressure, heart rate and pulmonary congestion at baseline. 180 

Additionally, we have corrected for important clinical confounder including ischemic etiology, 181 
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potassium levels and use of MRAs at time of inclusion. To investigate a difference in treatment 182 

benefit of being uptitrated to guideline directed medication levels during follow up, we performed 183 

interaction analysis between endotype membership and being uptitrated to ≥100% of guideline 184 

recommended dosages (yes vs. no) or ACEi/ARB or beta-blockers. To adjust for treatment-185 

indication bias, risk estimates for the primary endpoint for successful uptitration of ACEi/ARB 186 

and beta-blockers were adjusted using inverse probability weighting using 55 clinical and 187 

laboratory variables (supplementary table 3). 188 

189 

Results. 190 

Clustering outcomes. 191 

The optimal number of clusters was 6, ranging from a minimum of 80 to a maximum of 435 192 

patients (supplemental figure 2). Heatmaps of biomarkers across endotypes for the index and 193 

validation cohort are depicted in figure 1, and C-indexes of the top 3 significantly associated 194 

biomarkers per endotype presented in table 1 (validation in supplementary table 4). Overall, a 195 

limited number of biomarkers identified endotype membership with a relatively high C-index 196 

(≥0.78; table 1). Patients with endotype 5 had very low levels of chitotriosidase 1 (CHIT1).  197 

198 

Clinical Characteristics. 199 

Baseline characteristics of subgroups are presented in table 2. Patients with endotype 1 were 200 

youngest, more often in NYHA class I/II (58%) and had relatively mild signs and symptoms 201 
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compared to patients with other endotypes. Patients with endotype 1 had the lowest rates of anemia 202 

and lowest NT-proBNP levels. Patients with endotype 2 had the higher rates of anemia (45.1%) 203 

and high rates of CKD (65.4%) compared to other endotypes (P <0.001). Patients with endotype 204 

3 most often had an ischemic etiology of HF. Patients with endotype 4 had the worst signs and 205 

symptoms and highest NT-proBNP levels. Patients with endotype 5 had relatively high rates of 206 

anemia (40%).  Patients with endotype 6 had the highest rates of hypertension (66%). A summary 207 

of clinical characteristics per endotype is provided in supplementary figure 1. 208 

209 

Outcome. 210 

After a median follow-up of 21 months, (34%) patients either had a hospitalization for HF or died. 211 

Event rate was highest in endotype 4 (48%) and lowest in endotype 1 (24%) (figure 2). Compared 212 

to the endotype with the best clinical outcome (endotype 1), patients with endotype 4 had the worst 213 

outcomes for both the primary combined outcome (HR1.8; 95%CI [1.2-2.7]) and for all-cause 214 

mortality alone (HR2.5; 95%CI [1.4-4.5]). After correction for the BIOSTAT-CHF risk models, 215 

endotype 4 had worse outcomes compared to endotype 1 for the combined outcome, while 216 

endotypes 2 and 4 had higher rates of mortality alone (table 3; supplementary table 5). Compared 217 

to the BIOSTAT-CHF risk model (C-index 0.71), the classification into endotypes performed 218 

worse (C-index 0.61). Interestingly, the BIOSTAT-CHF risk model performed worse in endotypes 219 

2, 3 and 4 (C-index~ 0.64) and better in endotypes 6 (C-index 0.75; supplementary table 6).  220 

Uptitration of HF medication to guideline directed dosages and treatment 221 

response.  222 
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Overall rates of uptitration to recommended target dose of ACEi/ARBs were lowest in endotype 223 

4 and highest in endotypes 3 and 6 (figure 3A). Significantly less benefit was observed for 224 

uptitration of ACEi/ARB uptitration for endotype 5 (HR 1.29; 95%CI [0.88-1.88]) for the primary 225 

combined outcome (figure 3B, supplementary table 7, Pinteraction <0.001).  226 

Beta-blocker uptitration rates was lowest in endotype 6 and highest in endotypes 1 and 5, 227 

also after correction for ACEi/ARB uptitration rates (p <0.01 figure 3C). Endotype 6 derived more 228 

benefit from successful uptitration on beta-blockers for the combined outcome. In contrast, 229 

endotype 2 (HR 1.29; 95%CI [1.10-1.52]) had a negative treatment response to beta-blocker 230 

uptitration, while endotype 5 did not seem to derive any benefit (figure 3D, supplementary table 231 

7, Pinteraction <0.001).  232 

233 

Validation. 234 

Patients in the validation cohort were older with lower NT-proBNP levels, other characteristics 235 

were generally comparable between both cohorts (supplementary table 8).  236 

Overall, the results of the cluster analysis were remarkably similar between the index and 237 

the validation cohort. Particularly the relative differences between clusters were well validated 238 

between cohorts. Figure 1 shows the marked similarity in the biomarker profiles between both 239 

cohorts. Supplementary table 9 shows the great similarity in clinical characteristics of the 6 240 

endotypes between both the index and validation cohorts. Figure 2 shows the remarkable similarity 241 

in clinical outcome: endotype 4 had the worst outcomes and patients with endotype 1 had the best 242 

outcomes of all endotypes.  243 
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Discussion. 244 

Using sophisticated classification techniques based on biomarker profiles, novel mutually 245 

exclusive subgroups in HF were identified and validated in an independent cohort. We found 246 

striking differences between endotypes in terms of mortality and/or HF hospitalization, uptitration 247 

rates of guideline-directed medication, and treatment response. These data show that when 248 

classifying patients based on biomarker profiles, specific subgroups with a heterogeneous clinical 249 

profile emerge. These specific “endotypes” are not only different in terms of their clinical profile, 250 

but also with regards to clinical outcome and their response to uptitration of ACEi/ARB and beta-251 

blockers. This is the first study using a large panel of biomarkers to identify subgroups in HF.  252 

Previous studies in HF identified subgroups via cluster analysis using clinical 253 

characteristics, echocardiographic variables and laboratory data3,4. A study by Ahmed et al. found 254 

novel subgroups in patients with HFrEF using clinical characteristics, however it was suggested 255 

that this study potentially identified subgroups based on disease severity and not actual subtypes 256 

based on differences in underlying disease mechanisms4. Of note, Shah et al. identified phenotypes 257 

of patients with HFpEF using clinical characteristics, echocardiographic parameters and laboratory 258 

data, which could reflect underlying pathophysiological differences more directly3. The present 259 

study solely used biomarker profiles for defining subgroups in HF using a comprehensive set of 260 

biomarkers reflecting a greater number of disease domains. The dynamic state of biomarkers 261 

suggests that not all biomarker levels reflect a consistent biological response, but instead a 262 

snapshot of the biological processes at that time point. Here, PCA can reclassify biomarkers into 263 

individual biological processes, which reduces the dynamic effect of individual biomarkers19,20. 264 

Future studies should focus on parameters reflecting a more consistent biological response. A 265 

13



potential strength of using biomarker profiles to reclassify patients with HF, is that we were able 266 

to identify patients with a specific endotype, who might have a non-remarkable phenotype based 267 

on clinical variables but respond differently to guideline-directed treatment. An important case-in-268 

point of this, is endotype 2. Patients with this endotype did not show a strong phenotype, yet these 269 

patients seemingly did not derive treatment benefit from beta-blockers treatment at guideline 270 

directed levels. 271 

The 6 endotypes identified had a distinct biomarker profile and phenotype. A possible 272 

important difference was observed for patients with endotype 1 (best outcomes) and patients with 273 

endotype 4(worst outcomes). Patients with endotype 1 had very low levels of IGFBP1 and NT-274 

proBNP, while patients with endotype 4 had very high levels of IGFBP1 and NT-proBNP. The 275 

very low levels of CHIT1 found in patients with endotype 5 were striking. CHIT1, part of a family 276 

of hydrolyzing enzymes, is active in both pathophysiological as well as in physiological 277 

circumstances21. Increased levels of CHIT1 are associated with arteriosclerosis and Gaucher’s 278 

disease, furthermore 10-25% of European populations are CHIT1 deficient due to a genetic 279 

polymorphism22. Interestingly, endotype 5 was deficient for CHIT1 and constituted roughly 4% of 280 

the patients in this index cohort. This suggest that CHIT1 might be an interesting novel target, 281 

which deserved further study. A limited number of biomarkers could adequately discriminate 282 

patient endotype membership with a high C-index. This suggests that in a clinical setting, a 283 

patient’s endotype membership can be determined by measuring a relatively small number of 284 

biomarkers. While promising, more work needs to be done to increase clinical feasibility and cost-285 

effectiveness of this method. 286 

While endotype membership was an independent predictor of outcome, the overall goal of 287 

cluster analysis and this study was not to provide a novel prediction model based on endotypes. 288 
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There are more advanced techniques to improve risk stratification using both unsupervised as well 289 

as supervised techniques, including neural network analysis and support vector machine23. Instead, 290 

the goal of this study was to provide for a novel classification of HF patients by identifying 291 

mutually exclusive subgroups based on biomarker profiles. These subgroups can then potentially 292 

be used to optimize risk stratification. Indeed, our results show that there are clear differences in 293 

the C-index of the BIOSTAT-CHF risk model between subgroups17. Hence, (re-)classification of 294 

patients with HF, might improve risk stratification using existing risk prediction models.  295 

There were marked differences in the uptitration rates of ACE/ARB and beta-blockers, 296 

particularly patients with endotypes 3 and 6 were more often uptitrated to target dose for 297 

ACEi/ARB and patients with endotypes 1and 5 were more often uptitrated to target dose for beta-298 

blockers, independent of confounders. Patients with endotype 2 seemed to derive more benefit of 299 

ACEi/ARB uptitration than other endotypes. This is of particular interest given the high rates of 300 

CKD in patients with endotype 2. There is a paucity of data on the benefits of ACEi/ARB usage 301 

in patients with CKD and HF, due to exclusion of these patients in most randomized controlled 302 

trials24-27. Patients with endotype 2 derived potential harm from uptitration to guideline directed 303 

dosages of beta-blockers. This suggests that beyond clinical characteristics, the endotype of a 304 

patient might determine response to guideline-directed medication. 305 

This study has important implications. Firstly, using biomarker profiles to group HF 306 

patients leads to potentially clinically meaningful subgroups in HF with differences in uptitration 307 

rates as well as treatment benefit of key HF guideline medications independent of confounders. 308 

Therefore, patients with similar phenotypes, may respond differently to guideline-directed 309 

medication based on their respective endotype, which deserver further study. Furthermore, we 310 

observed that subgroup membership could be identified with relatively high C-indexes using single 311 
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biomarkers. This suggests that in a clinical setting, a small set of biomarkers can be used to identify 312 

a patient’s subgroup membership. 313 

314 

Limitations. 315 

First of all, biomarkers used were part of a cardiovascular disease panel, which might not 316 

completely reflect the pathophysiological processes within HF. Secondly, we tried to correct for 317 

indication bias by performing inverse-probability-weighting, but it cannot be established whether 318 

we corrected sufficiently for indication bias. Additionally, the BIOSTAT-CHF is primarily a 319 

Caucasian cohort, extrapolation of results to other ethnicities is unclear. Pharmacological therapy 320 

at time of study inclusion might have influenced plasma levels of some biomarkers, which could 321 

not be accounted for in the analyses. As per design, information on uptitration was not available 322 

in the validation cohort. No absolute biomarker levels were available. Despite rigorous statistical 323 

techniques to correct for indication bias, results of this study might be further confounded by 324 

indication bias and need to be repeated in a more controlled setting. Lastly, echocardiography was 325 

not an entry criterion for the BIOSTAT-CHF and echocardiography was performed within 2 years 326 

before baseline.  327 

328 

Conclusions. 329 

This is the first study performing a comprehensive cluster analysis in patients with HF based on a 330 

large panel of biomarkers Our data suggest that specific pathophysiological profiles, reflected by 331 
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circulating biomarkers, have a differential impact on clinical outcome and the response to 332 

uptitration of ACEi/ARB and beta-blockers. 333 
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Figure legends. 

Figure 1: Heatmap displaying biomarker across endotypes for the index (A) and validation (B) cohort.  
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Figure 2: Kaplan-Meier curves for the primary combined outcome of all-cause mortality and/or HF hospitalization at 2 years for the index (A) and 
validation (B) cohort stratified according to endotypes. The log-rank p-value is <0.001 for both the index (A) and validation (B) cohort.  
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Figure 3: Uptitration rates corrected for the biomarker uptitration model for ACE-inhibitors/ARB (A), beta-blockers (C) and association with 
outcome of successful uptitration of ACEi/ARB (B) and beta-blockers (D) across endotypes in patients with left ventricular ejection fraction 
≤40%. 
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Table 1: Biomarkers subgroup identification. 

Endotype 1 Endotype 2 Endotype 3 
Marker C-index Marker C-index Marker C-index 

IGFBP1 0.83 PAI 0.77 SELP  0.93 
IGFBP2 0.70 PDGFsA 0.74 PECAM1 0.93 
NT-proBNP 0.65 SELP 0.7 JAMA 0.97 
Combined 0.83 Combined 0.78 Combined 0.97 
            

Endotype 4 Endotype 5 Endotype 6   
Marker C-index Marker C-index Marker C-index 

ST2 0.81 CHIT1 0.99 TPA 0.70 
NT-proBNP 0.80   NT-proBNP 0.70 
IGFBP1 0.80   VWF 0.70 
Combined 0.86 Combined NA Combined 0.78 

 

Abbreviations: CHIT1, chitoriosidase-1;IGFBP, insuling-like growth binding factor-binding protein; JAMA, junctional adhesion molecule A; NT-proBNP, N-type pro B-type natriuretic peptide; PAI, 
Plasminogen activator inhibitor-1; PDFGsA, Platelet-derived growth factor subunit alpha; PECAM1, platelet endothelial cell adhesion molecule; SELP, selectin P ; TPA, tissue-type plasminogen activator; 
VWF, Von-Willebrand-factor 

 

 

Table 2: Baseline characteristics. 

 Endotype 1 Endotype 2 Endotype 3 Endotype 4 Endotype 5 Endotype 6 p-value 

N 396 435 165 314 80 412   

Demographics               

Age(years) 63(12) 73(11) 66(11) 66(13) 66(12) 69(11) <0.001 
Female(%) 82(21%) 104(24%) 35(21%) 73(23%) 13(16%) 133(32%) <0.001 
BMI(kg/m2) 30(6) 27(5) 28(6) 27(5) 28(5) 28(5) <0.001 

Ischemic etiology(%) 
165(43%) 207(48%) 82(51%) 119(38%) 37(47%) 203(50%) 0.013 

NYHA n(%)        
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  I 39(10%) 30(7%) 6(4%) 28(9%) 8(10%) 40(10%) <0.001 
  II 190(48%) 190 (44%) 88(53%) 120(38%) 40(50%) 221(54%)  
  III 102(26%) 129(30%) 48(29%) 117(37%) 21(26%) 109(27%)  
  IV 15(4%) 18(4%) 2(1%) 12(4%) 2(3%) 6(2%)  
  NA 50(13%) 68(16%) 21(13%) 37(12%) 9(11%) 36(9%)  

Systolic BP(mmHg) 
126(22) 122(23) 127(19) 119(21) 125(23) 127(19) <0.001 

Diastolic BP(mmHg) 
77(13) 73(14) 77(12) 74(13) 76(16) 76(12) <0.001 

LVEF (%) 29(7) 28(8) 29(8) 26(8) 28(8) 30(7) <0.001 
Heart rate(bpm) 83(22) 80(20) 77(16) 84(21) 81(17) 75(17) <0.001 

Signs and symptoms(%)               

Peripheral edema         
  Not Present 159(49%) 126(35%) 79(58%) 55(20%) 34(51%) 192(59%) <0.001 
  Ankle 96(30%) 119(33%) 37(27%) 77(29%) 24(36%) 83(26%)  
  Below Knee 55(17%) 86(24%) 19(14%) 100(37%) 6(9%) 43(13%)  
  Above Knee 14(4%) 25(7%) 1(1%) 38(14%) 3(5%) 5(2%)  
JVP  60(22%) 124(38%) 15(12%) 115(52%) 18(31%) 60(20%) <0.001 
Orthopnea  133(34%) 159(37%) 32(19%) 144(46%) 28(35%) 85(21%) <0.001 

Medical history(%)               

Anemia  81(21.8%) 188(45.1%) 36(22.8%) 111(36.5%) 31(40.3%) 116(29.2%) <0.001 
Atrial fibrillation 161(40.7%) 210(48.3%) 64(38.8%) 156(49.7%) 35(43.8%) 147(35.7%) <0.001 
Diabetes  128(32.3%) 132(30.3%) 49(29.7%) 104(33.1%) 24(30.0%) 134(32.5%) 0.94 
COPD 55(13.9%) 84(19.3%) 32(19.4%) 56(17.8%) 13(16.3%) 50(12.1%) 0.041 
CKD 93(23.5%) 284(65.4%) 61(37.0%) 137(43.6%) 38(47.5%) 179(43.6%) <0.001 
Hypertension 239(60.4%) 256(58.9%) 94(57.0%) 175(55.7%) 43(53.8%) 273(66.3%) 0.046 
Medication(%)               

Loop diuretics 394(100%) 433(100%) 165(100%) 313(100%) 80(100%) 409(99%) 0.85 
ACEi/ARB 296(75%) 302(69%) 138(84%) 219(70%) 57(71%) 321(78%) 0.002 
Betablocker 332(84%) 367(84%) 143(87%) 259(83%) 66(83%) 363(88%) 0.31 
MRA 225(57%) 224(52%) 85(52%) 187(60%) 46(58%) 219(53%) 0.23 
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Laboratory 

Hemoglobin 14(2) 13(2) 14(2) 13(2) 13(2) 13(2) <0.001 
Sodium 140(138, 141) 139(137, 142) 139(137, 141) 139(136, 141) 139(137, 142) 141(138, 142) <0.001 
Potassium 4(4, 5) 4(4, 5) 4(4, 5) 4(4, 5) 4(4, 5) 4(4, 5) <0.001 
NT-proBNP 2570(1315, 3984) 6326(3490, 11809) 3624(1910, 6228) 6181(3360, 10300) 3308(1709, 8797) 2660(1207, 4198) <0.001 

Abbreviations: ACEi, ACE-inhibitor; ARB, angiotensin-II receptor blocker ; BMI, body mass index; BP, blood pressure; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; 

HF, heart failure; JVP, jugular venous pressure; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NYHA, New York heart association; SBP, systolic blood pressure; 

Table 3: Survival analyses. 

Endotype 1 Endotype 2 Endotype 3 Endotype 4 Endotype 5 Endotype 6 

All-cause mortality and/or Heart failure hospitalizations at 2 years 

HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value 

Univariable ref 2.3(1.7-2.9) <0.001 1.3(0.9-1.8) 0.171 2.5(1.9-3.2) <0.001 1.1(0.7-1.8) 0.575 1.1(0.8-1.4) 0.563 
  Model 1 ref 1.9(1.5-2.5) <0.001 1.2(0.9-1.7) 0.266 2.4(1.8-3.1) <0.001 1.1(0.7-1.7) 0.724 1.0(0.8-1.3) 0.939 
  Model 2 ref 1.5(1.0-2.2) 0.029 1.1(0.6-2.0) 0.760) 1.9(1.3-2.7) 0.002 1.2(0.6-2.5) 0.558 1.3(0.8-1.9) 0.296 
  Model 3 ref 1.5(1.0-2.2) 0.033 1.1(0.6-2.0) 0.747 1.8(1.2-2.7) 0.003 1.2(0.6-2.4) 0.577 1.3(0.8-1.9) 0.307 
BIOSTAT risk model ref 1.3(1.0-1.7) 0.064 1.2(0.8-1.7) 0.312 1.4(1.1-1.8) 0.019 0.8(0.5-1.3) 0.345 1.0(0.8-1.3) 0.895 

Model 1: age & sex; Model 2: model 1 + eGFR, systolic blood pressure, presence of anemia, history of atrial fibrillation and NT-proBNP levels; Model 3: model 2 + fraction target dosages of 
ACEi/ARB and beta-blockers at 3 months. The BIOSTAT risk model includes: age, blood urea nitrogen, NT-proBNP, hemoglobin levels, usage of beta-blockers at time of inclusion, previous HF 
hospitalization, presence of peripheral edema, systolic blood pressure, high-density lipoprotein, cholesterol and sodium levels.  
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